throbber
The Intramolecular Asymmetric Pauson-Khand Cyclization as a
`Novel and General Stereoselective Route to Benzindene
`Prostacyclins: Synthesis of UT-15 (Treprostinil)
`
`Robert M. Moriarty,*,† Neena Rani,‡ Livia A. Enache,§ Munagala S. Rao,§ Hitesh Batra,‡
`Liang Guo,‡ Raju A. Penmasta,‡ James P. Staszewski,‡ Sudersan M. Tuladhar,‡ Om Prakash,†
`David Crich,† Anca Hirtopeanu,†,| and Richard Gilardi⊥
`Department of Chemistry (M/C 111), University of Illinois at Chicago, Chicago, Illinois 60607,
`United Therapeutics, Chicago, Illinois 60612, deCODE Genetics, Inc., Chicago, Illinois 60612,
`Institute of Organic Chemistry, C.D. Nenitescu, Bucharest, Romania, and Laboratory for the Stucture of
`Matter, Naval Research Laboratory, Washington, DC 20375
`
`Received June 5, 2003
`
`A general and novel solution to the synthesis of biologically important stable analogues of
`prostacyclin PGI2, namely benzindene prostacyclins, has been achieved via the stereoselective
`intramolecular Pauson-Khand cyclization (PKC). This work illustrates for the first time the
`synthetic utility and reliability of the asymmetric PKC route for synthesis and subsequent
`manufacture of a complex drug substance on a multikilogram scale. The synthetic route surmounts
`issues of individual step stereoselectivity and scalability. The key step in the synthesis involves
`efficient stereoselection effected in the PKC of a benzoenyne under the agency of the benzylic
`OTBDMS group, which serves as a temporary stereodirecting group that is conveniently removed
`via benzylic hydrogenolysis concomitantly with the catalytic hydrogenation of the enone PKC
`product. Thus the benzylic chiral center dictates the subsequent stereochemistry of the stereogenic
`centers at three carbon atoms (C3a, C9a, and C1).
`
`Prostacyclin (PGI2) (1) is an important physiological
`prostanoid and occurs as a major metabolic product from
`arachidonic acid throughout the vasculature and is
`produced in the endothelium and in smooth muscles.1a-r
`PGI2 is the most potent endogenous vasodilator in both
`
`* To whom correspondence should be addressed.
`† Department of Chemistry (M/C 111), University of Illinois at
`Chicago, 845 W. Taylor St., Room 4500.
`‡ United Therapeutics.
`§ deCODE Genetics, Inc..
`| Institute of Organic Chemistry, C.D. Nenitescu.
`⊥ Naval Research Laboratory.
`(1) (a) Moncada, S.; Gryglewski, R.; Bunting, S.; Vane, J. R. Nature
`1976, 263, 663-665. (b) Johnson, R. A.; Morton, D. R.; Kinner, J. H.;
`Gorman, R. R.; McGuire, J. C.; Whittaker, N.; Bunting, S.; Salmon,
`J.; Moncada, S. Prostaglandins 1976, 12, 915-928. (c) Vane, J. R.;
`Bergstrom, S., Eds. Prostacyclin; Raven Press: New York, 1979. (d)
`Moncada, S.; Vane, J. R. Pharmacol. Rev. 1979, 30, 293-331. (e)
`Bunting, S.; Gryglewski, R.; Moncada, S.; Vane, J. R. Prostaglandins
`1976, 12, 897-913. (f) Moncada, S.; Herman, A. G.; Higgs, E. A.; Vane,
`J. R. Thromb. Res. 1977, 11, 323-344. (g) Marcus, A. J.; Weksler, B.
`B.; Jaffe, E. A. Biol. Chem. 1978, 253, 7138-7141. (h) Weksler, B. B.;
`Marcus, A. J.; Jaffe, E. A. Proc. Natl. Acad Sci. U.S.A. 1977, 74, 3922-
`3926. (i) MacIntyre, D. E.; Pearson, J. D.; Gordon, J. L. Nature 1978,
`271, 549-551. (j) Nakagawa, O.; Tanaka, I.; Usui, T.; Harada, M.;
`Sasaki, Y.; Itoh, H.; Yoshimasa, T.; Namba, T.; Narumiya, S.; Nakao,
`K. Circulation 1994, 90, 1643-1647. Syntheses of PGI2: (k) Corey, E.
`J.; Keck, G. E.; Szekely, I. J. Am. Chem. Soc. 1977, 99, 2006-2008. (l)
`Johnson, R. A.; Lincoln, F. H.; Thompson, J. L.; Nidy, E. G.; Mizsak,
`S. A.; Axen, U. J. Am. Chem. Soc. 1977, 99, 4182-4184. (m) Johnson,
`R. A.; Lincoln, F. H.; Nidy, E. G.; Schneider, W. P.; Thompson, J. L.;
`Axen, U. J. Am. Chem. Soc. 1978, 100, 7690-7705. (n) Corey, E. J.;
`Pearce, H. L.; Szekely, I.; Ishiguro, M. Tetrahedron Lett. 1978, 19,
`1023-1026. (o) Tomoskozi, I.; Galambos, G.; Simonidez, V.; Kovacs,
`G. Tetrahedron Lett. 1977, 18, 2627-2628. (p) Tomoskozi, I.; Galambos,
`G.; Kovacs, G.; Gruber, L. Tetrahedron Lett. 1979, 20, 1927-1930. (q)
`Nicolaou, K. C.; Barnette, W. F.; Gasic, G. P.; Magolda, R. L.; Sipio,
`W. J. J. Chem. Soc., Chem. Commun. 1977, 630-631. (r) Fried, J.;
`Barton, J. Proc. Natl. Acad. Sci. U.S.A. 1977, 74, 2199-2203.
`
`1890
`
`J. Org. Chem. 2004, 69, 1890-1902
`
`systemic and pulmonary circulation. It exerts effects on
`vascular smooth muscle cells and inhibits both platelet
`aggregation and adhesion.2a-f These biological activities
`are relevant to a broad range of cardiovascular diseases
`including congestive heart failure, peripheral vascular
`disease, myocardial ischemia, and pulmonary hyperten-
`sion.3a-r Use of PGI2 as a drug for coronary disease has
`not been fruitful because of the fleeting half-life of this
`compound (∼10 min at pH 7.6 at 25 °C).4 The ability to
`inhibit platelet aggregation in plasma samples is lost
`within 5 min.5 Application of PGI2 to disease therapy
`presents a typical drug delivery challenge that is dealt
`with either mechanically by an appropriate pharmaceuti-
`cal device or chemically by synthesizing a hydrolytically
`stable analogue that retains the biological activity. The
`first option currently is used for the treatment of pulmo-
`nary hypertension in which an aqueous solution of PGI2
`sodium salt (chemical name, epoprostenol; trade name
`Flolan) is pumped continuously and intravenously through
`a catheter permanently placed in the patient’s chest via
`a portable external pump. PGI2 is light sensitive and
`must be stored between 15 and 25 °C, and the formula-
`tion in a buffer solution must be prepared by the patient
`on a daily basis.6 The PGI2 is thereby introduced directly
`
`(2) (a) Tateson, J. E.; Moncada, S.; Vane, J. R. Prostaglandins 1977,
`13, 389-397. (b) Higgs, E. A.; Moncada, S.; Vane, J. R.; Caen, J. P.;
`Michel, H.; Tobelem, G. Prostaglandins 1978, 16, 17-22. (c) Flower,
`R. J.; Cardinal, D. C.; Prostacyclin; Vane, J. R.; Bergstrom, S., Eds.
`Raven Press: New York, 1979; pp 211-216. (d) Gorman, R. R.;
`Bunting, S.; Miller, O. V. Prostaglandins 1977, 13, 377-388. (e)
`Ubatuba, F. B.; Moncada, S.; Vane, J. R. Thromb. Haemostasis 1979,
`41, 425-434. (f) Cooper, B.; Schafer, A. I.; Puchalsky, D.; Handin, R.
`I. Prostaglandins 1979, 17, 561-571.
`
`10.1021/jo0347720 CCC: $27.50 © 2004 American Chemical Society
`Published on Web 02/19/2004
`
`See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.
`
`Downloaded via SAN JOSE STATE UNIV on March 24, 2020 at 16:20:54 (UTC).
`
`Liquidia - Exhibit 1009 - Page 1
`
`

`

`Synthesis of Treprostinil
`
`into the pulmonary arterial system. This is a difficult
`therapy and one can appreciate the strong motivation to
`discover an active, stable analogue that could be admin-
`istered in a less invasive manner either orally or sub-
`cutaneously. From a chemical viewpoint one can readily
`understand the hydrolytic lability of PGI2 on the basis
`of the presence of the Z-vinyl ether group. Protonation
`of 1 yields the oxonium ion 2 followed by ring opening of
`the derived hemiketal to yield 6-keto-PGF1R (3).7a Ad-
`ditional driving force for the rapid hydrolysis has been
`proposed to involve the carboxylate form of 24 and proven
`in an elegant kinetic study.7b
`
`Syntheses of stable analogues as potential drugs have
`used this mechanism as a point of departure. Thus
`substitution of geminal fluorine atoms at C7 destabilizes
`
`(3) (a) Gimson, A. E. S.; Langley, P. G.; Hughes, R. D.; Canalese,
`J.; Mellon, D. J.; Williams, R.; Woods, H. F.; Weston, M. J. Lancet 1980,
`1, 173-175. (b) Braude, S.; Gimson, A. S.; Williams, R. Intensive Care
`Med. 1981, 7, 101-103. (c) Woods, H. F.; Ash, G.; Weston, M. J.;
`Bunting, S.; Moncada, S.; Vane, J. R. Lancet 1978, 2, 1075-1077. (d)
`Turney, J. H.; Williams, L. C.; Fewell, M. R.; Parsons, V.; Weston, M.
`J. Lancet 1980, 2, 219-222. (e) Zusman, R. M.; Rubin, R. H.; Cato, A.
`E.; Cocchetto, D. M.; Crow, J. W.; Tolkoff-Rubin, N. N. Engl. J. Med.
`1981, 304, 934-939. (f) Longmore, D. B.; Bennett, G.; Gueirrara, D.;
`Smith, M.; Bunting, S.; Moncada, S.; Reed, P.; Read, N. G.; Vane, J.
`R. Lancet 1979, 1, 1002-1005. (g) Longmore, D. B.; Bennett, J. G.;
`Hoyle, P. M.; Smith, M. A.; Gregory, A.; Osivand, T.; Jones, W. A.
`Lancet 1981, 1, 800-803. (h) Walker, I. D.; Davidson, J. F.; Faichney,
`A.; Wheatly, D. J.; Davidson, K. G. Br. J. Haematol. 1981, 49, 415-
`423. (i) Radegran, K.; Aren, C.; Teger-Nilsson, A.-C. J. Thorac.
`Cardiovasc. Surg. 1982, 83, 205-211. (j) Sinzinger, H.; O’Grady, J.;
`Cromwell, M.; Hofer, R. Lancet 1983, 1, 1275-1276. (k) Szczeklik, A.;
`Nizankowski, R.; Skawinski, S.; Szczeklik, J.; Gluszko, P.; Gryglewski,
`R. J. Lancet 1979, 1, 1111-1114. (l) Lewis P. J.; O’Grady, J., Eds.
`Clinical Pharmacology of Prostacyclin; Raven Press: New York, 1981.
`(m) Belch, J. J.; Newman, P.; Drury, J. K.; McKenzie, F.; Capell, H.;
`Leiberman, P.; Forbes, C. D.; Prentice, C. R. Lancet 1983, 1, 313-
`315. (n) Belch, J. J.; McKay, A.; McArdle, B.; Leiberman, P.; Pollock,
`J. G.; Lowe, G. D.; Forbes, C. D.; Prentice, C. R. M. Lancet 1983, 1,
`315-317. (o) Rubin, L. J.; Groves, B. M.; Reeves, J. T.; Frosolono, M.;
`Handel, F.; Cato, A. E. Circulation 1982, 66, 334-338. (p) Yui, Y.;
`Nakajima, H.; Kawai, C.; Murakami, T. Am. J. Cardiol. 1982, 50, 320-
`324. (q) Gryglewski, R. J.; Nowak, S.; Kostka-Trabka, E.; Bieron, K.;
`Dembinska-Kiec, A.; Blaszczyk, B.; Kusmiderski, J.; Markowska, E.;
`Szmatola, S. Pharmacol. Res. Commun. 1982, 14, 879-908. (r) Vane,
`J.; O’Grady, J., Eds. Therapeutic Applications of Prostaglandins;
`Edward Arnold: London, UK, 1993.
`
`intermediate 2 and this compound is called APF-07 4.8
`Removal of the C5-6 double bond yields 6(cid:2)- and 6R-
`9a-e or formal removal of the oxygen atom and
`PGI1
`replacement by a methylene group generates the class
`of analogues called carbaprostacyclins.10a-f These ana-
`logues do not possess the reactive vinyl ether system and
`prominent examples are iloprost 5,11 cicaprost 5a,12 and
`eptaloprost 5b13a-d which are differentiated by variations
`in the side chains. Replacement of the oxygen atom by
`sulfur as well as nitrogen has been reported, e.g. (5Z)-
`6,9-thiaprostacyclin14a-d and 9-deoxy-9R-nitrilo-PGF1.15a,b
`Finally, the Z-vinyl ether can be embedded in an aryl
`ether motif as in beraprost (6)16a-e or UT-15 (7).17a-c UT-
`15 (7) belongs to a class of stable analogues of PGI2 called
`
`(4) Cho, M. J.; Allen, M. A. Prostaglandins 1978, 15, 943-954.
`(5) Whittle, B. J. R.; Moncada, S.; Vane, J. R. Prostaglandins 1978,
`16, 373-388.
`(6) Epoprostenol sodium is a Glaxo Smith Kline drug. For the
`synthesis of the sodium salt see: Whittaker, N. Tetrahedron Lett. 1977,
`32, 2805-2808.
`(7) (a) Johnson, R. A.; Morton, D. R.; Kinner, J. H.; Gorman, R. R.;
`McGuire, J. C.; Sun, F. F.; Whittaker, N.; Bunting, S.; Solomon, J.;
`Moncada, S.; Vane, J. R. Prostaglandins 1976, 12, 915-928. (b)
`Bergman, N. A.; Chiang Y.; Jansson, M.; Kresge, A. J.; Ya, Y. J. Chem.
`Soc., Chem. Commun. 1986, 1366-1368.
`(8) Nakano, T.; Makino, M.; Morizawa, Y.; Matsumura, Y. Angew.
`Chem., Int. Ed. Engl. 1996, 35, 1019-1021.
`(9) (a) Johnson, R. A.; Lincoln, F. H.; Nidy, E. G.; Schneider, W. P.;
`Thompson, J. L.; Axen, U. J. Am. Chem. Soc. 1978, 100, 7690-7705.
`(b) Togna, G.; Gandolfi, C.; Andreoni, A.; Fumagalli, A.; Passarotti,
`C.; Faustini, F.; Patrono, C. Pharmacol. Res. Commun. 1977, 9, 909-
`916. (c) Whittle, B. J. R.; Boughton-Smith, N. K.; Moncada, S.; Vane,
`J. R. J. Pharm. Pharmacol. 1978, 30, 597-599. (d) Nelson, N. A. J.
`Am. Chem. Soc. 1977, 99, 7362-7363. (e) Whittle, B. J. R.; Moncada,
`S.; Vane, J. R. In Medicinal Chemistry Advances; de las Heras, F. G.,
`Vega, S., Eds.; Pergamon Press: Oxford, UK, 1981; pp 141-158.
`(10) (a) Nicolaou, K.; Sipio, W. J.; Magolda, R. L.; Seitz, S.; Barnette,
`W. E. J. Chem. Soc., Chem. Commun. 1978, 1067-1068. (b) Kojima,
`K.; Sakai, K. Tetrahedron Lett. 1976, 17, 101-104. (c) Morton, D. R.;
`Brokaw, F. C. J. Org. Chem. 1979, 44, 2880-2887. (d) Ceserani, R.;
`Grossoni, M.; Longiave, D.; Mizzotti, B.; Pozzi, O.; Dembinska-Kiec,
`A.; Bianco, S. Prostaglandins Med. 1980, 5, 131-139. (e) Morita, A.;
`Mori, M.; Hasegawa, K.; Kojima, K.; Kobayashi, S. Life Sci. 1980, 27,
`695-701. (f) Whittle, B. J. R.; Steel, G.; Boughton-Smith, N. K. J.
`Pharm. Pharmacol. 1980, 32, 603-604.
`(11) Bursch, W.; Schulte-Hermann, R. In Prostacyclin and its Stable
`Analogue Iloprost; Gryglewski R. I., Stock, G., Eds.; Springer: Berlin,
`Germany, 1987; pp 257-268.
`(12) Skuballa, W.; Vorbrueggen, H. Angew. Chem. 1981, 93, 1080-
`1081.
`(13) (a) Shibasaki, M.; Torisawa, Y.; Ikegami, S. Tetrahedron Lett.
`1983, 24, 3493-3496. (b) Skuballa, W.; Schillinger, E.; Stuerzbecher,
`S.; Vorbrueggen, H. J. Med. Chem. 1986, 29, 313-315. (c) Ohno, K.;
`Nishiyama, H.; Nagase, H.; Matsumoto, K.; Ishikawa, M. Tetrahedron
`Lett. 1990, 31, 4489-4492. (d) Bartmann, W.; Beck, G. Angew. Chem.
`1982, 94, 767-780; Angew. Chem., Int. Ed. Engl. 1982, 21, 751.
`(14) (a) Nicolaou, K. C.; Barnette, W. E.; Magolda, R. L. J. Am. Chem
`Soc. 1981, 103, 3472-3480. (b) Gryglewski, R. J.; Nicolaou, K. C.
`Experientia 1978, 34, 1336-1338. (c) Lefer, A. M.; Trachte, G. J.;
`Smith, J. B.; Barnette, W. E.; Nicolaou, K. C. Life Sci. 1979, 25, 259-
`263. (d) Horii, D.; Kanayama, T.; Mori, M.; Shibasaki, M.; Ikegami, S.
`Eur. J. Pharmacol. 1978, 51, 313-316.
`(15) (a) Bundy, G. L.; Baldwin, J. M. Tetrahedron Lett. 1978, 19,
`1371-1374. (b) Lock, J. E.; Coceani, F.; Hamilton, F.; Greenaway-
`Coates, A.; Olley, P. M. J. Pharmacol. Exp. Ther. 1980, 215, 156-159.
`(16) (a) Kurihara, I.; Sahara, T.; Kato, H. Br. J. Pharmacol. 1990,
`99, 91-96. (b) Toda, N. Cardiovasc. Drug Rev. 1988, 6, 222-238. (c)
`Nishio, S.; Matsuura, H.; Kanai, N.; Fukatsu, Y.; Hirano, T.; Nish-
`ikawa, N.; Nameoka, K.; Umetsu, T. Jpn. J. Pharmacol. 1988, 47,
`1-10. (d) Umetsu, T.; Murata, T.; Tanaka, Y.; Osada, E.; Nishio, S.
`Jpn. J. Pharmacol. 1986, 43, 81-90. (e) Akiba, T.; Miyazaki, M.; Toda,
`N. Br. J. Pharmacol. 1986, 89, 703-711.
`(17) (a) Aristoff, P. A.; Harrison, A. W.; Aiken, J. W.; Gorman, R.
`R.; Pike, J. E. In Advances in Prostaglandin Thromboxane and
`Leukotriene Research; Samuelsson, B., Paoletti, R., Ramwell, P. W.,
`Eds.; Raven Press: New York, 1983; Vol. 11, pp 267-274. (b) UT-15
`has also been variously known as Uniprost, BW-15AU, LRX-15,
`U-62840, 15AU81, and finally Remodulin. (c) Sorbera, L. A.; Rabasseda,
`X.; Castaner, J. Drugs Future 2001, 26, 364-367.
`
`J. Org. Chem, Vol. 69, No. 6, 2004 1891
`
`Liquidia - Exhibit 1009 - Page 2
`
`

`

`benzindene prostacyclins that are differentiated by the
`structure of their side chains.18a-c
`
`To date, UT-15 (7) has proven effective in the treat-
`ment of pulmonary hypertension, a debilitating and often
`fatal lung disease, for which Flolan mentioned above has
`been the main therapy available.19a-f UT-15 (7) has a
`longer biological half-life and is not degraded upon
`
`(18) (a) Shimoji, K.; Hayashi, M. Tetrahedron Lett. 1980, 21, 1255-
`1258. (b) Aristoff, P. A.; Harrison, A. W. Tetrahedron Lett. 1982, 23,
`2067-2070. (c) Aristoff, P. A.; Johnson, P. D.; Harrison, A. W. J. Am.
`Chem. Soc. 1985, 107, 7967-7974.
`(19) (a) Gaine, S. P.; Oudiz, R.; Rich, S.; Barst, R.; Roscigno, R. Am.
`J. Respir. Crit. Care Med. 157(3). (b) McLaughlin, V.; Barst, R.; Rich,
`S.; Rubin, L.; Horn, E.; Gaine, S.; Blackburn, S.; Crow, J. Eur. Heart
`J. 1999, 20 (Suppl.), Abst 2555. (c) Barst, R. J.; Horn, E. M.; Widlitz,
`A. C.; Goudie, S. M.; Kerstein, D.; Berman-Rosenzweig, E.; Blackburn,
`S. D. Eur. Heart J. 2000, 21 (Suppl.), Abst P1721. (d) McLaughlin, V.
`V.; Hess, D. M.; Sigman, J.; Blackburn, S.; Rich, S. Eur. Respir. J.
`2000, 16 (Suppl. 31), Abst P2830. (e) Barst, R. J.; Simonneau, G.; Rich,
`S.; Blackburn, S. D.; Naeije, R.; Rubin, L. J. Circulation 2000, 102
`(18, Suppl.), Abst 477. (f) Seetharam, T. A.; Anderson, L. W.; Crow, J.
`W.; Klein, K. B.; Whittle, B. J. European Patent Appl. EP 347,243,
`CA 1990, 113, 23513k.
`
`1892 J. Org. Chem., Vol. 69, No. 6, 2004
`
`Moriarty et al.
`
`passage through the lungs.20 In further contrast to
`Flolan, UT-15 is delivered subcutaneously via a micro-
`infusion device thus avoiding the risk of sepsis infection
`encountered with catheter delivery. UT-15 (7) retains all
`the biological activity of PGI2. UT-15 has been investi-
`gated for use in severe congestive heart failure,21a-c
`severe intermittent
`claudication,22a,b and immuno-
`suppresion.23a-c Furthermore, UT-15 has an antiprolif-
`erative effect on human pulmonary arterial smooth
`muscle cells.24 To meet the demands of producing mul-
`tikilogram quantities of UT-15 (7) needed in the course
`of drug development, an efficient and economical syn-
`thesis had to be devised. The essential requirements for
`any large-scale, multistep synthesis of a molecule of the
`complexity of UT-15 (7) are very high overall stereose-
`lectivity, high overall chemical yield, and scalability of
`individual steps to multigram quantities. Inspection of
`the structure of this molecule reveals the presence of five
`chiral centers and the molecule can be viewed as a benzo-
`annulated hydrindane with the BC ring system reminis-
`cent of the CD ring system of steroids.
`Benzindene prostacyclin UT-15 (7), [[(1R,2R,3aS,9aS)-
`2,3,3a,4,9,9a-hexahydro-2-hydroxy-1-[(3S)-3-hydroxy-
`octyl]-1-H-benz[f]inden-5-yl]oxy]acetic acid, has been syn-
`thesized previously by Upjohn chemists using an ap-
`proach in which the AB ring system is introduced in the
`form of 5-methoxy-2-tetralone (8), which is converted to
`racemic 9, followed by an intramolecular Wadworth-
`Emmons-Wittig cyclopentanone annulation using the
`homochiral side chain 10 with no stereochemical control
`in the creation of the C3a chiral center in 11.25 UT-15 (7)
`was synthesized in 14 steps following the route of Scheme
`1. Stereochemistry was introduced rather late in the
`synthesis in the form of the homochiral side chain 10 in
`this general route to benzindene prostacyclins differing
`in the C1 side chain. Unfortunately, this low level of
`control of stereochemistry in this route led to significant
`separation problems in obtaining the final product and
`could not be used to fulfill our scale-up needs for
`development of UT-15.
`Another early route to the benzindene prostacyclin
`system and UT-15 (7) used intramolecular alkylation of
`the phenolic ring for formation of the B-ring. Homochiral
`12 was made in a multistep synthesis and converted to
`13 with use of C6H5S(O)(NCH3)CH2MgBr (Scheme 2).
`Reductive elimination followed by hydroboration and
`
`(20) Remodulinsstable form of prostacyclin; United Therapeutics
`Corp. Web Site March 23, 2001.
`(21) (a) Patterson, J. H.; Adams, K. F., Jr.; Gheorghiade, M.; Bourge,
`R. C.; Sueta, C. A.; Clarke, S. W.; Jankowski, J. P.; Shaffer, C. L.;
`McKinnis, R. A. Am. J. Cardiol. 1995, 75, 26A-33A. (b) Adams, K. F.,
`Jr.; Patterson, H.; Gheorghiade, M.; Bourge, R. C.; Sueta, C. A.; Clarke,
`S. W.; Patel, J. D.; Shaffer, C. Circulation 1992, 86 (4, Suppl.), Abst
`1501. (c) Steffen, R. P.; de la Mata, M. Prostaglandins, Leucotrienes
`Essent. Fatty Acids 1992, 45, 83. (d) Fink, A. N.; Frishman, W. H.;
`Azidad, M.; Argarwal, Y. Heart Dis. 1999, 1, 29-40.
`(22) (a) Mohler, E. R., III; Klugherz, B.; Goldman, R.; Kimmel, S.
`E.; Wade, M.; Sehgal, C. M. Vasc. Med. 2000, 5, 231-237. (b) Mohler,
`E. R.; Klugherz, B.; Goldman, R.; Fishman, A. P.; Wade, M.; Sehgal,
`C. M. J. Am. Coll. Cardiol. 1999, 33 (2, Suppl. A), 277A.
`(23) (a) Dumble, L. J.; Gibbons, S.; Tejpal, N.; Chou, T.-C.; Redgrade,
`N. G.; Boyle, M. J.; Kahan, B. D. Transplantation 1993, 55, 1124-
`1128. (b) Boyle, M. J.; Dumble, L. J. Cell Transplant 1999, 8, 543-
`548. (c) Redgrave, N. G.; Francis, D. M. A.; Dumble, L. J.; Plenter, R.;
`Ruwart, M.; Birchall, I.; Clunie, G. J. A. Transplant Proc. 1992, 24,
`227-228.
`(24) Finney, P. A.; Tran, Q. S.; Tinker, A.; Clapp, L. H. Eur. Respir.
`J. 2000, 16, 1029.
`(25) Aristoff, P. A. EP 0159784, JP 1985208936, US 4683330.
`
`Liquidia - Exhibit 1009 - Page 3
`
`

`

`Synthesis of Treprostinil
`
`SCHEME 1
`
`SCHEME 2
`
`SCHEME 3
`
`mesylation gave 14 that underwent intramolecular alky-
`lation (14 f 15).26a-cA related approach in which the
`B-ring of a benzindene prostacyclin was formed by
`intramolecular alkylation coupled with conjugate addi-
`tion to a vinyl sulfone has also been reported (16 f 17)
`(Scheme 3).27a-dReductive cleavage of the phenyl sulfone
`group in 17 yielded the cis/trans ring fused product in a
`1.9/1 ratio.
`These routes, although conceptually appealing, were
`deemed inadequate to the task of producing kilogram
`quantities of UT-15 (7), and accordingly a novel synthetic
`route was required. The principal requirement envisioned
`was production of an enantiopure intermediate early in
`the synthesis, ideally at the tricyclic stage. In principle,
`
`(26) (a) Aristoff, P. A. US 4306075. (b) Aristoff, P. A. US 4349689.
`(c) Aristoff, P. A.; Kelly, R. C.; Nelson, N. A. CH 648017, CH 655308,
`FR 2484413, GB 2070596, JP 1990167248, JP 1994145085.
`(27) (a) Hardiger, S. A.; Jakubowski, J. A.; Fuchs, P. L. Bioorg. Med.
`Chem. Lett. 1991, 1, 79-82. (b) Nevill, C. R., Jr.; Braish, T. F.;
`Jakubowski, J. A.; Fuchs, P. L. Biomed. Chem. Lett. 1991, 1, 77-78.
`(c) Hardinger, S. A.; Jakubowski, J. A.; Fuchs, P. L. Biomed. Chem.
`Lett. 1991, 1, 79-82. (d) Nevill, C. R., Jr.; Jakubowski, J. A.; Fuchs,
`P. L. Biomed. Chem. Lett. 1991, 1, 83-86.
`
`the intramolecular asymmetric Pauson-Khand cycliza-
`tion (PKC) of enynes to cyclopentenones could fulfill both
`these requirements.28a-s An enyne of type 18 appeared
`to be relatively readily accessible and the powerful
`stereodirecting influence of an R-propargylic substituent
`at C9 in the intramolecular asymmetric PKC has been
`amply demonstrated and productively used in stereose-
`lective synthesis.29a-q In the present example the C1 S
`configuration of the substituent would create the requi-
`site C3a(cid:2)-configuration of the hydrogen atom in UT-
`15.30a-c Thus, an advanced tricyclic enantiopure inter-
`mediate could potentially be obtained from a relatively
`simple homochiral precursor. Furthermore, additional
`
`(28) (a) Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. J. Chem.
`Rev. 1996, 96, 635-662. (b) Khand, I. U.; Knox, G. R.; Pauson, P. L.;
`Watts, W. E.; Foreman, M. I. J. Chem Soc., Perkin Trans. 1 1973, 977-
`981. (c) Pauson, P. L. Tetrahedron 1985, 41, 5855-5860. (d) Pauson,
`P. L. In Organometallics in Organic Synthesis, Aspects of a Modern
`Interdisciplinary Field; de Meijere A., Tom Diek, H., Eds; Springer-
`Verlag: Berlin, Germany, 1988; p, 233. (e) Schore, N. E. Chem. Rev.
`1988, 88, 1081-1119. (f) Schore, N. E. Org. React. 1991, 40, 1-90. (g)
`Schore, N. E. In Comprehensive Organic Synthesis; Trost B. M.,
`Fleming, I., Eds., Pergamon Press Ltd.: Oxford, UK, 1991; Vol. 5, p
`1037. (h) Schore, N. E. In Comprehensive Organometallic Chemistry
`II; Abel, E. W., Stone, F. A., Wilkinson, G., Eds.; Elsevier: New York,
`1995; Vol. 12, p 703. (i) Geis, O.; Schmalz, H. G. Angew. Chem., Int.
`Ed. 1998, 37, 911-914. (j) Ingate, S. T.; Marco-Contelles, J. Org. Prep.
`Proced. Int. 1998, 30, 121-143. (k) Jeong, N. In Transition Metals in
`Organic Synthesis; Beller M., Molm, C., Eds.; Wiley-VCH: Weinhem,
`Germany, 1998; Vol. 1, p 560. (l) Chung, Y. K. Coord. Chem Rev. 1999,
`188, 297-341. (m) Buchwald, S. L.; Hicks, F. A. In Comprehensive
`Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.;
`Springer Verlag: Berlin, Germany, 1999; Vol. II, p 491. (n) Brummond,
`K. M.; Kent, J. L. Tetrahedron 2000, 56, 3263-3283. (o) Khand, I. U.;
`Pauson, P. L. J. Chem. Soc., Perkin Trans. 1 1976, 30-32. (p) Pauson,
`P. L.; Khand, I. U. Ann. N.Y. Acad. Sci. 1977, 295, 2-14. (q) Bladon,
`P.; Khand, I. U.; Pauson, P. L. J. Chem. Res. Miniprint 1977, 146. (r)
`Khand, I. U.; Pauson, P. L. J. Chem. Res. Miniprint 1980, 3501. (s)
`Fruhauf, H.-W. Chem. Rev. 1997, 97, 523-596.
`
`J. Org. Chem, Vol. 69, No. 6, 2004 1893
`
`Liquidia - Exhibit 1009 - Page 4
`
`

`

`benefits accrue from this approach: cis-stereochemistry
`is expected in the heterogeneous catalytic hydrogenation
`
`Moriarty et al.
`
`ence of a catalytic amount of CuI to yield (S)-1-chloro-2-
`heptanol (37), which was then converted to the diaster-
`eomeric tetrahydropyranyl derivative 38. This compound
`was then treated with lithio 1-trimethylsilyl-1-propyne
`formed with use of butyllithium at -20 °C and at a
`reaction temperature of 0 °C (38 f 39). Cleavage of the
`TMS group yielded 5-S-tetrahydropropanoxy-1-decyne
`(25).
`
`of the double bond of the enone, resulting in the required
`C9a (cid:2)-configuration; and benzylic hydrogenolysis expect-
`edly would remove the unneeded benzylic group while
`the carbonyl group at C2 remains available for reduction
`to the C2 R-hydroxyl group. All of these preconceptions
`proved valid in the synthesis of UT-15 (7) as summarized
`in Scheme 4. Individual steps will be discussed in turn.
`
`Results and Discussion
`Synthesis of Enyne (1,1-Dimethylethyl)[[(1S,6S)-
`1-[3-methoxy-2-(2-propenyl)phenyl]-6-[(tetrahydro-
`2H-pyran-2-yl)oxy]-2-undecynyl]oxy]dimethyl-
`silane (29). The key feature of enyne 29 is the benzylic
`C1 S stereochemistry because this group influences the
`creation of the chiral center formed in the PKC at C3a in
`the requisite S configuration. It had been shown earlier
`that the tert-butyldimethyl silyl ether is a particularly
`useful group as the R-propargyl substituent in the PKC.29i
`Aldehyde 24 was produced in a straightforward manner.
`3-Methoxybenzyl alcohol 20 was protected as the TBDMS
`derivative and ortho-allylated (20 f 21 f 22). Depro-
`tection and Swern oxidation gave 2-allyl-3-methoxy-
`benzaldehyde (24) (22 f 23 f 24).
`The further synthesis of enyne involves Grignard
`addition of side chain 25 to aldehyde 24 to yield 26. The
`diastereomeric side chain 5-S-tetrahydropropanoxy-1-
`decyne (25) was synthesized by using an adaptation of
`the method of Takano et al.31 (S)-(-)-Epichlorohydrin (36)
`was reacted with butylmagnesium chloride in the pres-
`
`(29) (a) Mukai, C.; Uchiyama, M.; Sakamoto, S.; Hanaoka, M.
`Tetrahedron Lett. 1995, 36, 5761-5764. (b) Xestobergsterol D and E
`rings: Krafft, M. E.; Chirico, X. Tetrahedron Lett. 1994, 35, 4511-
`4514. (c) Krafft, M. E.; Juliano, C. A.; Scott, I. L.; Wright, C.; McEachin,
`M. D. J. Am. Chem. Soc. 1991, 113, 1693-1703. (d) Krafft, M. E. J.
`Am. Chem. Soc. 1988, 110, 968-970. (e) Krafft, M. E. Tetrahedron Lett.
`1988, 29, 999-1002. (f) (+)-Epoxydicylmene: Jamison, T. F.; Sham-
`bayati, S.; Crowe, W. E.; Schreiber, S. L. J. Am. Chem. Soc. 1994, 116,
`5505-5506. Jamison, T. F.; Shambayati, S.; Crowe, W. E.; Schreiber,
`S. L. J. Am. Chem. Soc. 1997, 119, 4353-4363. (g) (-)-R-Kainic acid:
`Yoo, S.; Lee, S. H. J. Org. Chem. 1994, 59, 6968-6972. (h) Pental-
`enene: Schore, N. E.; Rowley, E. G. J. Am. Chem. Soc. 1988, 110,
`5224-5225. (i) Pentalenic acid, pentalenene: Rowley, E. G.; Schore,
`N. E. J. Organomet. Chem. 1991, 413, C5-C9. (j) Siliphene: Rowley,
`E. G.; Schore, N. E. J. Org. Chem. 1992, 57, 6853-6861. (k) Kal-
`manol: Paquette, L. A.; Borrelly, S. J. Org. Chem. 1995, 60, 6912-
`6921. (l) Dendrobine: Cassayre, J.; Zard, S. Z. J. Am. Chem. Soc. 1999,
`121, 6072-6073. (m) Coriolin: Exon, C.; Magnus, P. J. Am. Chem.
`Soc. 1983, 105, 2477-2478. (n) 9-cis-Retinoic acid: Murray, A.;
`Hansen, J. B.; Christensen, B. V. Tetrahedron 2001, 57, 7383-7390.
`(o) Quadrone: Magnus, P.; Principe, L. M.; Slater, M. J. J. Org. Chem.
`1987, 52, 1483-1486. (p) Hirsuitic acid: Magnus, P.; Exon, C.;
`Albaugh-Robertson, P. Tetrahedron 1985, 41, 5861-5869. (q) Carba-
`cyclins: Mulzer, J.; Graske, K. D.; Kirste, B. Liebigs Ann. Chem. 1988,
`891-897.
`(30) (a) Magnus, P.; Principe, L. M. Tetrahedron Lett. 1985, 26,
`4851-4854. (b) Schore, N. E. Pauson-Khand Reaction. In Compre-
`hensive Organic Synthesis; Trost, B. M., Ed., Pergamon Press: Oxford,
`UK, 1991. (c) Jeong, N.; Lee, B. Y.; Lee, S. M.; Chung, Y. K.; Lee, S. G.
`Tetrahedron Lett. 1993, 34, 4023-4026.
`
`1894 J. Org. Chem., Vol. 69, No. 6, 2004
`
`3-Methoxy-2-(2-propenyl)-R-[(5S)-5-[(tetrahydro-2H-py-
`ran-4-yl)oxy]-1-decynyl]benzenemethanol
`intermediate
`(26), which results from the addition of 25-MgBr to 24,
`possesses three chiral centers, one of which is fixed, i.e.,
`the S-configuration of the C6 carbon atom. The benzylic
`carbon atom and the chiral carbon atom of the THP group
`are individually heterochiral. In agreement with expecta-
`tion a chiral chromatogram (Daicel Chiralpak AD Col-
`umn) of 26 showed four peaks. Diastereomeric 26 was
`oxidized with pyridinium chlorochromate to the diaster-
`eomeric ketone 27.
`For the subsequent stereoselective Pauson-Khand
`cyclization, we required the S-configuration of the ben-
`zylic (propargylic) carbon bearing the hydroxyl group.
`The stereochemistry was obtained by using a stoichio-
`metric Corey-type asymmetric reduction of 27 employing
`commercially available R-methyloxazaborolidine, borane-
`dimethyl sulfide complex, and ketone 27 at -30 °C.32a
`The S stereochemical result is in agreement with the
`results of Parker and Ledeboer using the same system.32b
`Chiral chromatographic analysis of 28 showed the pres-
`ence of two diastereomers.
`For the Pauson-Khand cyclization, 28 was converted
`to the corresponding TBDMS protected alcohol 29 and
`subjected to either stoichiometric or catalytic Co2(CO)8
`cyclization33 to yield the tricyclic enone 30 in 89% yield.
`For assessment of the stereoselectivity of the reaction,
`the crude product prior to chromatography was analyzed
`with HPLC, which revealed that over 99% of the product
`consisted of two peaks of equal intensity corresponding
`to >99% creation of the new chiral center at C3a in one
`configuration. The two peaks result from the THP dia-
`stereomeric center -O-CH-O-.
`Two points are noteworthy in connection with the
`Pauson-Khand cyclization of 29. The first is the high
`
`(31) Takano, S.; Yanase, M.; Takahashi, M.; Ogasawara, K. Chem.
`Lett. 1987, 2017-2020.
`(32) (a) Helal, C. J.; Magriotis, P. A.; Corey, E. J. J. Am. Chem. Soc.
`1996, 118, 10938-10939. (b) Parker, K. A.; Ledeboer, M. W. J. Org.
`Chem. 1996, 61, 3214-3217.
`(33) Pagenkopf, B. L.; Livinghouse, T. J. Am. Chem. Soc. 1996, 118,
`2285-2286.
`
`Liquidia - Exhibit 1009 - Page 5
`
`

`

`Synthesis of Treprostinil
`
`SCHEME 4
`
`J. Org. Chem, Vol. 69, No. 6, 2004 1895
`
`Liquidia - Exhibit 1009 - Page 6
`
`

`

`SCHEME 5
`
`Moriarty et al.
`
`chemical yield (89%) and the high degree of chiral
`induction of almost 100%. Since these yields are the same
`in both the stoichiometric and the catalytic reaction the
`results must be mechanistically controlled with steric
`effects being determinant. Two factors are operative. The
`first is that the phenyl ring forces the enyne system into
`the most favorable orientation for annulation by restrict-
`ing rotational conformations (18 S 18a). It has been
`observed that (cid:2)-positioned geminal dialkyl enynes give
`relatively higher yields of cyclized products due to a
`Thorpe-Ingold-type effect.34a-d This cisoid orientation of
`the alkyne Co(CO)6 group and the alkene in 40 is further
`enhanced by the ortho CH3O group steric interaction with
`the alkyl system.
`According to the mechanism proposed by Magnus and
`applied by others, the stereochemical course follows from
`the relative energy difference of the transition states
`leading to the two diastereomeric metallocycle intermedi-
`ates 40 and 42 (Scheme 5) with the latter possessing a
`destabilizing 1,3-diaxial interaction that disfavors this
`course of reaction.29a-p,30a,b This effect is amplified because
`of the large steric bulk of the benzylic TBDMS group.
`Catalytic hydrogenation 30 f 31 removed the now
`superfluous stereodirecting benzylic TBDMS ether and
`the thermodynamically more stable cis-hydrindanone is
`formed.35a,b The side chain at C1 existed in both the R-
`and (cid:2)-configurations. Formation of the cis-hydrindanone
`appears to concur with expectation; indeed the catalytic
`heterogeneous hydrogenation of hydrindenones has been
`studied in great detail because of its relationship to the
`CD ring of steroids.36 Basically the problem is that the
`desired stereochemistry for the CD ring system of ste-
`roids is trans but invariably the undesired cis-fused
`product is formed by catalytic reduction. Stork and Kahne
`
`(34) (a) De Tar, D. F.; Luthra, N. P. J. Am. Chem. Soc. 1980, 102,
`4505-4512. (b) Kirby, A. J. Adv. Phys. Org. Chem. 1980, 17, 208. (c)
`Eliel, E. L. Stereochemistry of Carbon Compounds; McGraw-Hill: New
`York, 1962; pp 106-202. (d) The majority of the syntheses involve
`cyclization of 1,6-enynes to yield bicyclo[3.3.0]octene-3-ones. Applica-
`tions to form bicyclo[4.3.0]octene-ones are known: Quattropani, A.;
`Anderson, G.; Bernardinelli, G.; Kuendig, E. P. J. Am. Chem. Soc. 1997,
`119, 4773-4774 and references therein.
`(35) (a) Boyce, C. B. C.; Whitehurst, J. S. J. Chem. Soc. 1960, 4547-
`4553. (b) Baggaley, K. H.; Brooks, S. G.; Green, J.; Redman, B. T. J.
`Chem. Soc. C 1971, 2671-2678.
`(36) Hajos, Z. H.; Parrish, D. P. J. Org. Chem. 1973, 38, 3239-3243.
`
`1896 J. Org. Chem., Vol. 69, No. 6, 2004
`
`found this to be the case

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket