throbber
ADVANCES IN ENZYMOLOGY
`
`AND RELATED SUBJECTS OF
`BIOCHEMISTRY
`
`Volume XI
`
`Eton Ex. 1059
`1 of 74
`
`

`

`CONTRIBUTORS TO VOLUME XI
`
`E. S. GUZMAN BARRON, Chemical Division, Department of Medicine,
`The University of Chicago, Chicago, Illinois
`J. F. DANIELLI, Department of Zoology, King’s Collage, London
`W. C. 8, England
`J. T . DAVIES, Department of Chemistry, King’s College, London
`W. C. 8, England
`ERNST GAUMANN, Institut f u r spezielle Botanik der Eidgenassischen
`Technischen Hochschule, Zurich, Switzerland
`HERBERT GUTFREUND, Department of Colloid Science, University of
`Cambridge, Cambridge, England
`EDWARD J. HEHRE, Department of Bacteriology and Immunology,
`Cornell University Medical College, New York
`EUGENE F. JANSEN, Enzyme Research Division, Western Regional
`Research Laboratory, United States Department of Agriculture,
`Albany 6, California
`HANS LINEWEAVER, Western Regional Research Laboratory, United
`States Department of Agriculture, Albany 6, California
`STANLEY PEAT, Chemistry Department, Unicersity College of North
`Wales, Bangor, Caernarvonshire, Wales
`EWALD SEEBECR, Sandoz Ltd., Basel I S , Switzerland
`ARTHUR STOLL, Sandoz Ltd., Basel IS, Switzerland
`E. C. WASSINK, Laboratory for Plant Physiological Research, Agri-
`cultural University, Wageningen, Netherlands
`
`Eton Ex. 1059
`2 of 74
`
`

`

`ADVANCES IN ENZYMOLOGY
`AND RELATED SUBJECTS OF BIOCHEMISTRY
`
`E d i t e d b y F . F . N O R D
`
`FORDHAM UNIVERSITY, N E W YORK, N. Y .
`
`VOLUME XI
`
`N E W Y O R K
`INTERSCIENCE PUBLISHERS LTD., LONDON
`
`Eton Ex. 1059
`3 of 74
`
`

`

`Copyright, 1951, by
`
`I N T E R S C I E N C E P U B L I S H E R S , INC.
`
`All Rights Reserved
`
`This book or any part thereof must not
`be reproduced without permission of the
`publisher in writing. This applies spe-
`cifically to photostat and microfilm
`reproductions.
`
`IN'I'E KS C1 E N C E P U B LI S H E R S , I N C .
`250 Fifth Avenue, New York 1, N. Y.
`For Great Britain and Northern Ireland:
`
`I N T E R S C I E N C E P U B L I S H E R S , LTD.
`2a Southampton Row, London, W. C. 1
`
`Printed in the United States of America
`by Mack Printing Company, Easton, Pa.
`
`Eton Ex. 1059
`4 of 74
`
`

`

`C O N T E N T S
`The Nature of Entropy and Its Role in Biochemical Processes . By
`HERBERT GUTFREUND. Cambridge. England .....................
`I . The Nature of Entropy ........................................
`A . 1ntroduct.ion .............................................
`B . Historical . . . . . . . . . . . . .
`......................
`C . Some Fundamental Defi
`............................
`D . Entropy of Svstems in Equilibrium .........................
`E . Entropi of Irreversible Piocesses and Open Systems ..........
`F . Procedures for Experimental Determination of Entropy Changes
`I1 . Entropy Changes in Some Selected Processes .....................
`A . Ehtropy and Change of State of a Gas ......................
`B . Entropy of Mixing: Osmotic and Diffusion Processes .........
`C . Entropy and Elasticity of Fibers ...........................
`D . Entropy and Chemical Equilibria and Reactions .............
`I11 . Conclusions about the Nature and Role of Entropy ...............
`....................................
`References ...........
`Reactions at Interfaces in Relation to Biological Pro
`............
`DANIELLI and J . T . DAVIES, London, England ....
`I . Introduction ..................................................
`I1 . Distribution of Soluble Ions a t Interfaces ........................
`TI1 . Partition of SH Groups between Surface and Bulk Phases ..........
`A . Nonionogenic Thiols ......................................
`B . Ionogenic Thiols .........................................
`C . Effect of Variation in Ionic Strength ............
`D . Effect of Variation in Bulk Thiol Concentration ..............
`E . Significance for Studies with Enzymes ......................
`F . Redox Indicators ...............................
`G . Other Surface SH Problems ...............................
`IV . Partition of Reactants between Surface and Bulk Phases .
`V . Factors Influencing Rate of an Interfacial Reaction . . . . .
`A . Pressure, Temperature, and Tightness of Packing of Molecules
`or Ions in the Interface .................................
`B . Stereochemical Configuration of Reactant Molecules ..........
`C . Changed Ionic Concentrations a t the Interface ...............
`D . Rates of Diffusion to and from the Interface of Reactants and
`Products, Respectively .................................
`VI . Oxidation and Reduction Phenomena in an Interface ..............
`A . Toxicity of Ions ..........................................
`B . Effect of Position of Double Bonds in Sterols on Their Oxidation
`C . Photoxidation and Surface Potential ........................
`VII . Some Particular Surface Reactions ..............................
`A . Digestion of Esters by Pancreatin ..........................
`B . Action of Snake Venoms on Surface Films ...................
`C . Photochemical Reactions in Monolayers ....................
`VIII . Interactions and Complex Formation in Monolayers ...............
`IX . Reactions Involving Two Surface Phases .........................
`X . General Discussion ............................................
`References ...................................................
`V
`
`~~
`
`2
`3
`4
`7
`7
`10
`10
`14
`14
`14
`14
`15
`15
`23
`26
`30
`32
`
`35
`35
`37
`47
`48
`49
`51
`53
`54
`55
`55
`56
`59
`
`59
`64
`67
`
`67
`69
`69
`74
`76
`76
`76
`77
`79 ..
`82
`85
`86
`87
`
`Eton Ex. 1059
`5 of 74
`
`

`

`vi
`
`CONTENTS
`
`Chlorophyll Fluorescence and Photosynthesis. By E. C. WASSINK,
`Wagenzngen, Netherlands.. , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`I. Introduction. . . . . . . . , , . . . . . . ,
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`11. The Work of Kautsky et al.. . . .
`. . . . . . . . . . . . . . . . . . . . . . . . . . . .
`. . . . . . . . . . . . . . . . . . . . . . . . . .
`111, Studies of the Utrecht-Dclft Gr
`IV. The Work of McAlwter and Myers.. . . . . . . . . . . . . . . . . . . . . . . . . .
`. .
`V. The Investigations of Franck et al.. . . . . . . . . . . . . . . . . . . . . . . . . .
`r Veen and Others.. . . . . . . . . . . . . . . . . . .
`VI. Observation
`VII. Conclusions
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`References.
`
`91
`92
`94
`119
`150
`158
`189
`195
`197
`
`201
`202
`
`Thiol Groups of Biological Importance. By E. S. GUZMAN BARRON,
`Chicago, Illinms. . . . . . . . . . . . .
`. . . . . . . . . . . . . . . . . . . .
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`. . . . . . . - . . . . - . . . . - .
`A. Oxidation by Oxygen., , . , . . . . . . . . . . . . . . . . . . . . . . . . .
`. . . . . .
`B. Other oxidizing Agents.. . . . . . , , . . . . . , . . . . . . . . . . . . . . . . . , . .
`C. Photochemical Oxidation-Reduction . , . . . . . . . . . . . . . . . . . . . . . .
`D. Oxidation-Reduction Potentials, . . . , . . . . . . . . . . . . . . . . . . . . . . .
`E. Alkylating
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`F. Mercaptid
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`f Biological Significance. . . . . . . . . . . . . . . . . . .
`G. Other Rea
`111. Thiol Groups in Proteins.. . . . . . . . . . . . . . . . . .
`. . . . . . . . , . .
`A. Types of -SH Groups.. . . . , . . . . . . . , . . . . . . . . . . . . . . . . . . . . . .
`B. Denaturing Agents.. . . . . . . . . . . . . . . . . . . .
`C. Oxidizing Agents.. . . . . . , , . . . , . , , . . . . . . . . . . . . . . . . . . . . . . . . .
`1. Ferricyanide.. . .
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`2. Porphyrindin. . . . . . . . . . . . . . . . . . . . .
`3. Iodosobenzoate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`gents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`D. Alkylating Agents.. . . . . . . . . . . . . . . . . , , . . . . . . . . . . . . . . . . . . . .
`E. Mercaptide-Forming Agents. . , . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`F. Reducing Agents.. . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . .
`. . . . . .
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`V. T~iolEnzymes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`A. Thiol Groups Essential in Enzyme Activity. . . . . . . . . . . . . . . .
`B. Thiol Reagents for Enzyme Activity.. . . . . . . . . . . . . . . . . . . . . .
`1. Oxid%ing Agents.
`. . . . . . . . . . . . . . . . . . . . . . . . . . .
`ts . . . . . . . . . . . . . . . . . . . . . . . . . .
`2. Mercaptide-Formi
`3. Alkylating Agents
`C. Reversal of Inhibition.
`D. Thiol Enzymes. . .
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`VI. Other Functions of Thiol Groups in Proteins. . . . . . . . . . . . . . . . . . . . .
`A. Toxins . . . . . . . . . . . . . . . . . . . . . , , , . . . . , , . . . . . . . . . . . . .
`. . .
`B. Coagulation.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`C. Antibiotics. . . . , , . . . . . . . . . . . , , . . . . . , , . . . .
`246
`D. Permeability. . . . . . . . . . . . . . . . . . . . . . . . . . . .
`247
`E. Thiols and Hormones.. . . . . . . , , . . . . , , . . . . . . . . . . . . . . . . . . . . .
`247
`VII. Glutathione.. .
`. . . . . . . . . . . . . . . . . . . . .
`248
`A. Distributi
`. _ . . . . . . . . . . _ _ . _ . . _ . .
`248
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`B. Metabolis
`249
`C. Glutathione
`250
`. . . . . . . . . . . . . . . . . . . . .
`D. Glutathione and Enzymic Reactions. . , . . . . . . . .
`250
`1. Protection
`250
`252
`2. Regulatory Function
`. . . . . . . . . . . . . . . . . . . . . . .
`E. Thiols and Ox gen Tension.. . . . , . . . . , . . . . . . . . . . . . . . . . . . . . .
`252
`F. Thiols and Ce8 Division and Growth.. , . . . . . . . . . . . . . . . . . . . .
`253
`G. Thiols and Ionizing Radiations. . . . . . . . . .
`255
`
`211
`213
`216
`218
`219
`219
`221
`223
`223
`
`225
`226
`227
`228
`229
`232
`233
`235
`
`240
`
`Eton Ex. 1059
`6 of 74
`
`

`

`CONTENTS
`
`Thiol Groups of Biological Importance (continued)
`VIII. Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`
`Pectic Enzymes. By HANS LINEWEAVER and EUGENE F. JANSEN,
`Albany, California.
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`I. Introduction.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`11. Nomenclature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`111. Enzymic Hydrolysis of Pectic Substances. . . . . . . . . . . . . . . . . . . . . . . .
`A. Mode of Pectinesterase Action.. . . . . . . . . . . . . . . . . . . . . . . . .
`B. Mode of Polygalacturonase Action.. . . . . . . . . . . . . . . . . . . . . . . .
`IV. Pectinesterase (General Characteristics). . . . . . . . . . . . . . . . . . . . . . . . . .
`A. Occurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`D. Specificity. .......
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`E. Effect of Cations on Activity.. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`F. Preparation and Purification of Higher Plant Pectinesterase . .
`G. Miscellaneous Properties. .................................
`V. Polygalacturonase (General Characteristics). . . . . . . . . . . . . . . . . . . . . .
`A. Occurrence.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`B. Assay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`C . Specificity ......
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`D. Purification of F
`1 Polygalacturonase
`E. Miscellaneous Properties. . . . . . . . . . . . . .
`VI. Pectic Enzymea Other Than Pectinesterase an
`VII. Use and Control of Pectic Enzymes., . . . . . . .
`VIII. Production of Pectic E
`References. . . . . . . . . . .
`
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`
`es: A Biological Type of Polymeriza-
`New York, N . Y.. . .
`. . . . .
`I. Introduction.
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`11. Formation of
`rides of thc Starch-Glycogen Class from Glu-
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`B. Phosphorylase plus Branching Factor., . . . . . . . . . . . . . . . . . . . . .
`111. Formation of Serologically React,ive Dextrans and Levans from Sucrose
`A. Dextransucrase.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`B. Levansucrase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`IV. Formation of Polysaccharides of the Starch-Glycogen Class from SU-
`crose, Maltose, and Cycloamylose. . . . . . . . . . . . . . . . . . . . . . . . . . .
`A. Amylosucrase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`B. Amylomaltase.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`C. BaciUus mcerans Amylase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`V. Formation of Branched Amylopolysaccharides and Dextrans from
`Amylose-Type Chains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`A. Q-Enzyme.. ...
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`B. Dextran-Dextrin
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`VI. General Discussion.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`
`By STANLEY PEAT, Bangor,
`The Biological Transformations of Starch.
`Wales. . . . . . . . . . . . . . . . . . . .
`. . . . . . . . . . . . . . . . . . . . .
`. .
`I. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Amylose and Amylopectin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`. . . . . . . . . . . . . . . . . . . . . . . .
`11. Starch and Photosynthesis
`
`vii
`
`257
`258
`
`267
`
`27 1
`273
`277
`
`280
`
`286
`286
`287
`288
`290
`292
`293
`
`297
`297
`
`299
`299
`304
`306
`308
`312
`
`322
`
`329
`332
`
`339
`339
`339
`34 1
`
`Eton Ex. 1059
`7 of 74
`
`

`

`viii
`
`CONTENTS
`
`The Biological Transformations of Starch (continued)
`I11 . The Enzymes Involved in Starch Metabolism .....................
`A . Amylolysis ..............................................
`1 . Saccharogenic Amylases ..............................
`2 . Dextrinogenic Amylases ..............................
`B . Biological Synthesis of Starch ..............................
`1 . Character of Synthetic Starch ..
`2 . Mechanism of Synthesis ........
`C . Phosphorolysis ...................................
`D . The Branching Enzyme .........
`..............
`1 . Q-Enzyme ..........................................
`2 . The Phosphate Question ..............................
`3 . The Question of Reversibility ..
`. . . . . . . . . . . . . . . .
`4 . Energy Requirements ................................
`E . Starch and Sucrose ................
`References ...................................................
`Chemical Investigations on Alliin, the Specific Principle of Garlic .
`By
`ARTHUR STOLL and EWALD SEEBECK, Basel, Switzerland ........
`I . Historical Introduction ........................................
`I1 . Search for the Active Principle ..................................
`I11 . Outline of Method of Isolation of Alliiri ..........................
`IV . Properties of Alliin ............................................
`V . Composition and Constitution of Alliin . .
`.....................
`VI . Synthesis of Alliin and Its Three Isomers .......................
`VII . Alliinase .....................................................
`A . Enzymic Degradation of Alliin .............................
`B . Preparation and Properties of Alliinase Preparations ..........
`C . Specificity of Alliinase with Regard to Structure .............
`D . Specificity of Alliinase with Regard to Configuration ..........
`VIII . Questions Regarding the Therapeutic Use of Alliin ................
`References ...................................................
`Some Problems of Pathological Wilting in Plants .
`By ERNST GXUMANN, Zurich, Switzerland .......................
`I . Introduction ..................................................
`I1 . The Wilting Toxins ...........................................
`A . Chemical Nature of the Wilting Toxins in Plants .............
`B . Effect of the Wilting Toxins on the Host Plant ..............
`C . The Minimal Dose .......................................
`D . The Lyeomarasmine-Iron Complex .........................
`E . Effect of the Glucosans-Mechanical
`I11 . Host-Parasite Relationships . . . . . . . . . . . . . . . . . .
`. . . . . . . . . . . . . .
`A . Problem of Host Specificity and Tissu
`B . Toxigenic and Pathogenic Properties of the Parasite ..........
`C . Resistance of Host to Parasite and to Its Toxin ..............
`D . Influence of Nutrition on Sensitivity of Tomato Plants to the
`Wilting Toxin .........................................
`IV . Summary ....................................................
`....................................
`Bibliography ..........
`Author Index ......................................................
`Subject Index ......................................................
`..........................
`Cumulative Indexes . .
`. . .
`
`343
`344
`344
`347
`348
`352
`353
`3.59 ...
`361
`362
`366
`367
`369
`370
`373
`
`377
`377
`...
`378
`381
`383
`383
`387
`
`395
`397
`399
`
`401
`401 ...
`402
`402
`403
`410
`413
`416
`_ _ .
`422
`422
`426
`429
`
`432
`434
`435
`
`439
`
`453
`
`463
`
`Eton Ex. 1059
`8 of 74
`
`

`

`Advances in Enzymology and Related Areas of Molecular Biology, Volume 11
`Edited by F. F. Nord
`Copyright © 1951 by Interscience Publishers, Inc.
`
`THIOL GROUPS O F BIOLOGICAL
`IMPORTANCE*
`
`By E. S. GUZMAN BARRON, Chicago, Illinois
`
`C O N T E N T S
`
`202
`203
`206
`206
`210
`211
`213
`216
`218
`219
`219
`22 1
`223
`223
`224
`225
`225
`225
`226
`
`235
`
`I. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`11. Some
`I1 . Some Pro erties of Thiols .....................................
`..................................
`A.
`A . Oxi&tion by Oxygen ....................................
`.........
`B . Other Oxidizing Agents ..................................
`B.
`C . Photochemical Oxidation-Reduction .......................
`.......................
`C.
`D . Oxidation-Reduction Potentials ...........................
`D.
`E . Alkylating Agents .......................................
`E.
`F.
`F . Mercaatides ............................................
`G. Other Reactions of Biological Significance. . . . . . . . . . . . . . . . . .
`111. Thiol Groups in Proteins. .....................................
`A. Types of -SH Groups.. . .
`B. Denaturing Agents. . .
`C. Oxidizing Agents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`1. Ferricyanide . . . . . . . .
`2. Porphyrindin ......................................
`3. Iodosobenzoate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`4. Iodine ....................
`5. Other Oxidizing Agents.. . . .
`..............................
`D. Alkylating Agents.. . . . . . . . . . . . .
`E. Mercaptide-Forming Agents. . . . .
`F. Reducing Agents. . . . . . . . . . . . . . .
`IV. Myosin.. ......
`.....................
`. . . . . . . . . .
`V. Thiol Enzymes.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`A. Thiol Groups Essential in Enzyme Activity.. . . . . . . . . . . . . . . .
`B. Thiol Reagents for Enzy
`1. Oxidizing Agents. .
`. . . . . . . . . . . . . . . . . . . . . . . . . .
`2. Mercaptide-Formin
`3. Alkylating Agents.
`C. Reversal of Inhibition.. .
`239
`
`.
`.
`.
`.
`.
`D. Thiol Enzymes.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`240
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y7"
`VI. Other Functions of Thiol Groups in Proteins.. . . , . . . . . . . . . . . . . . . .
`244
`B. Coagulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`A. Toxins.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`244
`C. Antibiotics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`246
`D. Permeability. ,
`247
`E. Thiols and Hormones.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`247
`VII. Glutathione. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`248
`A. Distribution. .
`248
`B. Metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`249
`C. Glutathione and Ascorbic Acid.. ..........................
`250
`
`U . -111".
`
`" " " J A . ' U U . .
`
`* Dedicated to the memory of Louis Rapkine, a pioneer in these studies.
`201
`
`This material may be protected by Copyright law (Title 17 U.S. Code)
`
`Eton Ex. 1059
`9 of 74
`
`

`

`202
`
`E. S. GIJZMAN B.4HKON
`
`D. Glutathione and Enzymic Reactions. . . . . . . . . . . . . . . . . . . . . .
`250
`1. Protection.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`250
`2. Regulatory Function, . . . . . . . . . . . . . . . . . . . . . . . .
`252
`E. Thiols and Oxygen Tension., . . . . . . . . . . . . . . . . . . . . . . .
`252
`F. Thiols and Cell Division and Growth. . . . . . . . . . . . . . . . . . . 253
`G. Thiols and Ionizing Radiations.. . . . . . . . . . . . . . . . . . . . . . . . . . .
`255
`VIII. Conclusion.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`257
`References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`258
`I. Introduction
`Thirty years have elapsed since Hopkins’ rediscovery of glutathione
`(152), and 20 years since Rapkine’s formulation of the role of thiols
`in cell division and cell growth. Although some progress has been
`made in these 30 years, we are still far from thoroughly understanding
`the functions of these thiol-containing substances. The universal
`distribution of glutathione in living cells and the reversibility of this
`oxidation-reduction system brought forth a large number of investi-
`gations on the determination of its oxidation-reduction potential, the
`mechanism of oxidation and reduction, and its possible’ function in
`cellular respiration. Yet all these investigations fell short of reaching
`their goal mainly because at the time they were made the peculiar
`sluggish nature of this oxidation-reduction system was not taken into
`consideration. It is certain that soluble thiols are one of the regula-
`tory mechanisms of cellular respiration. More progress has been made
`regarding the function of the -SH groups of the proteins. They have
`been found t o be essential for the activity of a large number of en-
`zymes; they have been found essential as binding posts between the
`protein and some prosthetic groups. A more detailed study of the
`reactivity of thiols has aided in the interpretation of the function of
`these two types of thiol compounds: the soluble thiols, of which gluta-
`thione is the most representative example, and the $xed thiol groups
`of the proteins. Far as we are from presenting a clear picture of this
`problem, the time is propitious for a discussion of the chemical reac-
`ttions of biological importance in which the thiol groups take part, of
`t.he functions of the soluble thiol compounds, the possible nature of
`the participation of the thiol groups in enzyme reactions and other
`physiological processes, and the participation of both soluble and
`fixed thiols in cell division, growth, and production of mutations.
`11. Some Properties of Thiols
`Thiols are extremely reactive substances. They oxidize and reduce
`rather easily, combine with a large number of halogen-containing
`
`Eton Ex. 1059
`10 of 74
`
`

`

`THIOL GROUPS OF BIOLOGICAL IMPORTANCE
`
`203
`
`substances in which the H of the -SH group is replaced by the halo-
`gen residue, and combine with a large number of heavy metals form-
`ing reversible mercaptides. They also combine easily with alde-
`hydes, quinones, etc. Some of these properties-those of physiological
`importance-will
`be discussed here, first in simple water-soluble
`thiols, and then in thiol groups fixed to the protein molecule.
`
`A. OXIDATION BY OXYGEN
`With the discovery of glutathione by Hopkins and the possibility
`that this thiol could play the role of electron transfer system from
`foodstuff t o molecular oxygen, the oxidation of thiols by atmospheric
`oxygen acquired importance. Mathews and Walker (204), who
`found that the oxidation of cysteine by atmospheric oxygen was in-
`creased in the presence of iron, believed that autoxidation occurred.
`The necessity of a metal catalyst for this oxidation was shown for
`the first time by Warburg and Sakuma (308) working with cysteine,
`and by Harrison (138) with glutathione. Thiols belong to the slug-
`gish type of oxidation-reduction systems, i.e., to those systems which
`are not easily oxidized by atmospheric oxygen, and the free energies of
`which cannot be determined by direct potentiometric methods.
`Oxidation of thiols by oxygen requires the presence of an electro-
`active oxidation-reduction mediator. The catalytic power of these
`mediators seems to depend on the oxidation-reduction potential of
`the catalyst, the position of the -SH groups in the thiol molecule,
`and the presence in the molecule of groups which may facilitate or
`hinder formation of a complex compound-the
`activated complex-
`between thiol and the catalyst. The influence of the ionic environ-
`ment has also to be considered (effect of cations, anions, pH). Further-
`more, the same metal may act as a catalyst with certain thiols and
`have no effect a t all with others. Thus, nickel is a powerful catalyst
`for tKe oxidation of HzS (Krebs, 177) and manganese for cysteine
`(Rosenthal and Voegtlin, 257), whereas nickel has no effect a t all
`on the oxidation of cysteine (Michaelis and Barron, 217), nor manga-
`nese on glutathione (Voegtlin et al., 304). Mercury oxidizes cysteine
`(Michaelis and Barron, 216), but has no effect a t all on the oxidation
`of glutathione (304). Furthermore, these catalytic effects may be
`depressed or enhanced by addition of other metals. The copper
`catalysis of thioglycolic acid oxidation in pyrophosphate buffer is
`depressed in the presence of manganese, whereas it is increased in the
`
`Eton Ex. 1059
`11 of 74
`
`

`

`204
`
`E. S. GUZMAN BARRON
`
`presence of iron; in carbonate buffer, on the other hand, copper and
`manganese are tremendously more active than apart (Kharasch
`et al., 174). Copper catalysis of cysteine oxidation is depressed by
`small concentrations of ferric salts, whereas larger concentrations in-
`crease the catalytic power (Baur and Preis, 44). Similar differences
`are obtained on measuring the effect of pH changes on the rate of
`oxidation. Copper catalysis of thioglycolic acid oxidation has an
`optimum a t pH 6 (175), but with glutathione oxidation the rate in-
`creased in direct proportion to the pH value, i.e., the rate of oxidation
`depended on the degree of dissociation of the -SH group of the glu-
`tathione (Lyman and Barron, 198). The catalytic action of these
`metals can also be greatly modified by the formation of metal com-
`plexes, as the Bernheims (47) have shown with the S-hydroxyquino-
`line complexes of copper, manganese, and vanadium in their effect on
`the oxidation of cysteine.
`The mechanism of this oxidation is not yet clearly understood,
`although Michaelis (211,213) greatly clarified the field, and proposed
`a theory which seems plausible. The postulated mechanism is based
`on the following facts: when a cobaltous salt is added to cysteine in
`the absence of oxygen there is formation of a cobaltous bis-cysteinate
`(I) of an intense blue-green color. On exposure to air it changes into
`
`S 1 \,p
`KR-*- / \,,-- - RH
`
`*-'Me--
`
`OH
`
`s
`
`s
`
`
`
`KR RK
`(1)
`(11)
`an olive-brown cobalti complex (11) which is stable (Schubert, 264).
`Similarly, in the presence of iron and the absence of oxygen ferrous
`co
`s ' s
`\!/
`l,?l
`
`R i R
`!
`
`Eton Ex. 1059
`12 of 74
`
`

`

`THIOL GROUPS OF BIOLOGICAL IMPORTANCE
`
`205
`
`ions combine with two molecules of cysteine, as in (I). The two
`hydrogen atoms of two RSH are replaced by one bivalent Fe atom
`and the two NH2 groups are attached to two more coordination
`places (111). There are two more coordination places available for
`the attachment of small molecules. In fact (111) combines with two
`molecules of CO to form the stable, crystalline compound (IV)
`(Cremer, 76). When oxygen is admitted to the solution of ferrous
`bis-cysteine there is immediate appearance of a deep indigo blue
`color, which soon disappears with the formation of cystine. This
`blue complex is probably due to the entrance of oxygen into the two
`coordination places left vacant in (111) to form a molecule similar to
`(IV). The complex, however, is unstable and immediately undergoes
`an intramolecular shifting of electrons. Since it is impossible to pre-
`pare this unstable complex, it is not known whether one or possibly
`two oxygen molecules are attached. The complex may be written:
`(V)
`Oxygen will withdraw one electron from Fe++ (according to the com-
`pulsory univalent oxidation theory of Michaelis (212)) and thus start
`an intramolecular chain of reactions, each step consisting in the trans-
`fer of one electron:
`Fe + +( RS); O2 ---+ Fe + + +( RS); 0,
`
`Fe + +( RS)*O2
`
`Fe+++(RS);O; - - -02Fe + + +(Rs
`--02Fe++(RS - R-S--H-R
`
`RS
`--02Fe+++<Rs- ---+
`
`RS
`
`Rs-
`RS
`--OzFe + +<Rs
`
`+ Fe++ + 0-;
`
`(VI)
`
`(VIII)
`
`( I X )
`
`In (VI) there is electron transfer from Fe++ to 02, in (VII) from RS-
`to 01, in (VIII) from RS- to Fe+++; in (IX) we have the formation
`of the stable oxidation compound R-S-S-R
`and reformation of
`the Fe++ catalyst. The HzOz formed in this process will oxidize
`another thiol, either alone or through iron catalysis.
`Aside from heavy metal catalysis, the oxidation of thiols by oxygen
`
`Eton Ex. 1059
`13 of 74
`
`

`

`206
`
`E. S. GUZMAN HARRON
`
`can take place with iron porphyrins as the catalysts, as shown by
`Krebs (177) for cysteine and by Lyman and Barron (198) for gluta-
`thione. The rate of oxidation of glutathione with hemin as a catalyst
`had a definite pH optimum a t pH 8, decreasing asymptotically
`toward both the alkaline and the acid sides of this p H value. A com-
`parison of the catalytic power of hemin and hemochromogens (iron
`porphyrin-nitrogen base complex compounds) revealed that this
`power depends on their oxidation-reduction potentials (Table I).
`Whereas the oxidation of cysteine by hemin was inhibited by HCN
`(178), that of glutathione was only slightly affected (198).
`
`TABLE I
`OXIDATION O F GLUTATHIONE BY ATMOSPHERIC OXYGEN WITH BLOOII HEMIN AND
`HEMOCHROMOGENS AS CATALYSTS'
`
`Catalyst
`
`PH
`7.4. . . . . . . Pilocarpine hemochromogen
`Hemin
`Nicotine hemochromogen
`Pyridine hemochromogen
`9.1. . . . . . . Pilocarpine hemochromogen
`Hemin
`0 Amount of hemin, 0.0002 mM;
`ture 27" (198).
`
`Time
`required
`for half
`oxidation,
`min.
`
`E, of
`catalyst,
`V.
`302
`-0.140
`108
`-0.138
`+O. 162
`80
`65.6
`+O. 146
`320
`-0.163
`1157
`-0.270
`amount of glutathione, 0.02 mM; tempera-
`
`R. OTHER OXIDIZING AGENTS
`Thiol compounds are easily oxidized by a variety

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket