throbber
(19) United States
`(12) Patent Application Publication (10) Pub. No.: US 2008/0102696 A1
`Montena
`(43) Pub. Date:
`May 1, 2008
`
`US 20080102696Al
`
`(54) FLEXIBLE RF SEAL FOR COAX CABLE
`CONNECTOR
`
`(75)
`
`Inventor:
`
`Noah Montena, Syracuse, NY (US)
`
`Correspondence Address:
`John Mezzalingua Associates, Inc.
`C/0 Hiscock & Barclay: LLP
`2000 HSBC P1313: 100 Chestnut Street
`Rochester, NY 14604
`
`(73) Assignee:
`
`John Mezzalingua Associates, Inc.
`
`(21) App]. NO‘,
`
`11/553,115
`
`(22)
`
`.
`Filed:
`
`Oct. 26, 2006
`
`Publication Classification
`
`(51)
`
`Int. Cl.
`(2006.01)
`HOIR 9/05
`(52) U.S. Cl. ...................................................... .. 439/578
`(57)
`ABSTRACT
`l't th
`'bl RF
`'
`t'
`t'
`Th
`t
`fl
`sea ino e
`epresen inven ion incorpora esa exi
`e
`ground face of a typical connector. The seal comprises a
`flexible brim, a transition band, and tubularinseit with a insert
`chamber defined within the seal. In a first embodiment the
`flexible brim is angled away from the insert chamber, and in
`a second embodiment the flexible brim is angled inward
`toward the insert chamber. A flange end of the seal makes a
`compliant contact between the port and connector faces when
`the nut of a connector is partially tightened, and becomes
`sandwiched flrmly between the ground surfaces when the nut
`is properly tightened. The present invention allows the con-
`nector to make a uniform RF seal on a port even with a range
`of tightemng torques.
`
`PPC Exhibit 2016
`
`Coming v. PPC
`|PR2016—O1569
`
`

`
`Patent Application Publication May 1, 2008 Sheet 1 of 4
`
`US 2008/0102696 A1
`
`

`
`Patent Application Publication May 1, 2008 Sheet 2 of 4
`
`US 2008/0102696 A1
`
`Eig. 2
`
`

`
`Patent Application Publication May 1, 2008 Sheet 3 of 4
`
`US 2008/0102696 A1
`
`

`
`Patent Application Publication May 1, 2008 Sheet 4 of 4
`
`US 2008/0102696 A1
`
`

`
`US 2008/0102696 A1
`
`May 1, 2008
`
`FLEXIBLE RF SEAL FOR COAX CABLE
`CONNECTOR
`
`FIELD OF THE INVENTION
`
`[0001] This invention relates to connectors for coaxial
`cables used in CATV applications, and more specifically to
`the structure for providing solid mechanical and electrical
`connections between a cable port and connector face.
`
`BACKGROUND OF THE INVENTION
`
`[0002] CATV systems continue to be plagued with service
`quality problems resulting from loose connections. For the
`most part, these connectors are loose because they were not
`installed to the proper torque, which can occur for a number
`of reasons from laziness, a lack of training, and improper use
`of/inadequate tools. An improperly installed connector will
`result in poor signals, because there are gaps between the
`devices, resulting in a leak of radio frequency (“RF”) signal.
`[0003] As an example, a cable port is used to transfer an
`RF signal to a coaxial cable that transmits the signal to video
`equipment, such as a television. The coaxial cable has,
`attached to its terminal end, a female cable connector, which
`is used to house the cable and assist its connection to a cable
`
`port. The connector contains a nut that engages the cable
`port and advances the connector with a coaxial cable to the
`port. In this instance, the cable connector nut is used to hold
`two mating surfaces, the cable port and the cable connector
`housing the coaxial cable. If these two surfaces are not
`tightly connected, a gap will exist creating a loss in RF
`signal, resulting in lower quality cable signal.
`[0004]
`Improvements on coaxial cable connectors have
`been proposed to deal with such a problem. An example of
`such an improvement on a connector is described in U.S.
`Pat. No. 6,716,062 (Palinkas, et al.), the disclosure of which
`is herein incorporated by reference. In this patent, a spring
`element is incorporated to a traditional coaxial cable con-
`nector, under a nut element a11d beneath the flange portion of
`a post member. The spring biases the connector face towards
`a port after the nut is rotated around the connector a certain
`number of times. While this device is effective, it requires
`time and cost in the manufacturing process of the connector.
`[0005] Therefore, it is desired in the art to have a flexible
`device that can be used with existing connectors to prevent
`RF signal leakage.
`is desired in the art to have a
`it
`[0006]
`Furthermore,
`connector capable of making a tight mechanical and elec-
`trical connection.
`
`SUMMARY OF THE INVENTION
`
`[0007] The present invention incorporates a flexible RF
`seal into the ground face of a typical connector. A flange end
`of the seal makes a compliant contact between the port and
`connector faces, as in the above example, when the nut is
`partially tightened, and becomes sandwiched firmly between
`the ground surfaces when the nut is properly tightened. This
`allows the connector to make a uniform RF seal on a port
`even with a range of tightening torques.
`[0008] The present invention relates to a flexible RF seal
`which can be fitted into a coaxial cable connector, which
`decreases the amount of RF leakage produced by that
`coaxial connector when in place. The flexible RF seal is a
`simple device made of a conductive and resilient material
`having three regions: a flexible brim, a transition band for
`
`maintaining the flex of the resilient brim, and a tubular
`insert. Further, there is defined within the seal an insert
`chamber. In its first embodiment, the flexible brim is angled
`outward away from the insert chamber.
`In the second
`embodiment, the flexible brim is angled inward towards the
`insert chamber.
`
`[0009] Moreover, the invention relates to a coaxial cable
`connector for mounting on a RF port comprising: a post
`member having a flange end and a stem having a substan-
`tially cylindrical bore therethrough; a nut having at one end
`inner threading and at the other end a flange to engage the
`flange end of the post; a body member; a compression ring;
`and flexible means for providing a uniform electrical con-
`nection between the post and the RF port.
`[0010] The invention, also, relates to a method for making
`a connector for mounting on the terminal end of a coaxial
`cable. The method of making a connector for mounting on
`a RF port comprising: providing a post having a flange end
`and a stem having a substantially cylindrical bore there-
`through; a nut having at one end inner threading and at the
`other end a flange; a body member; a compression ring, and
`a flexible RF seal having a flexible brim, a transition band,
`and a tubular insert; attaching the post to the flanged of the
`nut to engaged the flange end of the post; attaching the body
`member to the stem of the post; attaching the compression
`ring to the body member; and attaching the flexible RF seal
`to the post.
`[0011]
`Furthermore, the invention relates to a method for
`making a uniform RF seal between a RF port and a coaxial
`cable comprising: providing a connecter comprising a nut, a
`post, body member, a compression ring; a flexible RF seal
`comprising a flexible brim, a transition band, and a tubular
`insert; a coaxial cable; and a RF port; attaching the flexible
`RF seal
`to the connector; attaching the connector to a
`terminal end of a coaxial cable; and connecting the coaxial
`cable with the connector and flexible RF seal to a RF port.
`[0012] An advantage of the present invention is that the
`flexible RF seal provides a tight connection between a cable
`port and the connector face, when there is a gap between the
`faces due to improper installation. Thus, the RF seal can
`provide at the least a contact between the port and the
`connector to prevent RF signal
`leakage, and if properly
`installed firmly compressed between the port and the con-
`nector.
`
`[0013] A further advantage of the present invention is that
`the invention provides an easy to install, highly reliable
`solution to providing an electronic connection that provides
`an effective RF seal. The device thereby saves time and cost
`in the manufacturing process. Alternatively, connectors that
`may already be in use can be retrofitted with the device for
`providing a uniform RF seal.
`
`BRIEF DESCRIPTION OF THE DRAWINGS
`
`FIG. 1a is a cross-sectional view of the first
`[0014]
`embodiment of the flexible RF seal of the present invention;
`[0015]
`FIG. 1b is an isometric view of the first embodi-
`ment of the flexible RF seal of the present invention;
`[0016]
`FIG. 2a is a cross-sectional view of the second
`embodiment of the flexible RF seal of the present invention;
`[0017]
`FIG. 2b is an isometric view ofthe second embodi-
`ment of the flexible RF seal of the present invention;
`[0018]
`FIG. 3 shows a cross-section of the coaxial cable
`connector with the first embodiment of the flexible RF seal
`
`of the present invention;
`
`

`
`US 2008/0102696 A1
`
`May 1, 2008
`
`FIG. 4 shows a cross-section of the coaxial cable
`[0019]
`connector with the second embodiment of the flexible RF
`
`seal of the present invention.
`[0020] Corresponding reference characters indicate corre-
`sponding parts throughout the several views. The examples
`set out herein illustrate two embodiments of the invention
`
`but should not be construed as limiting the scope of the
`invention in any manner.
`
`DETAILED DESCRIPTION
`
`[0021] Referring to FIGS. 1a and 1b, the present invention
`is a sealing element for coaxial cable connector. More
`specifically, the sealing element is designed to ensure a solid
`mechanical and electrical connection between a coaxial
`
`cable, connector, and port, and thereby termed a flexible
`radio frequency (“RF”) seal 10. There are three regions that
`define the flexible RF seal 10. First, there is a flexible or
`resilient brim 12 that is flexible for ensuring a tight connec-
`tion between a connector and a cable port (not shown) to
`which is it coupled. Second, there is a transitional band 14,
`and the band 14 transitions to a tubular insert portion 16. The
`flexible RF seal 10 also has an insert chamber 18 defined
`within the seal 10.
`
`[0022] The flexible brim 12 is a flange end that, when
`inserted into a coaxial cable connector, in its first embodi-
`ment, sits above a post member, as will be shown and
`described in greater detail below. The flexible brim 12, in
`this position, can be pressed against a coaxial port causing
`the flexible brim 12 to be compressed and bent so that it
`creates a tight connection between the connector and port. In
`the first embodiment of the flexible RF seal 10, the flexible
`brim 12, because of the inner geometries of the coaxial cable
`connector, is angled, so that it can sit within the connector
`and seal the connector face to the cable port. Preferably, the
`flexible brim 12 is seventy-degrees (70°) from the horizon-
`tal. The flexible brim 12 is shaped such that the flexible brim
`12 is angled away from an insert chamber 18.
`[0023] The next region of the flexible RF seal 10 is the
`transitional band 14. Due to the shape of cable connectors in
`general and the positioning of the flexible RF seal within the
`connector, there is a band 14 that transitions the flexible brim
`12 to the tubular insert portion 16. As shown in FIGS. 1a and
`1b, the transition band 14 is a flat, inclined portion on the
`inside of the seal 10. The transition band 14 assists in the
`
`flexibility of the seal 10, in that as a transition portion it
`allows the flexible brim 12 to further bend or create a greater
`angle of distance once the flexible brim 12 is engaged by a
`coaxial port on one end and further compressed by a post
`member of a connector on its other end.
`
`[0024] The last region of the flexible RF seal is the tubular
`insert portion 16. The tubular insert portion 16 is below the
`transition band 14. The tubular insert portion 16 is cylin-
`drical in shape and depending on its embodiment can be
`used to sit on the inside or outside of a post within a coaxial
`cable connector. Defined within the tubular insert portion 16
`is an insert chamber 18. The tubular insert portion 16, in the
`first embodiment of the flexible RF seal 10, sits within a post
`member of a cable connector (as shown in FIG. 3). As a
`result, the insert chamber 18 assists in housing a coaxial
`cable on which the cable connector is placed.
`[0025] Referring to FIGS. 2a and 219, there is a second
`embodiment of the flexible RF seal, denoted by a reference
`numeral 20. The flexible RF seal 20 has the same three
`
`regions as the first embodiment: a flexible brim 12, a
`
`transition band 14, and a tubular insert 16. Further, defined
`within the flexible RF seal 20, as with the first embodiment
`10, is an insert chamber 18. The flexible RF seal 20 of this
`second embodiment has a different shape than the first
`embodiment 10. The shapes are different because the seal 20
`is configured to sit on the outside of a post member of a
`coaxial cable connector, whereas the seal 10 is configured to
`sit inside a post member. The flexible brim 12 is spaced such
`that the brim 12 is angled inward towards the insert chamber
`18. Moreover, the tubular insert 16 of the flexible RF seal 20
`may generally be larger in diameter than the seal 10 because
`it is configured to sit outside of a post member of the coaxial
`cable connector.
`
`[0026] The flexible RF seal 10, 20 can be made of any
`suitable material which can assist in providing a tight, solid
`connection between the surfaces of a coaxial cable connec-
`
`tor and a cable port. Suitable materials can include metals
`such as beryllium copper, spring steel, and phosphor bronze,
`which are all resilient and allow for flexibility. Further, while
`the flexible RF seals 10, 20 are shown in with a solid, smooth
`surface, the seal can have a construction where there are
`fingered elements, or may further have a wavy construction.
`[0027]
`In FIGS. 3 and 4, there is shown a conventional
`coaxial cable connector 100 that is placed on the terminal
`end of a coaxial cable (not shown). The connector 100 has
`six elements. First, there is a nut 30 on the terminal end of
`the connector 100 that has inner threading 32 used to
`threadedly connect the connector 100 with a coaxial cable
`(not shown) to a cable port (not shown). The nut 30 rotates
`freely around a post 40, so that it can advance the connector
`100 and coaxial cable housed within it to a cable port. The
`nut 30 is interconnected to the post 40 under the flange end
`44 of the post 40, whereby there is a nut groove 46 created
`between the post 40 and a body member 60. Specifically, the
`nut groove 46 is under the flange end 44 of the post 40 and
`above body flange end 62. The corresponding nut flange 34
`that fits within the nut groove 46 and allows the nut 20 to
`freely rotate about the connector 100. The post 40 has a
`cylindrical bore defined through it to house a coaxial cable.
`[0028]
`Further, between the nut 30 and the body member
`60 is a coupling element 90, such as an O-ring to provide a
`solid connection between these elements. The body member
`60 is also connected to the post 40 through a larger body
`groove 48, in which the body flange 62 fits. Defined between
`the body member 60 and the post 40 is a coaxial cable
`material space 80. A coaxial cable is typically made from
`several components. Working from the inside to the outside,
`the inner most part of a cable is a central conductor sur-
`rounded by an inner dielectric layer which is covered by a
`layer of aluminum. Above the aluminum layer is a braided
`metal layer, and the entire cable is then housed in another
`dielectric material. There is a lower separator member 50 of
`post 40 used to separate the coaxial cable between its
`aluminum layer and braided metallic layer, so that the outer
`dielectric layer and braided metal layer enter the coaxial
`cable material space 80, and the aluminum layer,
`inner
`dielectric layer, and central conductor layer sit in the cylin-
`drical bore of the post 40. At the very end of the connector
`100 is a compression ring 70 which assists in attaching the
`connector 100 to the terminal end of a coaxial cable.
`
`[0029] Referring now to FIG. 3, there is shown a first
`embodiment of the invention coupled to a conventional
`coaxial cable connector 100. The post 40 has a lip 42 on
`which the flexible RF seal 10 sits. The tubular insert 16 sits
`
`

`
`US 2008/0102696 A1
`
`May 1, 2008
`
`within the post 40, such that the insert chamber 18 assists in
`creating a continuous cylindrical bore within which a portion
`of a coaxial cable (not shown) would be housed. The flexible
`brim 12 sits above the flange end 44 of the post 40, but is not
`flush with the flange end 44. The flexible brim 12 is not flush
`with the flange end 44 so that it can conform to shapes of a
`cable port (not shown) and the connector 100, and to a greater
`extent the cable housed within the connecter, as sometimes
`there can be gaps between the cable port and the inner por-
`tions of the connector 100 with a cable. As mentioned above,
`the flexible brim 12 can be, if necessary, pushed backward so
`that the angle from the horizontal increases from its manu-
`factured positioning. Moreover, the flexible brim 12 can be
`deformed to ensure a tight connection between the post 40
`and the cable port.
`there is shown a second
`[0030] Referring to FIG. 4,
`embodiment of the seal 20. The seal 20 sits on the outside of
`
`the flange end 44 of the post 40. In this position, the seal 20
`sits between the nut 30, above the nut flange 34 and the
`outside of the flange end 44 of the post 40. The flexible brim
`12 sits above the flange end 44, but is not flush with the flange
`end 44 so that it can adapt to the shape ofboth a cable port (not
`shown) and the connector 100 with a coaxial cable (not
`shown) housed within it. In this embodiment, the post 40 does
`not require a lip 42, as was shown in FIG. 3 with the seal 10.
`Once the connector 100 engages a cable port and is advanced
`to have an inner conductor ofa cable enter the port, the seal 20
`can be deformed to a position necessary to fill gaps or tightly
`connect the connector 100 to the port.
`[0031] While the invention has been described with refer-
`ence to particular embodiments, it will be understood by
`those skilled in the art that various changes may be made and
`equivalents may be substituted for elements thereof without
`departing from the scope of the invention. In addition, many
`modifications may be made to adapt a particular situation or
`material to the teachings of the invention without departing
`from the scope of the invention.
`[0032] Therefore, it is intended that the invention not be
`limited to the particular embodiments disclosed as the best
`mode contemplated for carrying out this invention, but that
`the invention will include all embodiments falling within the
`scope and spirit of the appended claims.
`
`PARTS LIST
`
`[0033]
`[0034]
`[0035]
`[0036]
`[0037]
`[0038]
`[0039]
`[0040]
`[0041]
`[0042]
`[0043]
`[0044]
`[0045]
`[0046]
`[0047]
`[0048]
`[0049]
`[0050]
`[0051]
`[0052]
`
`10—Flexible RF Seal, First Embodiment
`12—Flexible brim
`14—Transitional band
`16—Tubular insert
`20—Flexible RF Seal, Second Embodiment
`30—Nut
`32—Inner threading
`34—Nut Flange
`40—Post
`42—Lip
`44—Flange
`46—Nut groove
`48—Body groove
`50—Lower separating element
`60—Body member
`62—Body flange
`70—Compression ring
`80—Coaxial cable material space
`90—Coupling element
`100—Connector
`
`1. (canceled)
`2. (canceled)
`3. (canceled)
`4. (canceled)
`5. (canceled)
`6. (canceled)
`7. (canceled)
`8. A coaxial cable connector for mounting on a RF port
`comprising:
`a post member having a flange end and a stem having a
`substantially cylindrical bore therethrough;
`a nut having at one end inner threading and at the other end
`a flange to engage the flange end of the post;
`a body member;
`a compression ring; and
`flexible RF seal having a flexible brim, a transition band,
`and a tubular insert.
`9. The connector of claim 8 wherein the tubular insert ofthe
`
`flexible RF seal is placed in with stem of the post.
`10. The connector of claim 8 wherein the tubular insert of
`
`the flexible RF seal is seated between the nut and the flange
`end of the post.
`11. The method of making a connector for mounting on a
`RF port comprising:
`providing a post having a flange end and a stem having a
`substantially cylindrical bore therethrough; a nut having
`at one end inner threading and at the other end a flange;
`a body member; a compression ring, and a flexible RF
`seal having a flexible brim, a transition band, and a
`tubular insert;
`attaching the post to the flanged of the nut to engaged the
`flange end of the post:
`attaching the body member to the stem of the post;
`attaching the compression ring to the body member; and
`attaching the flexible RF seal directly to the post.
`12. The method of claim 11 wherein the step of attaching
`the flexible RF seal to the post further includes placing the
`tubular insert of the flexible RF seal within the stem of the
`post.
`13. The method of claim 11 wherein the step of attaching
`the flexible RF seal to the post further includes placing the
`tubular insert of the flexible RF seal between the nut and the
`
`flange end of the post.
`14. The method of claim 11 further comprising tile step of
`placing the connector on the terminal end of a coaxial cable
`such that a central conductor is passed through the central
`bore of the post and the nut.
`15. The method of claim 11 wherein the flexible RF seal is
`made from. a resilient material.
`16. The method of claim 15 wherein the resilient material
`
`is a metal composition.
`17. (canceled)
`18. (canceled)
`19. A flexible RF seal for a coxial cable connector com-
`
`prising:
`a flexible brim having a first end and a second end;
`a transitional band formed on the first end; and
`a tubular insert portion connected to the transitional band,
`whereby the
`flexible RF seal is configured to deform upon mating with
`a coaxial cable connector to an RF port, thereby provid-
`ing a uniform RF seal between the RF port and the
`coaxial cable connector.
`
`

`
`US 2008/0102696 Al
`
`May 1, 2008
`
`20. The flexible RF seal of claim 19 wherein the flexible
`
`RF seal deforms between the RF port and a post member of
`the coaxial cable connector.
`21. The flexible RF seal of claim 20 wherein the tubular
`
`insert of the flexible seal is placed within a stem of the post
`member.
`22. The flexible RF seal of claim 21 wherein the tubular
`
`insert of the flexible seal is seated between a nut and a flange
`end of the post member.
`23. The flexible RF seal of claim 19 wherein the flexible
`
`brim is angled.
`24. The flexible RF seal of claim 19 wherein the flexible
`
`brim is at an angle between three degrees and ninety degrees
`from the horizontal.
`
`25. A flexible RF seal for a coaxial cable connector, the
`coaxial cable connector having a body member, the body
`
`member having an internal passageway defined therein, a
`post mounted within the internal passageway, the flexible RF
`seal comprising:
`a flexible brim having a first end and a second end;
`a transitional band formed on the first end; and
`a tubular insert portion connected to the transitional band,
`the tubular
`insert portion connected to the post,
`whereby the flexible RF seal is configured to deform
`upon mating the coaxial cable connector to an RF port,
`thereby providing a uniform RF seal between the RF
`port and the coaxial cable connector.
`26. The flexible RF seal of claim 25 wherein the flexible
`RF seal deforms between the RF port and the post.
`27. The flexible RF seal of claim 25 wherein the flexible
`brim is angled.
`28. The flexible RF seal of claim 25 wherein the flexible
`brim is at an angle between three degrees and ninety degrees
`from the horizontal.

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket