`
`US009804213B2
`
`( 12 ) United States Patent
`Reynolds et al .
`
`( 10 ) Patent No . :
`( 45 ) Date of Patent :
`
`US 9 , 804 , 213 B2
`Oct . 31 , 2017
`
`( 54 ) CAPACITIVE SENSOR DEVICE
`( 75 ) Inventors : Joseph Kurth Reynolds , Mountain
`View , CA ( US ) ; Kirk Hargreaves ,
`Sunnyvale , CA ( US ) ; Shahrooz
`Shahparnia , Campbell , CA ( US ) ;
`Phillip Acker , San Mateo , CA ( US )
`( 73 ) Assignee : Synaptics Incorporated , San Jose , CA
`( US )
`Subject to any disclaimer , the term of this
`patent is extended or adjusted under 35
`U . S . C . 154 ( b ) by 2202 days .
`( 21 ) Appl . No . : 12 / 778 , 940
`( 22 ) Filed :
`May 12 , 2010
`( 65 )
`Prior Publication Data
`( 65 )
`US 2010 / 0292945 A1 Nov . 18 , 2010
`
`( * ) Notice :
`
`Related U . S . Application Data
`( 60 ) Provisional application No . 61 / 224 , 814 , filed on Jul .
`10 , 2009 , provisional application No . 61 / 177 , 897 ,
`filed on May 13 , 2009 .
`( 51 ) Int . Ci .
`GOIR 27 / 00
`GOIR 27 / 26
`
`( 52 )
`
`( 58 )
`
`( 2006 . 01 )
`( 2006 . 01 )
`( Continued )
`U . S . CI .
`CPC . . . . . . . . . GOIR 27 / 2605 ( 2013 . 01 ) ; G06F 3 / 044
`( 2013 . 01 ) ; G06F 3 / 0416 ( 2013 . 01 ) ;
`( Continued )
`Field of Classification Search
`CPC . . . . . . . . GO6F 3 / 0416 ; G06F 3 / 044 ; G06F 19 / 00 ;
`HO3K 17 / 9622 ; HO3K 17 / 955 ;
`( Continued )
`
`( 56 )
`
`CN
`CN
`
`References Cited
`U . S . PATENT DOCUMENTS
`5 , 841 , 078 A
`11 / 1998 Miller et al .
`5 , 945 , 980 A
`8 / 1999 Moissev et al .
`( Continued )
`FOREIGN PATENT DOCUMENTS
`87102580 A
`12 / 1987
`1038342 A
`12 / 1989
`( Continued )
`OTHER PUBLICATIONS
`ISA / KR , International Search Report and Written Opinion for
`International Application No . PCT / US2010 / 034608 , 15 pages ,
`dated Dec . 29 , 2010 ( Oct . 29 , 2010 ) .
`( Continued )
`Primary Examiner - Arleen M Vazquez
`Assistant Examiner — Brent J Andrews
`( 74 ) Attorney , Agent , or Firm — Osha Liang LLP
`ABSTRACT
`( 57 )
`Acapacitive sensor device comprises a first sensor electrode ,
`a second sensor electrode , and a processing system coupled
`to the first sensor electrode and the second sensor electrode .
`The processing system is configured to acquire a first
`capacitive measurement by emitting and receiving a first
`electrical signal with the first sensor electrode . The process
`ing system is configured to acquire a second capacitive
`measurement by emitting and receiving a second electrical
`signal , wherein one of the first and second sensor electrodes
`performs the emitting and the other of the first and second
`sensor electrodes performs the receiving , and wherein the
`first and second capacitive measurements are non - degener
`ate . The processing system is configured to determine posi
`tional information using the first and second capacitive
`measurements .
`20 Claims , 22 Drawing Sheets
`
`800
`
`140
`
`First Sensor Electrode
`805
`
`Second Sensor Electrode
`810
`
`Third Sensor Electrode
`845
`
`I . . . . . .
`. . . . . . .
`.
`. . . .
`. .
`.
`. . . . .
`Fourth Sensor Electrode
`850
`
`Processing System 110B
`
`First Capacitive Measurement 820
`
`Second Capacitive Measurement 830
`
`Third Capacitive Measurement 855
`
`150
`
`Fourth Capacitive Measurement 86 . 5
`
`-
`
`- - - - - - - - - - - - - - - -
`
`Second Positional
`Information
`
`875 =
`
`First Positional
`Information
`
`840 =
`
`DELL EXHIBIT 1024 PAGE 1
`
`DELL EXHIBIT 1024 PAGE 1
`
`
`
`US 9 , 804 , 213 B2
`Page 2
`
`( 51 )
`
`( 52 )
`
`( 56 )
`
`( 2006 . 01 )
`( 2006 . 01 )
`( 2006 . 01 )
`( 2006 . 01 )
`
`Int . CI .
`GOOF 3 / 044
`GO6F 3 / 041
`HO3K 17 / 955
`HO3K 17 / 96
`U . S . CI .
`CPC . . . . . . . HO3K 17 / 955 ( 2013 . 01 ) ; HO3K 17 / 9622
`( 2013 . 01 ) ; HO3K 2217 / 96073 ( 2013 . 01 ) ; HO3K
`2217 / 960725 ( 2013 . 01 ) ; HO3K 2217 / 960765
`( 2013 . 01 ) ; H04M 2250 / 12 ( 2013 . 01 )
`( 58 ) Field of Classification Search
`CPC . . . . . . HO3K 2217 / 960725 ; HO3K 2217 / 960765 ;
`HO3K 2217 / 96073 ; H04M 2250 / 12 ;
`GOIR 27 / 2605 ; GOIR 27 / 00 ; GOIR 27 / 26
`USPC . . . . . . . . . . . .
`. . . . . . . . . . 324 / 658 – 690 ; 345 / 173 – 174
`See application file for complete search history .
`References Cited
`U . S . PATENT DOCUMENTS
`6 , 166 , 583 A
`12 / 2000 Kochi et al .
`6 , 239 , 788 B15 / 2001 Nohno et al .
`6 , 452 , 514 B1 .
`9 / 2002 Phillip
`7 , 151 , 528 B2
`12 / 2006 Taylor et al .
`7 , 288 , 946 B2
`10 / 2007 Hargreaves et al .
`7 , 521 , 942 B2
`4 / 2009 Reynolds
`7 , 649 , 524 B2
`1 / 2010 Haim et al .
`7 , 911 , 456 B2
`3 / 2011 Gillespie et al .
`7 , 920 , 129 B2
`4 / 2011 Hotelling et al .
`8 , 054 , 300 B2
`11 / 2011 Bernstein
`8 , 217 , 915 B2
`7 / 2012 Philipp
`8 , 259 , 076 B2
`9 / 2012 Trent , Jr . et al .
`8 , 462 , 135 B1 . 6 / 2013 Xiao et al .
`2003 / 0025679 Al
`2 / 2003 Taylor et al .
`2005 / 0052429 Al
`3 / 2005 Philipp
`2005 / 0134292 AL 6 / 2005 Knoedgen
`. . . . . . . . . . . . . .
`2005 / 0156881 A1 *
`7 / 2005 Trent et al .
`2006 / 0097991 A1 5 / 2006 Hotelling et al .
`2006 / 0244733 AL 11 / 2006 Geaghan
`2007 / 0074914 A1 4 / 2007 Geaghan et al .
`2007 / 0075710 A14 / 2007 Hargreaves et al .
`345 / 173
`2007 / 0247443 A1 *
`10 / 2007 Philipp
`2008 / 0042661 A1 *
`2 / 2008 Reynolds
`324 / 688
`2008 / 0048997 Al *
`2 / 2008 Gillespie et al . . . . . . . . . . . . . . 345 / 174
`2008 / 0061800 A1
`3 / 2008 Reynolds et al .
`2008 / 0150906 A1
`6 / 2008 Grivna
`2008 / 0157782 A1 7 / 2008 Krah
`2008 / 0158172 A1
`7 / 2008 Hotelling et al .
`2008 / 0158183 A1 *
`7 / 2008 Hotelling et al . . . . . . . . . . . . . 345 / 173
`2008 / 0162996 AL
`7 / 2008 Krah et al .
`2008 / 0162997 A1
`7 / 2008 Vu et al .
`2008 / 0278453 AL 11 / 2008 Reynolds et al .
`2009 / 0033343 A1
`2 / 2009 Reynolds et al .
`2009 / 0107737 A1
`4 / 2009 Reynolds et al .
`2009 / 0273579 AL 11 / 2009 Zachut et al .
`2009 / 0284495 A1 11 / 2009 Geaghan et al .
`2010 / 0001973 A11 / 2010 Hotelling et al .
`
`CN
`CN
`CN
`CN
`CN
`CN
`CN
`EP
`JP
`JP
`WO
`WO
`WO
`WO
`WO
`WO
`
`3 / 2010 Yousefpor
`2010 / 0060608 AL
`6 / 2010 Gray
`2010 / 0149110 A1
`2010 / 0164889 Al
`7 / 2010 Hristov et al .
`9 / 2010 Parker
`2010 / 0245286 A1
`1 / 2011 Land et al .
`2011 / 0006832 Al
`2 / 2012 Maharyta
`2012 / 0043971 Al
`2012 / 0081335 Al
`4 / 2012 Land et al .
`5 / 2012 Hanauer et al .
`2012 / 0113047 A1
`FOREIGN PATENT DOCUMENTS
`1 / 1990
`1039301 A
`1044528 A
`8 / 1990
`1603846 A
`4 / 2005
`1945387 A
`4 / 2007
`1971352 A
`5 / 2007
`101014879 A
`8 / 2007
`101339313 A
`1 / 2009
`2300899 A2
`3 / 2011
`6 / 2013
`2291729 B1
`10505182 A
`5 / 1998
`2005 - 017216 A
`1 / 2005
`2007533044 A
`11 / 2007
`2005019766 A2
`3 / 2005
`2005114369 A2
`12 / 2005
`2006127466 A2
`11 / 2006
`2006132960 AL
`12 / 2006
`2009058359 Al
`5 / 2009
`2009140347 A2
`11 / 2009
`OTHER PUBLICATIONS
`Office Action , CN Application No . 201080021037 . 2 , 15 pages ,
`dated Aug . 4 , 2014 ( Aug . 4 , 2014 ) .
`Office Action issued
`in
`Chinese Patent Application No .
`201510761851 . 2 dated Apr . 21 , 2017 ( 36 pages ) .
`Leineweber , Hubert , Extended Search Report for European Appli
`cation No . 10 77 5499 , 22 pages , dated May 22 , 2014 ( May 22 ,
`2014 ) .
`Rekimoto , “ SmartSkin : An Infrastructure for Freehand Manipula
`tion on Interactive Surfaces ” , Proceedings of the SIGCHI confer
`ence on Human factors in computing systems : Changing our world ,
`changing ourselves , Apr . 20 - 25 , 2002 , 113 - 120 .
`Office Action Search Report , CN Application No . 201080021037 . 2 ,
`2 pages , dated Nov . 27 , 2013 ( Nov . 27 , 2013 ) .
`Yasuhiro Tagawa , Office Action for Japanese Application No .
`2012 - 510991 , 2 pages , dated Jan . 28 , 2014 ( Jan . 28 , 2014 ) .
`Office Action , U . S . Appl . No . 14 / 156 , 906 , dated Apr . 14 , 2014 , 27
`pages .
`Office Action for JP Application No . 2014 - 232889 , dated Oct . 20 ,
`2015 , 4 Pages .
`Office Action , CN Application No . 201080021037 . 2 , 35 pages ,
`dated Feb . 16 , 2015 ( Feb . 16 , 2015 ) .
`Office Action
`Search Report for CN Application No .
`201410157610 . 2 , dated Dec . 16 , 2015 , 3 Pages .
`Office Action in
`counterpart Chinese Patent Application No .
`201510761853 . 1 dated May 22 , 2017 ( 5 pages ) .
`* cited by examiner
`
`345 / 157
`
`. . . . . . . .
`
`DELL EXHIBIT 1024 PAGE 2
`
`DELL EXHIBIT 1024 PAGE 2
`
`
`
`atent Oct . 9 , 2017
`
`Oct . 31 , 2017
`
`Sheet 1 of 22
`
`US 9 , 804 , 213 B2
`
`Sensor
`108
`
`Substrate
`102
`
`100
`
`104
`
`- 120 - 1
`
`130 - 1
`130 - n
`
`120 - n
`
`140
`
`150
`
`160
`
`Processing System
`110
`
`106
`
`FIG . 1
`
`DELL EXHIBIT 1024 PAGE 3
`
`DELL EXHIBIT 1024 PAGE 3
`
`
`
`atent
`
`Oct . 31 , 2017
`
`Sheet 2 of 22
`
`US 9 , 804 , 213 B2
`
`215
`
`120 - 2
`
`120 - 1
`
`217
`
`217
`
`120 - n
`
`201
`
`80L
`
`?
`
`iii
`
`i
`I
`i III
`
`I
`1
`
`
`IIII II III
`!
`1
`TIITTI
`
`IT
`
`1
`1
`
`1
`1
`
`1
`1
`1
`1
`II III
`
`1
`1
`I I
`1
`1
`1
`I
`1
`1
`1
`.
`1
`
`"
`11 TTTTTTTT
`
`130 - 1
`
`FIG . 2
`
`DELL EXHIBIT 1024 PAGE 4
`
`DELL EXHIBIT 1024 PAGE 4
`
`
`
`atent
`
`Oct . 31 , 2017
`
`Sheet 3 of 22
`
`US 9 , 804 , 213 B2
`
`300
`
`External
`Object
`215
`
`CEST
`CESO
`U ••••••••
`
`I
`
`System
`Ground
`340
`
`CET
`
`CEE
`+
`
`
`
`Sensor Electrodo 7
`
`Sensor Electrode 1
`
`S
`
`Sensor Electrode 2
`
`ensor Electrode 2
`
`FIG . 3
`
`DELL EXHIBIT 1024 PAGE 5
`
`DELL EXHIBIT 1024 PAGE 5
`
`
`
`atent
`
`Oct . 31 , 2017
`
`Sheet 4 of 22
`
`US 9 , 804 , 213 B2
`
`Approximate BUT
`
`( G2 + G » ) AV : / G
`( C2 ) ( AV12G
`
`
`
`Sun Mon ( CE2 ) ( AVE2 ) G .
`
`| Cez - 2C12 ) ( AVE2 )
`
`non
`
`n
`
`yanari
`min -
`
`FIG . 4
`
`( S ) Sensor | Electrode 2
`
`Electrode 1
`
`( S ) Sensor
`
`Powe
`
`( 1 ) Input Object
`
`400
`
`Shielded transcapacitance
`
`
`Mixed
`
`Absolute / Trans Capacitance
`
`Guarded
`
`absolute
`
`Grounded absolute
`
`DELL EXHIBIT 1024 PAGE 6
`
`DELL EXHIBIT 1024 PAGE 6
`
`
`
`U . S . Patent
`
`Oct . 31 , 2017
`
`Sheet 5 of 22
`
`US 9 , 804 , 213 B2
`
`120 - 1
`
`*
`
`1
`
`AQ
`
`120 - 1
`
`4 .
`
`130 . 1
`
`130 - 1
`
`Fig . 5A
`
`Fig . 5B
`
`ime
`
`605
`
`FIG . 6A
`
`615
`
`620 620
`]
`
`625
`
`630 20 *
`
`*
`
`FIG . 6B
`
`FIG . 6C
`
`DELL EXHIBIT 1024 PAGE 7
`
`DELL EXHIBIT 1024 PAGE 7
`
`
`
`atent
`
`Oct . 31 , 2017
`
`Sheet 6 of 22
`
`US 9 , 804 , 213 B2
`
`120 - 1
`
`725
`
`730
`
`1
`
`130 - 2
`
`FIG . 7
`
`DELL EXHIBIT 1024 PAGE 8
`
`DELL EXHIBIT 1024 PAGE 8
`
`
`
`atent
`
`Oct . 31 , 2017
`
`Sheet 7 of 22
`
`US 9 , 804 , 213 B2
`
`800
`
`First Sensor Electrode
`805
`
`Second Sensor Electrode
`810
`
`w
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Third Sensor Electrode
`845
`
`-
`
`-
`
`-
`
`-
`
`UU -
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`. . . .
`
`.
`
`.
`
`. . .
`
`.
`
`. .
`
`.
`
`. .
`
`.
`
`. . .
`
`. .
`
`.
`
`. . .
`
`.
`
`.
`
`. .
`
`. .
`
`.
`
`.
`
`. .
`
`.
`
`.
`
`. .
`
`. . .
`
`.
`
`.
`
`. . .
`
`. . .
`
`. . .
`
`.
`
`.
`
`. .
`
`•
`
`•
`
`•
`
`•
`
`•
`
`Fourth Sensor Electrode
`850
`
`•
`
`•
`
`•
`
`•
`
`•
`
`•
`
`•
`
`•
`
`• •••••••••••••••••••••••••••••••••••••
`
`Processing System 110B
`First Capacitive Measurement 820
`
`Second Capacitive Measurement 830
`
`150
`
`#
`
`*
`
`Third Capacitive Measurement 855
`
`*
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`Fourth Capacitive Measurement 865
`
`- -
`
`-
`
`-
`
`-
`
`- - -
`
`- . . .
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`- - -
`
`-
`
`-
`
`- -
`
`-
`
`- -
`
`- -
`
`-
`
`-
`
`Second Positional
`Information
`875
`
`First Positional
`Information
`840
`
`FIG . 8
`
`DELL EXHIBIT 1024 PAGE 9
`
`DELL EXHIBIT 1024 PAGE 9
`
`
`
`atent
`
`Oct . 31 , 2017
`
`Sheet 8 of 22
`
`She 8 or 22
`
`US 9 , 804 , 213 B2
`
`900
`
`Emits and receives a first electrical signal with the first sensor
`electrode to acquire a first capacitive measurement .
`905
`
`Emits and receives a second electrical signal to acquire a second
`capacitive measurement , wherein one of the first and second
`sensor electrodes performs the emitting and the other of the first
`t PRIA
`and second sensor electrodes performs the receiving , wherein the
`first and second capacitive measurements are non - degenerate .
`910
`
`Determines positional information using the first and second
`capacitive measurements .
`915
`
`FIG . 9
`
`DELL EXHIBIT 1024 PAGE 10
`
`DELL EXHIBIT 1024 PAGE 10
`
`
`
`atent
`
`Oct . 31 , 2017
`
`Sheet 9 of 22
`
`US 9 , 804 , 213 B2
`
`1000
`
`1005
`1005
`
`1060
`1060
`
`1045
`
`-
`
`1010a
`
`1015 O OL
`
`1010
`
`10100 oc
`
`1010d
`
`1010e1010f
`1025a
`
`102564
`
`1025b
`
`105
`
`1020
`
`10250
`
`10250
`
`1030
`
`Processing System 110C
`
`100
`
`150
`( 140
`FIG . 10
`
`DELL EXHIBIT 1024 PAGE 11
`
`DELL EXHIBIT 1024 PAGE 11
`
`
`
`U . S . Patent
`
`Oct . 31 , 2017
`
`Sheet 10 of 22
`
`US 9 , 804 , 213 B2
`
`1100
`
`Emits electrical signals from a first set of the first plurality of
`t
`i
`sensor electrodes .
`1105
`
`Receives the electrical signals from the first set of the first plurality
`t
`of sensor electrodes with a second set of the first plurality of
`sensor electrodes to acquire a first plurality of capacitive
`measurements .
`1110
`
`Emits electrical signals from the second set of the first plurality of
`sensor electrodes , wherein the first and second sets of the first
`plurality of sensor electrodes have at least one sensor electrode in
`i
`common .
`1115
`
`Receives second electrical signals from the second set of the first
`plurality of sensor electrodes with a first set of the second plurality
`of sensor electrodes to acquire a second plurality of capacitive
`measurements .
`1120
`
`FIG . 11
`
`DELL EXHIBIT 1024 PAGE 12
`
`DELL EXHIBIT 1024 PAGE 12
`
`
`
`U . S . Patent
`
`Oct . 31 , 2017
`
`Sheet 11 of 22
`
`US 9 , 804 , 213 ?2
`
`1200
`
`?? -
`
`1230 ?
`
`-
`
`?
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`?? ???? .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`?
`
`????????????
`
`-
`
`???
`
`- ????????? ????? ? ?? ?? ???
`
`1215
`
`( ?1 , Y1 ) = ( 3 . 0 , 6 . 5 )
`( ?2 , Y2 ) = ( 7 . 0 , 2 . 5 )
`or
`( x1 , Y1 ) = ( 3 . 0 , 2 . 5 )
`( ?2 , Y2 ) = ( 7 . 0 , 6 . 5 )
`FIG . 12
`
`?
`1220
`
`1235B
`
`10 Y 1230
`
`1240A
`- 1240?
`1225
`- 1240?
`E1240D
`
`
`
`???????? ????
`
`????
`
`???????
`?????
`
`?? ??? ???????? ?????????? ~ ??????????
`?????????? ? .
`
`?? 1220
`
`DELL EXHIBIT 1024 PAGE 13
`
`DELL EXHIBIT 1024 PAGE 13
`
`
`
`atent
`
`Oct . 31 , 2017
`
`Sheet 12 of 22
`
`US 9 , 804 , 213 B2
`
`1300
`1300
`1315
`
`1315
`
`-
`
`1345
`1345
`
`1305
`1305
`
`1310a
`
`1310b
`
`13100
`
`13100
`
`1310e
`
`1310f 1325a
`
`1325b
`
`1325c
`
`1325d
`
`> 1320
`
`1330
`
`Processing System 110D
`160
`150
`
`2 140
`
`First Estimate of a Position of
`an input object 1340
`
`Second Estimate of the Position
`of the input object 1360
`FIG . 13
`
`DELL EXHIBIT 1024 PAGE 14
`
`DELL EXHIBIT 1024 PAGE 14
`
`
`
`atent
`
`Oct . 31 , 2017
`
`Sheet 13 of 22
`
`US 9 , 804 , 213 B2
`
`1400
`
`Emits and receives first electrical signals with the first plurality of
`sensor electrodes to acquire a first plurality of capacitive
`measurements .
`1405
`
`Makes a set of first estimates of positions of at least one input
`object using the first plurality of capacitive measurements .
`1410
`
`Determines a first set of the first plurality of sensor electrodes and
`a first set of the second plurality of sensor electrodes using the
`first set of estimates of said positions .
`1415
`
`IWUM
`
`Emits second electrical signals with one of the first and second
`sets and receives the second electrical signals with the other of
`the first and second sets to acquire a second plurality of capacitive
`measurements .
`1420
`
`Makes a second estimate of the position of the at least one input
`object using the second plurality of capacitive measurements .
`1425
`
`FIG . 14
`
`DELL EXHIBIT 1024 PAGE 15
`
`DELL EXHIBIT 1024 PAGE 15
`
`
`
`atent
`
`Oct . 31 , 2017
`
`Sheet 14 of 22
`
`US 9 , 804 , 213 B2
`
`1500
`
`1505
`
`O
`
`O
`
`1510
`
`O
`
`U
`
`> 1515
`
`Processing System 110E
`
`140 149
`First momente
`
`First Estimate
`1540
`FIG . 15
`
`150 150
`
`160
`Second Estimate
`
`Second Estimate
`1545
`
`DELL EXHIBIT 1024 PAGE 16
`
`DELL EXHIBIT 1024 PAGE 16
`
`
`
`U . S . Patent
`
`Oct . 31 , 2017
`
`Sheet 15 of 22
`
`US 9 , 804 , 213 B2
`
`1600
`
`Emits and receives first electrical signals with the first plurality of
`i We
`sensor electrodes during a first time period to acquire a first
`plurality of capacitive measurements .
`1605
`
`R
`
`Modulates sensor electrodes of the second plurality of sensor
`electrodes during the first time period , to electrically guard the first
`plurality of sensor electrodes .
`1610
`
`Emits second electrical signals with the second plurality of sensor
`electrodes during a second time period different from the first time
`period .
`1615
`
`Receives the second electrical signals with the first plurality of
`i
`sensor electrodes during the second time period to acquire a
`second plurality of capacitive measurements
`i t
`i
`1620
`
`FIG . 16
`
`DELL EXHIBIT 1024 PAGE 17
`
`DELL EXHIBIT 1024 PAGE 17
`
`
`
`atent
`
`Oct . 31 , 2017
`
`Sheet 16 of 22
`
`US 9 , 804 , 213 B2
`
`1725
`
`- -
`
`www .
`
`. . . . .
`
`1730
`
`. . .
`
`FIG . 17A
`
`1780 –
`
`1715
`
`1710 –
`
`1705
`
`.
`
`. .
`
`.
`
`. .
`
`.
`
`. .
`
`.
`
`. .
`
`. .
`
`BB '
`
`1720
`
`?
`?
`?
`?
`1
`1
`1
`1
`1
`1
`1
`III
`
`. . .
`
`IDIOTION
`
`1725
`
`1715
`
`Guard / Shield
`Signal 1745
`
`Transmit &
`Receive 1735
`
`FIG . 17B
`
`DELL EXHIBIT 1024 PAGE 18
`
`DELL EXHIBIT 1024 PAGE 18
`
`
`
`atent
`
`Oct . 31 , 2017
`
`Sheet 17 of 22
`
`US 9 , 804 , 213 B2
`
`1730
`
`1725
`1725
`
`. . . . . .
`
`. .
`
`c
`
`FIG . 18A
`
`1
`
`.
`
`.
`
`1725
`
`CC
`
`1720
`
`.
`.
`. . . .
`
`. . ' .
`. . . . . "
`
`1715
`Guard / Shield
`Signal 1745
`
`Transmit &
`Receive 1735
`
`FIG . 18B
`
`1780
`1716
`
`1715
`
`1710
`
`1705
`
`DELL EXHIBIT 1024 PAGE 19
`
`DELL EXHIBIT 1024 PAGE 19
`
`
`
`atent
`
`Oct . 31 , 2017
`
`Sheet 18 of 22
`
`US 9 , 804 , 213 B2
`
`1955
`
`1725
`
`. .
`
`FIG . 19A
`
`DD '
`
`1725
`
`1950
`
`It I
`i
`11
`1780
`1780 -
`CMI výt výt ill
`
`1715
`
`1710
`
`1705
`
`1960
`1715
`Modulated Signal /
`Transmit 1945
`
`Receive 1935
`
`FIG . 19B
`
`DELL EXHIBIT 1024 PAGE 20
`
`DELL EXHIBIT 1024 PAGE 20
`
`
`
`U . S . Patent
`
`Oct . 31 , 2017
`
`Sheet 19 of 22
`
`US 9 , 804 , 213 B2
`
`1725
`
`1955
`
`m
`
`FIG . 20A
`
`EE !
`
`1950
`1780
`Il II II
`1780
`dia
`1715STI
`1710 Z
`h
`1710
`
`1715 -
`
`II
`
`1705
`
`FIG . 20B
`
`. . 1 _ 1725
`
`1725
`
`.
`
`1950
`
`1715
`
`1960
`
`-
`1960
`odulated Signal /
`M Modulated Signal /
`Receive 1935
`
`Transmit 1945
`
`Receive 1935
`
`DELL EXHIBIT 1024 PAGE 21
`
`DELL EXHIBIT 1024 PAGE 21
`
`
`
`U . S . Patent
`
`Oct . 31 , 2017
`
`Sheet 20 of 22
`
`US 9 , 804 , 213 B2
`
`2100
`
`2115 +
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`o Receive them ele
`
`Receiver Channel ( s )
`2110
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`2105
`
`* .
`
`•
`
`•
`
`•
`
`•
`
`•
`
`•
`
`•
`
`•
`
`•
`
`•
`
`•
`
`•
`
`•
`
`•
`
`Transmitter
`t
`
`•
`
`1
`
`FIG . 21
`
`DELL EXHIBIT 1024 PAGE 22
`
`DELL EXHIBIT 1024 PAGE 22
`
`
`
`U . S . Patent
`
`Oct . 31 , 2017
`
`Sheet 21 of 22
`
`US 9 , 804 , 213 B2
`
`2200
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`*
`
`2220
`220
`
`2225 |
`2025
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`2230
`
`20 .
`
`Receiver Channel ( s )
`2215
`
`# ???? - - -
`
`2205
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`Transmitter ( s ) :
`
`i
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`#
`
`FIG . 22
`
`DELL EXHIBIT 1024 PAGE 23
`
`DELL EXHIBIT 1024 PAGE 23
`
`
`
`atent
`
`Oct . 31 , 2017
`
`Sheet 22 of 22
`
`US 9 , 804 , 213 B2
`
`2300
`
`-
`
`-
`
`-
`
`-
`
`—
`
`—
`
`-
`
`-
`
`-
`
`-
`
`-
`
`en
`
`POD Txn
`Txn
`
`2310
`2310 -
`
`2315
`
`Txp
`
`Vss
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`ese m
`
`o m and
`
`son
`
`Vad
`du 1 2305
`2305
`L
`
`-
`
`-
`
`-
`
`-
`
`- g -
`2330 1
`
`-
`
`-
`
`-
`
`-
`
`.
`
`pour avem
`
`nevoie
`
`I
`- 1 -
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`-
`
`.
`
`.
`
`.
`
`.
`
`.
`
`2320
`-
`m - enne under - - 11
`m -
`2355
`
`.
`
`pomen
`
`
`
`
`
`semen semen semen der e
`
`de
`
`- -
`
`-
`
`-
`
`-
`
`2360
`
`Ctn
`
`Ctp
`
`Rx
`
`2325
`
`i
`
`2347
`
`-
`-
`
`-
`-
`
`-
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`2350
`
`
`
`senere enn den senesten en
`
`-
`
`-
`
`-
`
`-
`
`-
`
`7
`
`-
`
`-
`
`2335
`
`Vref
`-
`-
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`' –
`
`–
`
`–
`
`–
`
`–
`
`–
`
`–
`
`–
`
`–
`
`–
`
`–
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`FIG . 23
`
`DELL EXHIBIT 1024 PAGE 24
`
`DELL EXHIBIT 1024 PAGE 24
`
`
`
`US 9 , 804 , 213 B2
`
`CAPACITIVE SENSOR DEVICE
`CROSS REFERENCE TO RELATED
`APPLICATIONS
`This application claims priority to and benefit of U . S .
`Provisional Patent Application No . 61 / 224 , 814 filed Jul . 10 ,
`2009 , which claims the benefit of U . S . Provisional Patent
`Application No . 61 / 177 , 897 filed May 13 , 2009 , both of
`which are hereby incorporated by reference in their entirety 10
`herein .
`
`FIG . 11 is flowchart of an example method of sensing
`using a capacitive sensor device comprising a first plurality
`of sensor electrodes aligned along a first axis and a second
`plurality of sensor electrodes aligned along a second axis
`5 non - parallel to the first axis , in accordance with embodi
`ments of the present technology .
`FIG . 12 shows potential ambiguity with profile - based
`position sensing method of disambiguating the configuration
`using transcapacitance sensing .
`FIG . 13 is a block diagram of an example capacitive
`sensor device , in accordance with embodiments of the
`present technology .
`BACKGROUND
`FIG . 14 is flowchart of an example method of sensing
`using a capacitive sensor device comprising a first plurality
`Capacitive sensing devices are widely used in modern 15 of sensor electrodes aligned along a first axis and a second
`plurality of sensor electrodes aligned along a second axis
`electronic devices . For example , capacitive sensing devices
`have been employed in music and other media players , cell
`non - parallel to the first axis , in accordance with embodi
`phones and other communications devices , remote controls ,
`ments of the present technology .
`personal digital assistants ( PDAs ) , and the like . These
`FIG . 15 is a block diagram of an example capacitive
`capacitive sensing devices are often used for touch based 20 sensor device , in accordance with embodiments of the
`navigation , selection , or other functions . These functions
`present technology .
`can be in response to one or more fingers , styli , other objects ,
`FIG . 16 is flowchart of an example method of sensing
`or combination thereof providing input in the sensing
`using a capacitive sensor device comprising a first plurality
`regions of respective capacitive sensing devices . However ,
`of sensor electrodes aligned along a first axis and a second
`there exist many limitations to the current state of technol - 25 plurality of sensor electrodes aligned along a second axis
`ogy with respect to capacitive sensing devices .
`non - parallel to the first axis , in accordance with embodi
`ments of the present technology .
`BRIEF DESCRIPTION OF THE DRAWINGS
`FIGS . 17A , 17B , 18A , 18B , 19A , 19B , 20A and 20B show
`embodiments of the present technology that are capable of
`The accompanying drawings , which are incorporated in
`30 measuring both absolute and trans - capacitance to resolve
`and form a part of this specification , illustrate embodiments
`two regions , in accordance with the present technology .
`of the technology for a capacitive sensor device and ,
`FIG . 21 shows a conceptual diagram for a transcapacitive
`together with the description , serve to explain principles
`image integrated circuit in accordance with embodiments of
`discussed below . The drawings referred to in this brief
`the present technology .
`description should not be understood as being drawn to scale 35
`FIG . 22 shows a conceptual diagram for an absolute
`unless specifically noted .
`image integrated circuit , in accordance with embodiments of
`FIG . 1 is a plan view block diagram of an example
`the present technology .
`capacitive sensor device that can be implemented to include
`FIG . 23 is a block diagram of an example capacitive
`one or more embodiments of the invention .
`sensor device , in accordance with embodiments of the
`FIG . 2 shows an example of an external object drawing 40 present technology .
`away part of an electric field that would otherwise have
`DESCRIPTION OF EMBODIMENTS
`coupled the transmitter and receiver sensor electrodes .
`FIG . 3 shows a simplified model of a sensor with two
`Reference will now be made in detail to embodiments of
`sensor electrodes and one external object , in accordance
`with embodiments of the present technology .
`45 the present technology , examples of which are illustrated in
`the accompanying drawings . While the present technology
`FIG . 4 shows several non - limiting modulation examples ,
`will be described in conjunction with embodiments , it will
`in accordance with embodiments of the present technology
`be understood that the descriptions are not intended to limit
`FIGS . 5A and 5B show a top view and a side view ,
`the present technology to these embodiments . On the con
`respectively , of an example sensor electrode pattern , in
`50 trary , the descriptions are intended to cover alternatives ,
`accordance with embodiments of the present technology .
`modifications and equivalents , which may be included
`FIGS . 6A , 6B and 6C show a top view of example sensor
`within the spirit and scope as defined by the appended
`electrode patterns , in accordance with embodiments of the
`present technology .
`claims . Furthermore , in the following detailed description ,
`numerous specific details are set forth in order to provide a
`FIG . 7 shows a combination of an absolute capacitance
`sensor and a transcapacitive image sensor , in accordance 55 thorough understanding of embodiments of the present
`with embodiments of the present technology .
`technology . However , one of ordinary skill in the art will
`FIG . 8 is a block diagram of an example capacitive sensor
`understand that embodiments of the present technology may
`device , in accordance with embodiments of the present
`be practiced without these specific details .
`In
`other
`technology .
`instances , well known methods , procedures , components ,
`FIG . 9 is flowchart of an example method of determining 60 and circuits have not been described in detail as not to
`unnecessarily obscure aspects of the present technology .
`positional information using a capacitive sensor device
`comprising a first sensor electrode and a second sensor
`Overview of Discussion
`electrode , in accordance with embodiments of the present
`technology .
`FIG . 10 is a block diagram of an example capacitive 65
`The discussion will begin with description of an example
`sensor device , in accordance with embodiments of the
`capacitive sensor device with which or upon which various
`present technology .
`embodiments described herein may be implemented . The
`
`DELL EXHIBIT 1024 PAGE 25
`
`DELL EXHIBIT 1024 PAGE 25
`
`
`
`US 9 , 804 , 213 B2
`
`capacitive touch screen device that can , in some embodi
`discussion will then turn to an explanation of the terminol
`ments , be placed over an underlying image or an information
`ogy associated with the capacitive sensor device in accor -
`display device ( not shown ) . In this manner , a user would
`dance with embodiments of the present technology . Discus
`view the underlying image or information display by look
`sions of grounding , noise , and types of capacitance will be
`ing through the substantially transparent sensor electrodes
`presented . A discussion of example capacitive sensor elec - 5
`( not illustrated ) in sensor 108 of capacitive sensor device
`trodes and sensor arrays will be presented ; the discussion
`100 as shown . It is noted that one or more embodiments , in
`will include description of some techniques and situations
`accordance with the present invention , can be incorporated
`for performing both absolute and transcapacitive sensing
`with the same sensor device and for disambiguation through
`with a capacitive touch screen device similar to that of
`transcapacitive sensing . The discussion will then be fol - 10 capacitive sensor device 100 .
`lowed by a detailed description focusing on aspects of the
`When in operation , sensor 108 is used to form a " sensing
`structure of various example capacitive sensing devices and
`region ” for sensing inputs . It is appreciated that sensor 108
`various example conceptual and circuit diagrams that are
`typically comprises a plurality of sensor elements ( e . g . , the
`discussed with a view toward use and operation of embodi
`intersections of sensor electrodes 120 and 130 ) arranged as
`ments described herein .
`a sensor array to
`form sensor 108 . Sensing regions are
`Some capacitive sensing devices may be configured to
`discussed in more detail below .
`acquire electret unmodulated capacitive measurements ( may
`Capacitive sensor device 100 , when implemented as a
`be referred to as electret sensing or sensors ) . However , these
`measurements are typically not used by touch input devices
`touch screen , can include a substantially transparent sub
`for sensing touch input . Electret sensing requires a differ - 20 strate 102 ( or a plurality of substantially transparent sub
`ence in voltage ( or a trapped charge ) which can induce
`strates ) having a first set of conductive routing traces 104
`currents ( or charge ) as the object moves toward the sensor .
`and a second set of conductive routing traces 106 patterned
`Because the voltage is difficult to control on an external
`( or formed ) coupled thereto . Conductive routing traces 104
`object , this method is not typically used . Also , since electret
`and / or 106 can be utilized for coupling processing system
`capacitive measurements are fundamentally DC they can not 25 110 with sensor electrodes ( 120 , 130 ) , arrays of sensor
`be demodulated and made narrow band sensors . Electret
`electrodes , and / or conductive traces that form a sensor 108 .
`capacitive measurements are not performed by the embodi
`Although sensor 108 is depicted as rectangular , other shapes ,
`ments described herein
`such as circular are anticipated . Sensor electrodes 120 , 130
`of sensor 108 can be formed of a substantially transparent
`Example Capacitive Sensing Device
`conductive material . Indium tin oxide ( ITO ) and / or thin ,
`barely visible wires are but two of many possible examples
`FIG . 1 is a plan view block diagram of an example
`of a substantially transparent conductive material that can be
`capacitive sensor device 100 that can be implemented to
`used to form one or more sensor electrodes 120 , 130 or
`include one or more embodiments of the present invention .
`As illustrated , capacitive sensor device 100 includes a 35 20 conductive traces of sensor 108 .
`Processing system 110 drives sensor electrode ( s ) with a
`sensor 108 that is disposed on a substrate 102 . Sensor 108
`includes two pluralities of sensor electrodes 120 . 130 .
`voltage and senses resulting respective charge on sensor
`Although only two sensor electrodes are illustrated in each
`electrode ( s ) , to acquire one or more measurements of
`plurality ( 120 , 130 ) , it is appreciated that either or both can
`capacitance with respect to sensor 108 . Additionally , or
`include more than two sensor electrodes . Although not 40 alternatively in some embodiments , processing system 110
`illustrated , in some embodiments there may be only a single
`may drive charge on sensor electrode ( s ) and measure result
`sensor electrode 120 - 1 and a plurality of sensor electrodes
`i ng voltage on sensor electrode ( s ) . Sensor electrode control
`130 - 1 to 130 - n , or plurality of sensor electrodes 120 - 1 to
`ler 140 , in one embodiment , is used by processing system
`120 - n and a single sensor electrode 130 - 1 . Likewise , while
`110 to selectively drive signal ( s ) on one or more sensor
`not illustrated , in some embodiments , there may be only a 45 electrodes and to selectively receive signal ( s ) on one or
`single sensor electrode 120 - 1 and a single sensor electrode
`more sensor electrodes .
`130 - 1 . It is also appreciated that sensor electrodes 120 and
`In some embodiments capacitive measurer 150 performs
`sensor electrodes 130 are separated by a dielectric layer ( not
`capacitance measurements ( which may be measurements of
`shown ) . In some embodiments , plurality of sensor electrodes
`absolute capacitance or transcapacitance ) based upon
`120 and plurality of sensor electrodes 130 may be disposed 50 received signals . For example , in some embod