throbber

`
`W
`
`.
`
`
`
`. g ‘:_llllllllllllllllllllllIllllllllllllllll
`
`124050
`
`3.
`
`i.
`
`]
`
`]
`
`10. I: 37 CFR 3.73m Statement
`(when there is an assignee)
`
`E] Power of
`Attorney
`
`11. El English Translation Document (if applicable)
`
`PTO/SB/OS (09-04‘
`Approved for use through 07/31/2006. 0MB 0651-0032
`
`
`US. Patent and Trademark Office. US. DEPARTMENT OF COMMERC,
`
`Under the Pa- rwork Reduction Act of 1995 no - rsons are r-uired to res- ond to a colledion of information unless it dis- a
`a valid OMB control numbel
`UTILITY
`‘ ER .
`
`
`
`
`PATENT APPLICATION
`DAN'E“ “N
`' ‘38
`
`
`
`TRANSM ITI'AL
`PEER-TO—PEER MOBlLE DATA TRNSFEf
`8'3 é
`
`
`
`
`
`(Only for new nonprovisional applications under 37 CFR 1.53m»
`ER 03 62.! 5’05)? U5
`
`Commissioner for Patents
`
`APPLICATION ELEMENTS
`
`ADDRESS TO:
`P.O. Box1450
`
`
`Alexandria VA 22313-1450
`See MPEP chapter 600 concerning utility patent application contents.
`
`
`
`
`
`
`.
`ACCOMPANYING APPLICATION PARTS
`
`1.. Fee Transmittal Form (e.g., PTO/SB/17)
`(Submit an original and a duplicate for fee processing)
`
`Applicant claims small entity status.
`2.
`9. [:1 Assignment Papers (cover sheet & document(s))
`See 37 CFR 1.27.
`
`
`
`11
`[Total Pages
`Specification
`Name of Assignee
`
`
`Both the claims and abstract must start on a new page
`(Forinfonnation on the preferred anangement, see MPEP 608.01(a))
`
`4.. Drawing(s) (35 use. 113)
`[Tote/Sheets
`3
`1
`
`
`5. Oath or Declaration
`[Total Sheets
`2
`
`
`
`a.
`Newly executed (original or copy)
`
`
`b. - A copy from a prior application (37 CFR 1.63(d))
`
`
`
`for continuation/divisional with Box 18 completed)
`
`DELETION OF |NVENTOR(S)
`
`
`
`Signed statement attached deleting inventor(s)
`
`12.
`InfoEfitlon Disclosure Statement (PTO/$3108 or PTO-1449)
`name in the prior application. see 37 CFR
`
`
`Copies of citations attached
`1.63(d)(2) and 1.33(b).
`
`
`
`
`6. [:1 Application Data Sheet. See 37 CFR 1.76
`13. [:1 Pmumlnaw Amendment
`
`7. E] CD-ROM or CD-R in duplicate, large table or
`
`
`14. '3 Return Receipt Postcard (MPEP 503)
`puter Program (Appendix)
`(Should be specifically itemized)
`Landscape Table on CD
`
`
`
`_
`.
`_
`.
`,
`,
`8. Nucleotide andlor Amino Acid Sequence Submission
`15. |:] Certified Copy of Priority Documenus)
`
`
`(if foreign pnonty Is claimed)
`(if ap Iicable, items a. - c. are required)
`a.
`Computer Readable Form (CRF)
`
`
`
`b.
`Specification Sequence Listing on:
`16. [:1 Nonpubllcatlon Request under 35 U.S.C. 122(b)(2)(B)(i).
`Applicant must attach form PTO/SB/35 or equivalent.
`
`
`
`
`17. DOther:
`
`
`c. El Statements verifying identity of above copies
`
`
`18. If a CONTINUING APPLICATION, check appropriate box, and supply the requisite information below and in the first sentence of the
`
`
`
`specification following the title, or in an Application Data Sheet under 37 CFR 1. 76:
`
`
`
`
`
`
`
`
`E]The address associated with Customer Number. :3 OR I: Correspondence address below
`
`
`
`
`
`
`—SAN FRANCISCO _ Zip We 94121
`“9'er 415956-3005 __
`
`
`mam—nae 143-2005
`
`
`Name
`Registration No.—
`Print/T oe
`DANIELJ LIN
`Attome /Aoent
`47'750
`
`
`This collection of information is required by 37 CFR 1.53(b). The information is required to obtain or retain a benefit by the public which is to file (and by the
`USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 12 minutes to
`complete. including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual use. Any
`comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer.
`US. Patent and Trademark Office, US. Department of Commerce, PO. Box 1450, Alexandria, VA 223131450. DO NOT SEND FEES OR COMPLETED
`FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.
`Ifyou need assistance in completing the form, call 1-800-PTO-9199 and select option 2.
`
`[:1 CD-ROM or CD—R (2 copies); or
`i.
`ii. [3 Paper
`
`D Continuation
`
`El Divisional
`
`Continuation—impart (CIP)
`
`of prior application No.:10l817,994
`
`Prior application information:
`
`Examiner
`
`Art Unit: g§§1
`
`'
`
`19. CORRESPONDENCE ADDRESS
`
`240 LOMBARD STREET #339
`
`Apple Inc.
`EX. 1023 - Page 1
`
`Apple Inc.
`Ex. 1023 - Page 1
`
`

`

`PTO/SB/17 (12—04v2)
`Approved for use through 07/31/2006. OMB 0651-0032
`US. Patent and Trademark Office; US. DEPARTMENT OF COMMERCE
`Under the Penerwnrk Radiidinn Act of 1995 no nersnns are maiiired tn resnnnd to a miller-lion of information unless it disnlavs a valid OMB mntml number
`
`
`
`Effective on 12/08/2004.
`Complete if Known
`Fees pursuant to the Consolidated Appropriations Act. 2005 (H. R. 4818).
`.
`.
`
`Application Number—
`
`FEE TRANSMITTAL Flingoate _
`
`
`
`—For FY 2005 First Named Inventor DANIELJ LIN
`
`
`
`
`
`
`
`
`
`An Unit _
`
`
`Attorney Docket No.
`DJL-3
`
`
`METHOD OF PAYMENT (check all that apply)
`
`($)
`
`725.00
`
`Check D Credit Card l:lMoney Order D None l:lOther (please identify):
`
`
`|:l Deposit Account Deposit Account Numben—___ Deposit Account Name:
`For the above-identified deposit account, the Director is hereby authorized to: (check all that apply)
`
`
`DCharge f633(5) indicated below
`El Charge fee(s) indicated below, except for the filing fee
`Charge any additional fee(s) or underpayments of fee(s)
`Credit an ove a ments
`under37 CFR1.16and1.17
`D
`y
`'p y
`
`
`WARNING: Informatlon on this form may become public. Credit card Information should not be Included on this form. Provide credit card
`Information and authorization on PTO-2038.
`
`'
`FEE CALCULATION
`
`
`1. BASIC FILING, SEARCH, AND EXAMINATION FEES
`
`
`FILINGSFEEHSE u
`SEARCH FEES
`EXAMINATION FEES
`ma
`n g
`S
`II E tit!
`S
`H E tin
`Fee (fl
`Fee (5)
`Fee (Q ":9 (in)
`Fee (g) "Egg; w
`300
`150
`500
`250
`200
`100
`599,09
`200
`100
`100
`50
`130
`65
`200
`100
`300
`150
`160
`80
`300
`150
`500
`250
`600
`300
`
`Application Type
`Utility
`Design
`Plant
`Reissue
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`Other (e.g., late filing surcharge):
`0
`
`
`
`
`Provisional
`2. EXCESS CLAIM FEES
`Fee Description
`Each claim over 20 (including Reissues)
`Each independent claim over 3 (including Reissues)
`Multiple dependent claims
`Fee Q)
`Total Claims
`Extra Claims
`25
`x
`29
`— 20 or HP =
`9
`HP = highest number of total claims paid for, if greater than 20.
`Indep. Claims
`Extra Claims
`Fee (fl
`=
`x
`3
`-30rHP =
`g)
`1m)
`HP = highest number of independent claims paid for, if greater than 3.
`3. APPLICATION SIZE FEE
`If the specification and drawings exceed 100 sheets of paper (excluding electronically filed sequence or computer
`listings under 37 CFR 1.52(e)), the application size fee due is $250 ($125 for small entity) for each additional 50
`
`sheets or fraction thereof. See 35 U.S.C. 41(a)(1)(G) and 37 CFR 1.1635).
`Total Sheets
`Extra Sheets
`Number of each additional 50 or raction thereof
`14
`- 100 =
`(2
`I50 = _0_ (round up to a whole number)
`x
`
`200
`
`100
`
`0
`
`0
`
`0
`
`0
`
`m
`M M
`50
`25
`200
`100
`360
`180
`Fee Paid (5) W3
`225
`Fee (fl
`Fee Paid (51
`0
`0
`‘—
`
`Fee Paid (5)
`Q
`
`=
`
`4. OTHER FEE(S)
`Non-English Specification,
`
`$130 fee (no small entity discount)
`
`Fees Paid (fl
`0
`
`Fee (fl
`0
`
`Fee Paid (fi)
`= __o__
`
`
`
`
`.
`
`Registration No.
`
`Name (Print/TvDe) DANIEL J LIN
`
`Tele hone
`
`Dale 143-2005
`
`
`
`This collection of information is required by 37 CFR 1.136. The information is required to obtain or retain a benefit by the public which is to file (and by the
`USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 30 minutes to complete,
`including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments
`on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent
`and Trademark Office. US. Department of Commerce. PO. Box 1450, Alexandria. VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS
`ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.
`If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.
`
`Apple Inc.
`EX. 1023 - Page 2
`
`Apple Inc.
`Ex. 1023 - Page 2
`
`

`

`Peer-to-Peer Mobile Data Transfer Method and Device
`
`Cross Reference to Related Applications
`
`This application is a continuation-in—part of US. patent application No. 10/817,994, filed
`
`April 4, 2004, and a continuation-in-part of US. patent application No. 10/935,342,
`
`filed
`
`September 7, 2004.
`
`Field of the Invention
`
`The present invention relates generally to data transfer techniques for mobile devices,
`
`and more specifically, a technique to establish‘data transfer directly between mobile devices.
`
`Background of the Invention
`
`Current multimedia messaging technologies for mobile devices depend upon a server
`
`that receives and prepares multimedia content to be retrieved by the recipient of the multimedia
`
`message. For example, the Multimedia Messaging Service (“MMS”) protocol utilizes a server
`
`known as a Multi Media Service Center (“MMSC") to store multimedia content in preparation for a
`
`retrieval process initiated by the recipient. Specifically, under MMS, the initiating device initiates
`
`a data connection over TCP/lP and performs an HTTP POST of an MMS Encapsulation Format
`
`10
`
`15
`
`20
`
`encoded multimedia message to the MMSC. The MMSC stores the multimedia message and
`makes it available as a dynamically generated URL link. The MMSC then generates a notification
`
`25
`
`message containing the dynamically generated URL and sends the notification message to the
`
`recipient through WAP Push over the Short Message Service (“SMS”) protocol. When the
`
`recipient receives the MMS notification message, it initiates a data connection over TCP/IP and
`
`performs an HTTP request to retrieve the MMS message containing multimedia content from the
`
`MMSC through the dynamically generated URL.
`
`The MMSC is used,
`
`in part, by the MMS protocol in order to provide a known address
`
`(e.g., a URL) that can be provided to the recipient in a text based format in order to initiate a data
`
`transfer transaction to retrieve the multimedia content. Without such a known address,
`
`the
`
`sender would be unable to transmit multimedia content to the recipient, since other pre-existing
`
`messaging technologies (e.g., SMS) only provide the capability to send limited text, and not
`
`multimedia content, directly to the recipient. As such, what is needed is a method to establish
`
`data transfer sessions directly between mobile devices, where such mobile devices are capable
`
`of directly communicating with other mobile devices through the underlying wireless technology,
`
`such that no separate multimedia server and separate retrieval notification message is needed to
`
`obtain data (e.g., multimedia content) other than text.
`
`Summary of the Invention
`
`30
`
`35
`
`4o
`
`Apple Inc.
`Ex. 1023 - Page 3
`
`Apple Inc.
`Ex. 1023 - Page 3
`
`

`

`The present invention provides a method for establishing a direct data transfer session
`between mobile devices over a digital mobile network system that supports data packet-based
`communications. Under the present invention, no separate data server need be used to provide
`a known location from which a recipient retrieves data such as multimedia content.
`Instead, a
`mobile device initiating a data transfer opens a listening port defined by an underlying data packet
`based network protocol. The initiating mobile device sends an invitation message containing the
`network address,
`including the listening port, of the initiating device to a target mobile device
`through a page-mode messaging service (e.g., text based service) supported by the digital mobile
`network system.
`The initiating mobile device further utilizes and incorporates a unique
`identification number (e.g.,
`telephone number, PIN number, etc.) associated with the target
`mobile device into the invitation message to locate and contact the target mobile device within the
`wireless mobile network. Once the initiating mobile device receives a response from the target
`mobile device at the listening port, the two mobile devices are able to establish a reliable virtual
`
`connection through the underlying data packet-based network protocol in order to transfer data
`directly between the two mobile devices.
`
`Brief Description of the Drawings
`
`FIGURE 1 depicts a diagram of an environment for establishing a data transfer session in
`
`accordance with the present invention between a first mobile device and a second mobile device
`
`in a GSM mobile network system supporting GPRS as a data packet-based communications
`
`service, SMS as a text messaging service, and TCP/lP as an underlying data packet based
`network protocol.
`
`FIGURE 2 depicts a flow chart for establishing a data transfer session in accordance with
`the present invention.
`
`1O
`
`15
`
`20
`
`25
`
`30
`
`FIGURE 3 depicts a flow chart for a second embodiment for establishinga data transfer
`session in accordance with the present invention.
`
`Detailed Description of the Invention
`
`35
`
`Figure 1 depicts one environment to deploy an embodiment of the present invention. As
`
`depicted, the underlying digital mobile network system in this environment is the Global System
`i for Mobile communications (GSM) 100 standard. Under the GSM standard, each of the mobile
`devices .105 and 110 includes a Subscriber Information Module (SIM) card that contains unique
`identification information that enables the GSM system to locate the mobile devices within the
`
`40
`
`network and route data to them. A current commercial example of a mobile device (e.g.,
`smartphone, PDA, handheld, etc.) that might be used in Figure 1 could be Research In Motion's
`
`Apple Inc.
`EX. 1023 - Page 4
`
`Apple Inc.
`Ex. 1023 - Page 4
`
`

`

`(RIM) BlackBerry handheld devices, which include a QWERTY keyboard to facilitate the typing of}
`text.
`As depicted, a GSM architecture. includes the following components: base transceiver
`stations (BTS) 115 and base station controllers (BSC)
`(120A or 1208) for managing the
`transmission of radio signals between the MSC (defined below) and the mobile devices, mobile
`service-switching centers (MSC) (125A and 125B) for performing the all switching functions and
`controlling calls to and from other telephone and data systems, a home location register (HLR)
`130 for containing all the administrative, routing and location information of each subscriber
`registered in the network, visitor location registers (VLR) (135A and 1358) for containing selected
`administrative information about subscribers registered in one HLR who are roaming in a another
`HLR, and an equipment identity register (EIR) (not shown) for containing a list of all valid mobile
`equipment on the network). As depicted in Figure 1, in one architecture of a GSM network, there
`may be exist one HLR while there may exist multiple MSCs (each with a related VLR) which each
`serves a different geographic area. The MSCs also provide the interface for the GSM network to
`more traditional voice networks 170 such as the PSTN. This underlying GSM architecture
`provides radio resources management (e.g., access, paging and handover procedures, etc.),
`mobility management
`(e.g.,
`location
`updating,
`authentication and security,
`etc.),
`and
`communication management (e.g., call routing, etc.) in order to enable mobile devices in the
`GSM network to send and receive data through a variety of services,
`including the Short
`Message Service (SMS), an asynchronous bi-directional
`text messaging service for short
`alphanumeric messages (up to 160 bytes) that are transported from one mobile device to another
`mobile deviceIn a store-and-fowvard fashion.
`
`A GSM network within which the present invention may be deployed would also support a
`page-mode messaging service, such as SMS, that relies upon the underlying GSM mechanisms
`to resolve routing information in order to locate destination mobile devices. A GSM network
`supporting SMS text messaging may further include the following SMS specific components: a
`short message service center (SMSC) (140A or 140B) for storing and forwarding messages to
`and from one mobile device to another, an SMS Gateway-MSG (SMS GMSC) for receiving the
`short message from the SMSC (140A or 1408) and interrogating the destination mobile device's
`HLR 130 for routing information to determine the current location of the destination device to
`deliver the short message to the appropriate MSC (125A or 1258). The SMS GMSC is typically
`integrated with the SMSC 140.
`In a typical transmission of an SMS text message from an
`originating mobile device 105 to a receiving mobile device 110, (i) the text message is transmitted
`from the mobile 105 to the MSC 125A, (ii) the MSC 125A interrogates its VLR 135A to verify that
`the message transfer does not violate any supplementary services or restrictions,
`(iii) the MSC
`125A sends the text message to the SMSC 140A, (iv) the SMSC 140A, through the SMS GMSC,
`interrogates the receiving mobile device's HLR 130 (by accessing the 887 network) to receive
`routing information for the receiving mobile device 110, (v) the SMSC sends the text message to
`
`10
`
`15
`
`20
`
`25
`
`3O
`
`35
`
`Apple Inc.
`Ex. 1023 - Page 5
`
`Apple Inc.
`Ex. 1023 - Page 5
`
`

`

`the MSC 1253 servicing receiving mobile device 110, (vi) the MSC 1253 retrieves subscriber
`
`information from the VLR 1353, and (vii) the MSC 125A transmits the text message to the
`
`receiving mobile device 110.
`
`Similar to other transactions on the GSM network, SMS text
`
`messaging utilizes telephone numbers as identifying addresses for mobile devices and as such,
`
`utilizes the SS7 network signaling system through which cellular service providers share
`
`information from the HLR with other service providers. As depicted in Figure 1, SS7 based
`
`signaling communication is represented by the broken lines.
`
`In contrast, the solid lines in Figure
`
`1 represent data or voice based communications.
`
`In addition to a page-mode messaging service such as SMS, a GSM network withift
`
`which the present
`
`invention may be deployed would also support a data packet based
`
`communications service, such as the General Packet Radio Service (GPRS),
`
`that enables
`
`TCP/IP transmission protocol based communications between mobile devices within the network.
`
`As depicted in Figure 1, a core GPRS network exists in parallel
`
`to the existing GSM core
`
`network. The BSC 120 may direct voice traffic through the MSC (125A or 1253) to the GSM
`
`network and data traffic through the Serving GPRS Support Note (SGSN) (145A or 1453) to the
`
`GPRS network. Such communication between the BSC (125A or 1253) and the SGSN (145A or
`
`1453) may be, for example, based upon the IP network protocol communication 155. As such,
`
`.
`
`GPRS signaling and data traffic do not flow through the core GSM network.
`
`Instead, the core
`
`GSM network is used by GPRS only for table look-up in the HLR 130 and VLR (135A or 1353) to
`obtain routing, location and other subscriber information in order to handle user mobility. The
`SGSN (145A or 1453) serves as a "packet-switched MSC," delivering data packets to mobile
`
`devices in its service area. The Gateway GPRS Support Note (GGSN)
`
`(150A or 1503)
`
`communicates with the SGSN (145A or 1453) through an IP based GPRS backbone 160 and
`
`serves as an interface to other external IP networks 165 such as the Internet and other mobile
`
`10
`
`15
`
`20
`
`25
`
`service providers' GPRS services.
`
`In order to provide direct data transfer capabilities between mobile devices, an initiating
`
`mobile device must have knowledge of the IP address (and possibly, a port) of the target device
`in order to establish a direct data transfer. Current mobile multimedia messaging solutions, such
`
`as MMS do not provide direct data transfer capabilities because the initiating mobile device is not
`
`able to obtain the receiving mobile device's IP address.
`
`In essence, servers such as the MMSC
`
`that are used in current multimedia messaging solutions serve as a forwarding agent between the
`
`two mobile devices that are unable to determine the other devices IP address.’
`
`In contrast,
`
`in accordance with the present invention, a multimedia server such as the
`
`MMSC can be eliminated on a mobile network environment such as that depicted on Figure 1.
`
`Through the use of a page-mode messaging service, such as SMS, which transmits messages to
`
`mobile devices based upon their telephone numbers, an initiating mobile device can transmit its
`
`IP address (and a listening port) in an invitation message to a target mobile device through the
`
`30
`
`35
`
`Apple Inc.
`Ex. 1023 - Page 6
`
`Apple Inc.
`Ex. 1023 - Page 6
`
`

`

`target device's telephone number. Once the target device receives the invitation message, it is
`able to contact the initiating mobile device through the received IP address and the two devices
`can establish a reliable virtual connection, such as a TCP connection, for reliable data transfer
`
`session. Figure 2 depicts a flow chart depicting the steps taken by an initiating and target mobile
`
`device to establish a direct data transfer session in accordance with the present invention.
`
`Initially, the initiating mobile device opens a TCP port to listen for communications from the target
`
`mobile device 210. The target mobile device has also similarly opened an SMS listening port to
`
`receive invitation SMS text messages at the specified SMS port 220. The initiating mobile device
`
`then transmits its IP address (and TCP port) in an invitation SMS text message to the telephone
`
`10
`
`phone number and a specified SMS port of the target mobile device 230. The target mobile
`device receives the SMS text message containing the initiating mobile device's IP address (and
`
`TCP port) at the specified SMS port 240. The target mobile device extracts the IP address and
`
`TCP port from the SMS text message and opens its own TCP port 250. The target mobile device
`
`then transmits a request to establish a TCP connection to the initiating mobile device's IP address
`
`.15
`
`and TCP port 260. The initiating mobile device receives this request 270 and a TCP connection
`
`is established between the IP addresses and TCP ports of the initiating and listening mobile
`
`devices and these devices are able to engage in a data transfer session over a reliable virtual
`
`.
`
`connection 280.
`
`Alternative, Figure 3 depicts a flow chart for an alternative embodiment depicting steps to
`establish a direct data transfer session in accordance with the present invention.
`Initially, the
`
`20
`
`initiating mobile device opens a TCP port to listen for communications from the target mobile
`
`device 310. The initiating mobile device,
`
`through its supporting telephone company,
`
`then
`
`embeds its IP address (and TCP port) in the telephony ringing signal that is transmitted to the
`
`25
`
`30
`
`target mobile device 320. For example and without limitation, the telephone company may use a
`
`frequency shift keyed (FSK) signal to embed the lPiaddress (and TCP port) into the telephony
`signal, similar to the traditional techniques used to embed other special service information, such
`as a caller ID,
`in the traditional
`telephony context. The target mobile device receives the
`telephony ringing signal from the initiating mobile device 330. The target mobile device extracts
`the IP address and TCP port from the telephone ringing signal and opens it's own TCP port 340.
`
`The target mobile device than transmits a request to establish a TCP connection to the initiating
`mobile device’s IP address and TCP port 350. The initiating mobile device receives this request
`360 and a TCP connection is established between the IP addresses and TCP ports of the
`
`initiating and listening mobile devices and these devices are able to engage in a direct data
`
`transfer session over a reliable virtual connection 370.
`
`35
`
`While the foregoing detailed description has described the present invention using SMS,
`
`GSM, GPRS, and TCP/IP, other similar services and protocols may be used in a variety of similar
`
`environments in which the present invention may be implemented. For example and without
`
`Apple Inc.
`Ex. 1023 - Page 7
`
`Apple Inc.
`Ex. 1023 - Page 7
`
`

`

`limitation, rather than using SMS to transmit an IP address (and port) from the initiating mobile
`
`device to the listening mobile device through the devices’ telephone numbers, an alternative
`
`embodiment of the present invention might use a PlN-to-PIN messaging technology (as, for
`
`example, offered in RIM's Blackberry handheld devices) to transmit the IP address (and port)
`
`through unique PIN numbers associated with the mobile devices, or an alternative paging
`
`protocol using telephone numbers. Similarly, rather than using FSK to embed the IP address
`
`(and port) into the telephony ringing signal, an alternative embodiment of the present invention
`
`might use a Duel Tone Multi-Frequency (DTMF) transmission to embed the IP address and port.
`
`Furthermore,
`
`the present
`
`invention contemplates that
`
`the actual protocol used during an
`
`established IM session may also vary depending upon the preference of the implementation. For
`
`example and without limitation, Message Session Relay Protocol (MSRP) or any proprietary
`
`based protocol may be used during the lM session that is established in accordance with the
`
`present invention. Thus, various modifications, additions and substitutions and the like can be
`
`made without departing from the spirit of the invention and these are therefore considered to be
`
`within the scope of the invention as defined in the following claims.
`
`10
`
`15
`
`Apple Inc.
`Ex. 1023 - Page 8
`
`Apple Inc.
`Ex. 1023 - Page 8
`
`

`

`What is claimed is:
`
`1. A method of establishing a direct data transfer session between mobile devices that support a
`
`data packet-based communications service over a digital mobile network system, the method
`
`comprising:
`
`opening a listening port on an initiating mobile device to receive communications through
`
`the data packet-based communications service;
`
`transmitting an invitation message containing the address and the listening port of the
`
`initiating mobile device to a target mobile device through a page-mode messaging
`
`service, wherein the target mobile device is located by providing to the page-mode
`
`messaging service a unique identification number that is used by the digital mobile
`
`network system to locate the target mobile device;
`
`receiving a response from the target mobile device at the listening port on the initiating
`
`wireless device through the data packet-based communications service; and
`
`establishing a virtual connection through the data packet-based communications service
`
`for the direct data transfer session between the initiating mobile device and the target
`
`mobile device.
`
`2. The method of claim 1 further comprising:
`
`opening,a second listening port on the initiating mobile device to receive invitation
`
`messages through the page-mode messaging service;
`
`receiving, at the second listening port and through the page-mode messaging service, a
`
`message from another mobile device inviting the initiating mobile device to establish a
`
`data transfer session, wherein such message contains the address and listening port of
`
`the other mobile device; and
`
`transmitting a response to the address and listing port of the other mobile device through
`
`the data packet-based communications service, wherein the response acknowledges the
`
`ability to establish a virtual reliable connection.
`
`3. The method of claim 1 wherein the data packet-based communications service is GPRS and
`
`the digital mobile network system is GSM.
`
`4. The method of claim 1 wherein the initiating mobile device and the target mobile device
`
`in'clude QWERTY keyboards.
`
`Apple Inc.
`Ex. 1023 - Page 9
`
`Apple Inc.
`Ex. 1023 - Page 9
`
`

`

`5. The method of claim 1 wherein the address of the initiating mobile device is an IP address and
`
`the listening port is a TCP port.
`
`5
`
`6. The method of claim 1 wherein the page-mode messaging service is SMS.
`
`7. The method of claim 1 wherein the page-mode messaging service is a PlN~to-P|N messaging
`
`service.
`
`10
`
`8. The method of claim 1 wherein the unique identification number is a telephone number.
`
`9. The method of claim 1 wherein the unique identification number is a PIN number.
`
`15
`
`10. The method of claim 1 wherein the virtual reliable connection is a TCP connection.
`'
`11. A mobile device enabled to establish a direct data transfer session with other mobile devices
`
`in a digital mobile network system, the mobile device comprising:
`
`programming means to support a data packet-based communications service over the
`
`20
`
`digital mobile network system;
`
`programming means to support a page-mode messaging service over the digital mobile
`
`network system;
`
`25
`
`programming means to open a listening port to receive communication through the data
`
`packet-based communications service;
`
`programming means to send an invitation message containing the address and the
`
`listening port of the mobile device to a target mobile device through the page-mode
`
`30
`
`messaging service, wherein the target mobile 'device is located by providing to the page-
`
`mode messaging service a unique identification number that is used by the digital mobile
`
`network system to locate the target mobile device;
`
`programming means
`
`to
`
`receive
`
`a
`
`response
`
`through
`
`the data
`
`packet-based
`
`35
`
`communications service from the target mobile device at the listening port; and
`
`programming means to establish a virtual connection through the data packet-based
`
`communications service for data transfer between the mobile device and the target
`
`mobile device.
`
`40
`
`12. The mobile device of claim 11 further comprising:
`
`programming means to open a second listening port to receive invitation messages
`
`through the page-mode messaging service;
`
`Apple Inc.
`EX. 1023 - Page 10
`
`Apple Inc.
`Ex. 1023 - Page 10
`
`

`

`programming means to receive, at the second listening port and through the page-mode
`
`messaging service, a message from another mobile device inviting the mobile device to
`
`establish direct data transfer session, wherein such message contains the address and
`
`listening port of the other mobile device; and
`
`programming means to transmit a response to the address and listing port of the other
`
`mobile device through the data packet-based communications service, wherein the
`
`response acknowledges the ability to establish a virtual reliable connection.
`
`10
`
`15
`
`20
`
`25
`
`30
`
`35
`
`40
`
`13. The mobile device of claim 11 wherein the data packet-based communications service is
`
`GPRS and the digital mobile network system is GSM.
`
`14. The mobile device of claim 11 further comprising a QWERTY keyboard.
`
`15. The mobile device of claim 11 wherein the address of the mobile device is an IP address and ,
`
`the listening port is TCP port.
`
`16. The mobile device of claim 11 wherein the page-mode messaging service is SMS.
`
`17. The mobile device of claim 11 wherein the page-mode messaging service is a PlN-to-PIN
`
`messaging service.
`
`18. The mobile device of claim 11 wherein the unique identification number is a telephone
`number.
`
`_ 19. The mobile device of claim 11 wherein the unique identification number is a PIN number.
`
`20. The mobile device of claim 11 wherein the virtual connection is a TCP connection.
`
`21. A computer program for establishing a direct data transfer session between mobile devices
`
`that support a data packet-based communications service over a digital mobile network system,
`
`the computer program comprising program code means for performing all the steps of claim 1
`
`when the program is run on a computer.
`
`22. The computer program of claim 21 wherein the data packet-based communications service is
`
`GPRS and the digital mobile network system is GSM.
`
`23. The computer program of claim 21 wherein the initiating mobile device and the target mobile
`
`device include QWERTY keyboards.
`
`24. The computer program of claim 21 wherein the address of the initiating mobile device is an
`
`IP address and the listening port is a TCP port.
`
`Apple Inc.
`EX. 1023 - Page 11
`
`Apple Inc.
`Ex. 1023 - Page 11
`
`

`

`25. The computer program of claim 21 wherein the page-mode messaging service is SMS.
`
`26. The computer program of claim 21 wherein the page-mode messaging service is a PIN-to-
`
`PIN messaging service.
`
`27. The computer program of claim 21 wherein the unique identification number is a telephone
`number.
`
`10
`
`28. The computer program of claim 21 wherein the unique identification number is a PIN number.
`
`29. The computer program of claim 21 wherein the virtual connection is a TCP connection.
`
`10
`
`Apple Inc.
`EX. 1023 - Page 12
`
`Apple Inc.
`Ex. 1023 - Page 12
`
`

`

`Abstract
`
`A technique is provided for a direct data transfer session.
`
`including for multimedia content,
`
`between mobile devices without th

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket