throbber
United States Patent c191
`Breeden et al.
`
`[11] Patent Number:
`[45] Date of Patent:
`
`4,959,648
`Sep. 25, 1990
`
`[75]
`
`[54] DUAL DYNAMIC PRIORITY CONTROL IN A
`SELCTIVE CALL SYSTEM
`Inventors: Robert L. Breeden; Douglas E.
`Griffin; John H. Kinney, Jr., all of
`Boynton Beach, Fla.
`[73] Assignee: Motorola, Inc., Schaumburg, Ill.
`[21] Appl. No.: 308,711
`Feb. 10, 1989
`[22] Filed:
`[51]
`Int. CI.5 ••••••••••••••••••••••• H04B 7/00; H04M 11/00
`[52] U.S. CI •.......................... 340/825.44; 340/825.51;
`379/57
`[58] Field of Search ..................... 379/57, 58, 59, 105;
`340/825.44, 825.47, 825.48, 825.51, 311.1;
`455/166
`
`[56]
`
`References Cited
`U.S. PATENT DOCUMENTS
`4,438,433 3/1984 Smoot et al .................... 340/825.44
`
`4,670,872 6/1987 Cordill ........................... 340/825.51
`4,825,193 4/1989 Siwiak et al ..................... 340/311.1
`Primary Examiner-Donald J. Yusko
`Assistant Examiner-Dervis Magistre
`Attorney, Agent, or Firm-William E. Koch
`ABSTRACT
`[57]
`A selective call control center is provided for transmis(cid:173)
`sion of calls to selective call receivers, such as paging
`receivers. In a first aspect, priorities are assigned to call
`sources and to call receivers and the order of transmis(cid:173)
`sion of calls is determined by the control center as a
`function of the priorities of the source and the receiver
`for each call. In a second aspect, at least one call re(cid:173)
`ceiver is provided having at least two addresses and the
`address to be selected from the at least two addresses
`for calling that receiver is determined dependent on the
`priority of the source of the call.
`
`11 Claims, 3 Drawing Sheets
`
`PRIORITY (P)
`_________________ ___.(17
`P=1 I a 1 I
`_
`..
`(8
`(9
`
`Motorola Solutions, Inc., Ex1019, p. 1
`
`

`

`U.S. Patent
`
`Sep. 25, 1990
`
`Sheet 1 of3
`
`4,959,648
`
`fl
`fl
`fl •
`
`•
`•
`
`/ 10
`
`,v
`
`I -
`
`FIG.1
`
`•
`•
`•
`
`26
`
`RAM
`
`27
`
`29
`
`31
`
`30
`
`25
`
`ROM
`
`FIG.2
`
`Motorola Solutions, Inc., Ex1019, p. 2
`
`

`

`US. Patent
`
`Sep. 2s, 1990
`
`Sheet 2 of 3
`
`. 4,959,648
`:17
`PRIORITY_(P_) _ _ _ _ _ _ _ _ _ _ _ _
`P=1 l1._a~1 ! _________ ,
`7
`.--....-----,---,-------------1(18
`I
`P=2 I b11 b21 bJI
`(19
`I
`
`P=3 I c1I c2 I cJI c.l c5I
`FIG.3
`
`INPUT
`
`PAGERS Pr
`
`CARDIAC
`ARREST
`GROUP
`
`14
`
`15
`
`1
`
`1
`
`OUTPUT
`PAGING ADDRESS
`
`ADDRESS 14A
`
`ADDRESS 15A
`
`FIG.4A
`
`INPUT
`
`14
`15
`16
`
`Pr
`
`2
`
`2
`
`3
`
`OUTPUT
`PAGING ADDRESS
`ADDRESS 148
`ADDRESS 158
`ADDRESS 168
`
`FIG.4B
`
`Motorola Solutions, Inc., Ex1019, p. 3
`
`

`

`US. Patent
`
`Sep.25,1990
`
`Sheet 3 of3
`
`4,959,648
`
`X
`
`,,.- 54
`
`WAIT FOR
`NEXT PAGE
`
`51
`
`52
`
`TRANSMIT
`NEXT PAGE
`IN QUEUES
`
`UPDATE
`QUEUES
`
`FIG.5
`
`NO
`
`P=P s
`
`66
`ASSIGN PAGE
`TO QUEUE P AND
`INCREMENT QUEUE
`COUNTER Np
`
`62
`
`PLACE NEW
`PAGE IN
`CORRECT QUEUE
`
`68
`RESET
`/;....
`YES PROGRAM
`TO POINT@
`
`/'""
`67
`
`69
`
`FIG.6
`
`Motorola Solutions, Inc., Ex1019, p. 4
`
`

`

`1
`
`4,959,648
`
`2
`sources are provided having different assigned priori(cid:173)
`ties, and call receivers are provided having different
`assigned priorities. The order of transmission of calls
`from the call sources to be transmitted to the call receiv-
`5 ers is determined as a function of the priorities of both
`the source and the receiver for each call. It is preferred
`that the greater of the priorities of the source and re(cid:173)
`ceiver determines the order of transmission of a call
`relative to other calls having higher or lower priorities.
`In a second aspect of the invention, a method and
`apparatus are provided for operation of a selective call
`system, in which call sources are provided having dif(cid:173)
`ferent assigned priorities and at least one call receiver is
`provided having at least two addresses. The particular
`address to be called is determined dependent on the
`priority of the source of the call. It should be under-
`stood, and will be explained hereinafter, that the ad(cid:173)
`dresses may take a number of forms. Dependant on
`which address is called, the call receiver may perform
`different functions, or operate in different manners.
`It is an advantage of the second aspect of the inven(cid:173)
`tion that a pager may perform different functions or
`operate in different manners dependent upon the source
`of a particular call, but without the need for the opera(cid:173)
`tor placing the call to specify the particular function or
`manner of operation.
`BRIEF DESCRIPTION OF THE DRAWINGS
`30 A preferred embodiment of the invention will now be
`described, by way of example, with reference to the
`accompanying drawings, in which:
`FIG. 1 shows a general paging system;
`FIG. 2 shows three priority levels, with calls assigned
`thereto;
`FIG. 3 shows a functional block diagram of a control
`center in accordance with the present invention;
`FIGS. 4A and 4B are look-up tables stored in mem(cid:173)
`ory 25 of the control center of FIG. 3;
`FIG. 5 is a flow diagram of the page transmission
`operation; and
`FIG. 6 is a flow diagram of the priority determination
`operation.
`
`DUAL DYNAMIC PRIORITY CONTROL IN A
`SELCTIVE CALL SYSTEM
`
`SUMMARY OF THE INVENTION
`In a first aspect of this invention, the invention pro(cid:173)
`vides a method and apparatus for assigning priorities to
`calls received by a selective call control center. Call
`
`BACKGROUND OF THE INVENTION
`This invention relates generally to the field of selec(cid:173)
`tive call control centers for transmission of calls to
`selective call receivers, such as paging receivers and
`more particularly to determining the order of transmis(cid:173)
`sion of calls to the receivers and/or determining which 10
`address within a receiver is to be called.
`As the use of pagers becomes more and more estab(cid:173)
`lished, the stage is already being reached where the
`control center of a paging system is becoming saturated
`at busy times, in the sense that more paging calls are 15
`being placed than the system is capable of transmitting
`to the destination paging receivers on the allocated
`radio frequency channels. To overcome this problem,
`control centers of paging systems administer a queue of
`calls for transmission, by storing each call in memory, 20
`and transmitting the calls, often on a first-in, first-out
`basis.
`"Priority" is a concept used in paging control centers,
`or terminals, to alter the processing of selected calls,
`primarily in regard to their insertion into an output 25
`queue. Specifically, calls assigned a priority higher than
`that of other calls waiting for output are given ad(cid:173)
`vanced placement in the output queue, so that they will
`be transmitted sooner than calls assigned lower priority.
`DESCRIPTION OF THE PRIOR ART
`Currently produced paging terminals generally treat
`priority in one of two manners:
`(1) Semipermanent individual assignment of call pri(cid:173)
`ority level by means of a parameter in the pager data 35
`base (i.e. stored in the paging terminal memory), or
`(2) The use of a special "priority" input to momen(cid:173)
`tarily raise the priority level of a call placed via that
`input.
`-
`These two manners of treating priority will be ex- 40
`plained by reference to the generalized paging system
`shown in FIG. 1.
`In this figure there is shown a paging control center
`10, three paging inputs in the form of telephones 11, 12
`and 13, and three pagers 14, 15 and 16.
`In the first prior art system, each of the pagers 14, 15
`and 16 is assigned a priority level, and these levels are
`stored in a memory in the paging control center 10.
`Each time a call is placed to the address of a particular
`pager, the control center 10 is aware of the priority of 50
`that address, and determines the order of transmission
`of calls accordingly.
`In the second prior art system, one of the telephones
`11, 12 and 13 is designated as a "code blue" telephone,
`i.e. if a call is placed via that telephone (e.g. telephone 55
`11), such a call is immediately given pre-emptive status,
`whereby any existing call in progress is interrupted and
`the code blue call is immediately transmitted. This sys(cid:173)
`tem is useful where the code blue telephone is assigned
`for emergency use.
`Neither of the above prior art systems is sufficiently
`flexible to meet present day requirements of paging
`systems.
`
`45
`
`DESCRIPTION OF THE PREFERRED
`· EMBODIMENT
`The preferred embodiment of the invention may be
`described in general terms with reference to FIG. 1, the
`elements of which have already been described with
`reference to the prior art.
`When a call is placed, that call is assigned a priority
`and an identification code identifying the call is placed
`in a queue corresponding to that priority. This is illus(cid:173)
`trated in FIG. 2.
`Referring to that figure, three queues established by a
`microprocessor in the control center 10 are shown as
`blocks 17, 18 and 19. The blocks represent locations in
`memory (described below) within the control center, in
`which identification codes of different calls may be
`stored on a first-in, first-out basis. Sufficient memory is
`set aside for each block so as to ensure that each block
`is notationally endless. Identification codes for different
`calls are represented as a,, b1, c1, etc., queue 17 has top
`priority (priority P= 1), queue 18 has second priority
`65 (P=2) and queue 19 has the lowest priority (P=3). In
`the figure it is shown that there is one call (a1) in queue
`17, three calls (b1, b2, b3,) in queue 18, and five calls
`(c,-cs) in queue 19. In this situation, call a, has been
`
`60
`
`Motorola Solutions, Inc., Ex1019, p. 5
`
`

`

`4,959,648
`
`4
`operators of the pagers cannot disable in advance. The
`system may be configured such that telephone 11 is
`dedicated only to page those addresses as a group.
`Thus, telephone 11 may be unable to page pager 16, or
`other pagers. As an alternative, telephone 11 may be
`configured to address pager 16 by dialing the appropri-
`ate number, and by virtue of the fact that the call has
`been placed via telephone 11, the call is immediately
`given pre-emptive status.
`In contrast to the above, if a call is placed via tele-
`phone 12 to any one of telephones 14, 15 and 16, such a
`call is a priority 2 call to a priority 2 address (in this case
`pagers 14 and 15 are addressed via their B addresses)
`and such a call is placed in a priority 2 queue as de-
`15 scribed above with reference to FIG. 2. If, by dialing an
`appropriate number into telephone 12, the system is
`configured to address pager 14 via its A address, then
`such a call is treated with pre-emptive status by virtue
`of the fact that the destination of the call has priority 1.
`
`3
`transmitted, the code a1 will be deleted from queue 17,
`and call bt will be the next to be transmitted. Call bt will
`be followed by calls b2 and b3, and provided no other
`calls have arrived in the meantime, call c1 the next to be
`transmitted after call b3, followed by calls c2-c5. As 5
`soon as a new call comes in, its identification code is
`assigned to the appropriate queue in accordance with
`the priority allocated to it. If a priority 2 call arrives its
`code will be added to the end of queue 18. From queue
`18, it will be transmitted in advance of any remaining IO
`calls in queue 19. Likewise, if a priority 1 call arrives
`any priority 2 or 3 call currently being transmitted will
`be interrupted, queues 18 and 19 will remain un(cid:173)
`changed, and the priority 1 call, which is immediately
`added to queue 17 is immediately transmitted.
`In the preferred embodiment of the present invention,
`each of the input devices, shown in FIG.1 as telephones
`11, 12 and 13, is assigned a priority level (Ps)- There may
`be a large number of input devices, and there may be a
`large number of priority levels, but for the purposes of 20
`illustration, it will be assumed that there are three prior-
`ity levels and that telephone 11 is assigned the top prior-
`ity level, level 1, telephone 12 ( and other telephones
`not shown) is assigned the next priority level, level 2,
`and telephone 13 (and other telephones not shown) is 25
`assigned the lowest priority level, level 3. As an exam(cid:173)
`ple, the system may be arranged in a hospital, where
`telephone 11 is an emergency "code blue" telephone for
`use only for calling a cardiac arrest team, while tele(cid:173)
`phone 12 (and other telephones of similar priority) is 30
`assigned to a doctor or head of nursing staff, and tele(cid:173)
`phone 13 (and other telephones of similar priority) is
`assigned for general use.
`Each of the pagers 14, 15 and 16 (and other pagers
`not shown) has two addresses. By paging the first ad- 35
`dress, the addressed pager responds with a loud audible
`tone, while by paging the second address, the pager
`responds by a silent vibration. It will be understood that
`the responses of the separate addresses may take a num(cid:173)
`ber of forms, including different volumes of tone, differ- 40
`ent combinations of tone and/or vibration and/or visi(cid:173)
`ble indicators, or different mode of operation, such as
`variable volume alert and fixed volume alert. There
`may be more addresses for each pager, typically up to
`eight.
`In addition to the priority levels assigned to the input
`devices, each of the pagers has an assigned priority level
`(P,). For the purposes of the present example, it may be
`assumed that address A of pager 14 has priority 1, and
`address B has priority 2, and the same for pager 15, 50
`while both addresses of pager 16 are priority 2. Other
`pagers not shown have priority 3. In this example, the
`operators of pagers 14 and 15 may have special duties as
`members of a cardiac arrest team, while at the same
`time they operate as members of the hospital having 55
`non-particular duties. Pager 16 is an operator having
`non-particular duties (not being a member of the cardiac
`arrest team), and there are other operators of pagers of
`lower rank. The operators of pagers 14, 15 and 16 may,
`for example, be doctors and nurses, while the operators 60
`of other pagers are orderlies.
`The operation of the system is as follows. In the event
`that there is a cardiac arrest in the hospital, a member of
`staff places a call through telephone 11, and this has the
`effect of immediately pre-empting any existing calls 65
`being transmitted, and pagers 14 arid 15 are paged via
`their A addresses. In so paging these pagers via their A
`addresses, those pagers issue an audible tone which the
`
`45
`
`From the above, it can be seen that priority 1 takes
`precedence over priority 2, irrespective of whether the
`priority 1 results from a priority 1 source (telephone 11;
`Ps= 1) or a priority 1 destination receiver (address A of
`pager 14 or 15; p,= 1).
`To continue the above example, if a call is placed via
`telephone 13 to pager 16, that call is placed in the prior(cid:173)
`ity 2 queue, because the destination of the call (pager
`16) has been assigned priority 2. If a call is placed via
`telephone 13 to another pager (not shown) of priority 3,
`tjiat call is placed in a priority 3 queue, by virtue of the
`fact that the source has priority 3 and the destination
`also has priority 3. None of the calls in the priority 3
`queue will be transmitted until all the calls in the prior(cid:173)
`ity 2 queue have been transmitted.
`The manner in which the above features are imple(cid:173)
`mented is described with reference to FIGS. 3-6.
`In FIG. 3, the three input telephones 11, 12 and 13 of
`FIG. 1 are shown. These telephones are connected to
`telephone inputs of DTMF decoder and supervisor 20.
`A data bus 21 connects the decoder and supervisor 20 to
`a microprocessor 22. Included in the data bus 21 are
`source identifier lines 23 which identify the input of the
`decoder and supervisor to which a particular telephone
`making a call is connected. Also included in the data bus
`21 are destination receiver identifier lines 24, which
`identify the telephone number being dialed. It will be
`understood that one of the telephones, e.g. telephone
`11, can be dedicated to dial a particular number, this
`number being stored in decoder and supervisor 20 and
`being sent on data lines 24 automatically upon use of
`telephone 11. Connected with microprocessor 22 is a
`read only memory 25, which is preferably an EE(cid:173)
`PROM. This EEPROM contains a look-up table, which
`will be described in more detail with reference to FIG.
`4. Microprocessor 22 provides an output on data bus 27
`to a transmit controller and paging encoder 28, which in
`tum passes information on data bus 29 to a transmitter
`30. The transmitter controller and paging decoder also
`controls transmitter 30 by an on/off control line 31.
`The operation of the apparatus is as follows. A user
`makes a paging call by picking up one of the telephones,
`e.g. telephone 12 and dialing a 3-digit number identify(cid:173)
`ing that a call is to be made. The user hears a prere(cid:173)
`corded message provided by decoder and supervisor 20,
`telling the user to dial the number of the pager to which
`the page is to be transmitted. At this stage a number of
`further features may be possible, including providing a
`
`Motorola Solutions, Inc., Ex1019, p. 6
`
`

`

`4,959,648
`
`5
`voice message, keying in an alphanumeric message into
`a keyboard (not shown) and/or dialing in a call-back
`number, e.g. through a touch-tone pad, for the person
`being paged to call back. The decoder and supervisor 20
`identifies the telephone input being operated from the 5
`hardwired connection to the decoder and supervisor 20,
`and it passes this information, together with the three
`digit number paged, on data lines 23 and 24 any other
`information provided (message, voice etc.) is also
`passed on data bus 21.
`The microprocessor 22 receives this information and
`performs the following operations. If the call is identi(cid:173)
`fied as coming from telephone 11, then the micro(cid:173)
`processor performs a look-up operation in the table of
`FIG. 4A and determines that pagers 14 and 15 are to be 15
`paged as a cardiac arrest team on their A addresses. The
`call is treated as a priority 1 call. If the call originates
`from any other source, the microprocessor 22 deter(cid:173)
`mines that only the pager identified by the user originat-
`ing the call is to be paged and a look-up operation is 20
`made on the look-up table of FIG. 4B. All this informa(cid:173)
`tion is contained in EEPROM 25.
`From the table of FIG. 4B, a number defining pager
`15 for example is input and the table identifies that the
`priority of pager 15 is priority 2. The table also provides 25
`the actual address that the transmitter 30 has to transmit
`to reach that pager on address B. This address is given
`in the right-hand column. It will be understood that this
`address could include post-digit addressing, wherein a
`code is included in the header information at the start of 30
`a call/page, that code determining the function that the
`pager is to perform, e.g. in terms of the type of alarm
`response.
`FIG. 5 shows a flow diagram of the overall queue
`management performed by microprocessor 22. For the 35
`purposes of explanation of the diagram, let it be sup(cid:173)
`posed that there are a number of calls waiting for trans(cid:173)
`mission in queues, as shown in FIG. 2. From this situa(cid:173)
`tion, the operations of the flow diagram will commence
`from point X. The uppermost priority call, in this case 40
`call a1 is transmitted first, as represented by step 51.
`Once this page has been transmitted, step 52 is executed
`in that the queues are updated by deleting code a1 from
`queue 17. Next, a test is carried out, step 53, and if there
`are more calls still queuing the program returns to point 45
`X, and the next call in the queue is transmitted as repre(cid:173)
`sented by step 51. In this case, there are indeed more
`calls queuing, and the next call to be transmitted is call
`b1. Thus steps 51, 52 and 53 are repeated until all the
`queues 17-19 are vacant. At this point, the program 50
`passes from step 53 to step 54, and the system waits for
`the next incoming call from input devices 11-13 etc.
`FIG. 6 illustrates the operation of microprocessor 22
`on receipt of a new call The program of FIG. 5 is inter(cid:173)
`rupted, as represented by step 61, whenever a new call 55
`is received from one of the input devices and the identi(cid:173)
`fication code of the new call is placed in the correct
`queue, as represented by step 62. On the left hand side
`of the figure, it is shown that step 62 comprises a num(cid:173)
`ber of smaller steps, in which the priority of the call 60
`source (Ps) associated with the source 11, 12, or 13 is
`compared with the priority of the call destination re(cid:173)
`ceiver (Pr) i.e. the priority of pager 14, 15, 16. If the
`priority (Ps) of the source is greater (numerically
`lower), then the priority P assigned to that call is made 65
`equal to Ps (step 64). On the other hand, if the priority
`of the call receiver (Pr) is greater than that of call source
`(Ps) then the priority of the call (P) is made equal to Pr
`
`6
`(step 65). Based on the priority P of the call, that call is
`assigned to the appropriate queue and a queue counter
`Np of that queue is incremented (step 66).
`Referring again to the right hand side of the diagram,
`the next step to be implemented is step 67 in which the
`queue counter of the priority 1 queue i.e. N 1, is tested. If
`N1 is greater than or equal to l, then the program of
`FIG. 5 is reset to point X. The reason for this test is to
`ascertain whether a pre-emptive priority call is to be
`10 made (a code blue call), and if so, to interrupt the trans(cid:173)
`mission of the current call, and immediately transmit the
`priority 1 call by resetting the program to step 51, at
`which point the program recognizes the priority 1 call
`as being the next call in the queues. Upon completion of
`step 67 or 68, as the case may be, the program of FIG.
`6 is exited at step 69, and the program of FIG. 5 resumes
`normal operation, with the new call having been as(cid:173)
`signed to its appropriate queue. From FIG. 6, it can be
`seen that the priority of a call is made equal to the
`greater of the priority of the source and the priority of
`the call receiver or destination.
`The above description of the preferred embodiment
`has been given by way of example, and it will be under(cid:173)
`stood that modifications can be made within the scope
`of the invention. Thus, for example, the comparison of
`P5 and Pr may take various other forms. These priorities
`may, for example, be numerically added, and the result(cid:173)
`ing sum be taken as the overall priority P. In the above
`case, the highest overall priority would be P = 2. In such
`a case, P=2, and P=3 could be made pre-emptive pri(cid:173)
`orities, since these values can only be reached if Ps or
`Pr= 1. Many other functions can be envisaged in which
`P depends on both Ps and Pr, Further look-up functions
`would be another example.
`What is claimed is:
`1. A selective call controller comprising:
`means for receiving calls from call sources, for identi(cid:173)
`fying the source of each call, each of said call
`sources having a predetermined priority;
`means for transmitting said calls to call receivers,
`each of said call receivers having a predetermined
`priority; and
`means for determining an order of transmission of the
`calls to the receivers as a function of the priorities
`of the source and the receiver for each call.
`2. The controller of claim 1, further comprising
`means for comparing the priority of the source of each
`call with the priority of the receiver for that call and
`means, responsive to the means for comparing, for as(cid:173)
`signing an overall priority to that call, said overall pri(cid:173)
`ority corresponding to the greater of said priorities,
`wherein the overall priority of a call determines the
`order of transmission of the call relative to other calls
`having higher or lower overall priorities.
`3. A selective call system comprising:
`a plurality of call sources having different assigned
`priorities;
`a plurality of call receivers having different assigned
`priorities;
`a selective call control center including means for
`assigning priorities to calls received by the control
`center from the call sources for transmission to the
`call receivers;
`transmission means for transmitting the calls to the
`call receivers; and
`means for determining an order of transmission of the
`calls to the receivers as a function of the priorities
`of the source and the receiver for each call.
`
`Motorola Solutions, Inc., Ex1019, p. 7
`
`

`

`4,959,648
`
`7
`4. A selective call system comprising:
`at least call receiver having at least two addresses;
`a selective call controller having means for receiving
`calls from call sources, for identifying the source of
`each call, and for assigning a priority to said source
`and having means for determining which of said at
`least two addresses is to be called dependent upon
`the priority of the source of the call whereby the
`priority of a source is used to determine both the
`order of transmission of calls and the address in the
`receiver which is called.
`5. A method of assigning priorities to calls received
`by a selective call control center, comprising the steps
`of:
`providing call sources having different assigned pri(cid:173)
`orities;
`providing call receivers having different assigned
`priorities;
`receiving a plurality of calls from the call sources for 20
`transmission to the call receivers; and
`determining an order of transmission of the calls to
`the receivers as a function of the priorities of the
`source and the receiver for each call.
`6. The method of claim 5, wherein the priority of the
`source of each call is compared with the priority of the
`receiver for that call and an overall priority is assigned
`to that call, said overall priority corresponding to the
`greater of said priorities, wherein the overall priority of 30
`a call determines the order of transmission or the call
`relative to other calls having higher or lower overall
`priorities.
`
`8
`7. The method of claim 6, wherein calls of equal
`overall priority are formed into a queue on a first-in
`first-out basis.
`8. The method of claim 7, wherein all calls in a queue
`~ of higher overall priority are transmitted before the first
`call in a queue of lower overall priority is transmitted.
`9. The method of claim 8 further comprising the steps
`of interrupting a call of lower overall priority, transmit(cid:173)
`ting a call of highest overall priority and re-transmitting
`10 the interrupted call when there are no more calls of the
`highest overall priority.
`10. The method of claim 5 wherein an overall priority
`is assigned to each call; wherein the overall priority of
`a call determines the order of transmission of the call
`15 relative to other calls having higher or lower overall
`priorities; wherein a predetermined number of overall
`priorities are assignable to calls; and wherein a call
`having the highest overall priority is transmitted on a
`pre-emptive basis such that calls oflower overall priori(cid:173)
`ties are interrupted to transmit the call having the high(cid:173)
`est overall priority.
`11. A method of operating a selective call system,
`comprising the steps of:
`providing call sources having different assigned pri(cid:173)
`orities;
`providing at least one call receiver having at least
`two addresses;
`,
`determining which of said at least two addresses is to
`be called dependent upon the priority of the source
`of the call wherein the priority of a source is used
`to determine both the order of transmission of calls
`and the address in the receiver which is called.
`* * * * *
`
`25
`
`35
`
`40
`
`45
`
`50
`
`55
`
`60
`
`65
`
`Motorola Solutions, Inc., Ex1019, p. 8
`
`

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket