throbber
PROCEEDINGS OF SPIE
`
`SPIEDigitalLibrary.org/conference-proceedings-of-spie
`
`(cid:50)(cid:83)(cid:87)(cid:76)(cid:70)(cid:68)(cid:79)(cid:3)(cid:83)(cid:72)(cid:85)(cid:73)(cid:82)(cid:85)(cid:80)(cid:68)(cid:81)(cid:70)(cid:72)(cid:3)(cid:82)(cid:73)(cid:3)(cid:68)(cid:91)(cid:76)(cid:68)(cid:79)(cid:3)(cid:74)(cid:85)(cid:68)(cid:71)(cid:76)(cid:72)(cid:81)(cid:87)
`(cid:68)(cid:81)(cid:71)(cid:3)(cid:68)(cid:86)(cid:83)(cid:75)(cid:72)(cid:85)(cid:76)(cid:70)(cid:3)(cid:86)(cid:88)(cid:85)(cid:73)(cid:68)(cid:70)(cid:72)(cid:3)(cid:79)(cid:72)(cid:81)(cid:86)(cid:72)(cid:86)(cid:29)(cid:3)(cid:86)(cid:87)(cid:88)(cid:71)(cid:92)
`(cid:68)(cid:81)(cid:71)(cid:3)(cid:68)(cid:81)(cid:68)(cid:79)(cid:92)(cid:86)(cid:76)(cid:86)
`
`(cid:36)(cid:69)(cid:72)(cid:71)(cid:3)(cid:46)(cid:68)(cid:86)(cid:86)(cid:76)(cid:80)(cid:15)(cid:3)(cid:39)(cid:68)(cid:89)(cid:76)(cid:71)(cid:3)(cid:54)(cid:75)(cid:72)(cid:68)(cid:79)(cid:92)
`
`(cid:36)(cid:69)(cid:72)(cid:71)(cid:3)(cid:48)(cid:17)(cid:3)(cid:46)(cid:68)(cid:86)(cid:86)(cid:76)(cid:80)(cid:15)(cid:3)(cid:39)(cid:68)(cid:89)(cid:76)(cid:71)(cid:3)(cid:47)(cid:17)(cid:3)(cid:54)(cid:75)(cid:72)(cid:68)(cid:79)(cid:92)(cid:15)(cid:3)(cid:5)(cid:50)(cid:83)(cid:87)(cid:76)(cid:70)(cid:68)(cid:79)(cid:3)(cid:83)(cid:72)(cid:85)(cid:73)(cid:82)(cid:85)(cid:80)(cid:68)(cid:81)(cid:70)(cid:72)(cid:3)(cid:82)(cid:73)(cid:3)(cid:68)(cid:91)(cid:76)(cid:68)(cid:79)(cid:3)(cid:74)(cid:85)(cid:68)(cid:71)(cid:76)(cid:72)(cid:81)(cid:87)(cid:3)(cid:68)(cid:81)(cid:71)
`(cid:68)(cid:86)(cid:83)(cid:75)(cid:72)(cid:85)(cid:76)(cid:70)(cid:3)(cid:86)(cid:88)(cid:85)(cid:73)(cid:68)(cid:70)(cid:72)(cid:3)(cid:79)(cid:72)(cid:81)(cid:86)(cid:72)(cid:86)(cid:29)(cid:3)(cid:86)(cid:87)(cid:88)(cid:71)(cid:92)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:68)(cid:81)(cid:68)(cid:79)(cid:92)(cid:86)(cid:76)(cid:86)(cid:15)(cid:5)(cid:3)(cid:51)(cid:85)(cid:82)(cid:70)(cid:17)(cid:3)(cid:54)(cid:51)(cid:44)(cid:40)(cid:3)(cid:21)(cid:21)(cid:25)(cid:22)(cid:15)(cid:3)(cid:38)(cid:88)(cid:85)(cid:85)(cid:72)(cid:81)(cid:87)
`(cid:39)(cid:72)(cid:89)(cid:72)(cid:79)(cid:82)(cid:83)(cid:80)(cid:72)(cid:81)(cid:87)(cid:86)(cid:3)(cid:76)(cid:81)(cid:3)(cid:50)(cid:83)(cid:87)(cid:76)(cid:70)(cid:68)(cid:79)(cid:3)(cid:39)(cid:72)(cid:86)(cid:76)(cid:74)(cid:81)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:50)(cid:83)(cid:87)(cid:76)(cid:70)(cid:68)(cid:79)(cid:3)(cid:40)(cid:81)(cid:74)(cid:76)(cid:81)(cid:72)(cid:72)(cid:85)(cid:76)(cid:81)(cid:74)(cid:3)(cid:44)(cid:57)(cid:15)(cid:3)(cid:3)(cid:11)(cid:22)(cid:19)(cid:3)(cid:54)(cid:72)(cid:83)(cid:87)(cid:72)(cid:80)(cid:69)(cid:72)(cid:85)
`(cid:20)(cid:28)(cid:28)(cid:23)(cid:12)(cid:30)(cid:3)(cid:71)(cid:82)(cid:76)(cid:29)(cid:3)(cid:20)(cid:19)(cid:17)(cid:20)(cid:20)(cid:20)(cid:26)(cid:18)(cid:20)(cid:21)(cid:17)(cid:20)(cid:27)(cid:27)(cid:19)(cid:22)(cid:20)
`(cid:40)(cid:89)(cid:72)(cid:81)(cid:87)(cid:29)(cid:3)(cid:54)(cid:51)(cid:44)(cid:40)(cid:10)(cid:86)(cid:3)(cid:20)(cid:28)(cid:28)(cid:23)(cid:3)(cid:44)(cid:81)(cid:87)(cid:72)(cid:85)(cid:81)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:68)(cid:79)(cid:3)(cid:54)(cid:92)(cid:80)(cid:83)(cid:82)(cid:86)(cid:76)(cid:88)(cid:80)(cid:3)(cid:82)(cid:81)(cid:3)(cid:50)(cid:83)(cid:87)(cid:76)(cid:70)(cid:86)(cid:15)(cid:3)(cid:44)(cid:80)(cid:68)(cid:74)(cid:76)(cid:81)(cid:74)(cid:15)(cid:3)(cid:68)(cid:81)(cid:71)
`(cid:44)(cid:81)(cid:86)(cid:87)(cid:85)(cid:88)(cid:80)(cid:72)(cid:81)(cid:87)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:15)(cid:3)(cid:20)(cid:28)(cid:28)(cid:23)(cid:15)(cid:3)(cid:54)(cid:68)(cid:81)(cid:3)(cid:39)(cid:76)(cid:72)(cid:74)(cid:82)(cid:15)(cid:3)(cid:38)(cid:36)(cid:15)(cid:3)(cid:56)(cid:81)(cid:76)(cid:87)(cid:72)(cid:71)(cid:3)(cid:54)(cid:87)(cid:68)(cid:87)(cid:72)(cid:86)
`
`(cid:39)(cid:82)(cid:90)(cid:81)(cid:79)(cid:82)(cid:68)(cid:71)(cid:72)(cid:71)(cid:3)(cid:41)(cid:85)(cid:82)(cid:80)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:86)(cid:29)(cid:18)(cid:18)(cid:90)(cid:90)(cid:90)(cid:17)(cid:86)(cid:83)(cid:76)(cid:72)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:79)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:70)(cid:82)(cid:81)(cid:73)(cid:72)(cid:85)(cid:72)(cid:81)(cid:70)(cid:72)(cid:16)(cid:83)(cid:85)(cid:82)(cid:70)(cid:72)(cid:72)(cid:71)(cid:76)(cid:81)(cid:74)(cid:86)(cid:16)(cid:82)(cid:73)(cid:16)(cid:86)(cid:83)(cid:76)(cid:72)(cid:3)(cid:82)(cid:81)(cid:3)(cid:21)(cid:27)(cid:3)(cid:39)(cid:72)(cid:70)(cid:3)(cid:21)(cid:19)(cid:21)(cid:21)(cid:3)(cid:3)(cid:55)(cid:72)(cid:85)(cid:80)(cid:86)(cid:3)(cid:82)(cid:73)(cid:3)(cid:56)(cid:86)(cid:72)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:86)(cid:29)(cid:18)(cid:18)(cid:90)(cid:90)(cid:90)(cid:17)(cid:86)(cid:83)(cid:76)(cid:72)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:79)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:87)(cid:72)(cid:85)(cid:80)(cid:86)(cid:16)(cid:82)(cid:73)(cid:16)(cid:88)(cid:86)(cid:72)
`
`1
`
`APPLE 1017
`
`

`

`Optical performance of axial gradient and aspheric surface lenses:
`study and analysis
`
`Abed M. Kassim
`
`Al-Quds University, College of Science and Technology, Department of Physics
`P.O. Box 20002, Jerusalem, West Bank
`
`David L. Shealy
`
`The University of Alabama at Birmingham, Departmentof Physics
`1300 University Boulevard, Birmingham, Alabama 35294-1170
`
`ABSTRACT
`
`Using the caustic merit function for plane waves incident upon a singlet lens, a comparison between the optical
`performance of the lens using an axial gradient index with spherical surfaces or aspheric surfaces with constant
`index material has been investigated. Results indicate that the use of an inhomogeneous medium for the lens
`material is moreeffective in the controlling aberrations than the use of aspheric surfaces for a similar lens.
`
`1. INTRODUCTION
`
`In lens design, the aberrations of an optical system can be controlled by using of aspheric surfaces! or using
`an inhomogeneous medium? between the surfaces of the optical system. Sands® has shownthat the contributions
`of an axial gradient index (GRIN) to the third order aberrations of an optical system are equivalent to those of
`aspheric surfaces. However, it has been expected that inhomogeneous media would be moreeffective in some
`cases for controlling aberrations than the use of aspheric surfaces when higher order aberrations are considered.
`Attempts* have been made to produce axial GRIN lens designs which have a comparable optical performance
`with an aspheric surfaces lens. These efforts have been hampered by the lack of optical design software which is
`capable of calculating the fifth and higher order aberration coefficients for the GRIN lens. As a result, the lens
`designer has not been able to study the effect of using GRIN materials on aberrations correction and balancing.
`
`In this paper, a comparison between the effectiveness of axial GRIN materials and aspheric surfaces for
`controlling aberrations has been studied for the case of plane waves incident upon a singlet lens. Using the
`caustic merit function (CMF),® twolens designs, which have the same backfocal length as thatofaninitiallens,
`are produced. Thefirst design is an axial GRIN lens with spherical surfaces, and the second design is an aspheric
`surfaces lens with constant index media. The optical performance of each design has been evaluated as a function
`of the lens parametersto arrive at an optimum design that has a minimum value of the average value of the CMF.
`
`0-8194-1587-1/94/$6.00
`Downloaded From:https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 28 Dec 2022
`(cid:39)(cid:82)(cid:90)(cid:81)(cid:79)(cid:82)(cid:68)(cid:71)(cid:72)(cid:71)(cid:3)(cid:41)(cid:85)(cid:82)(cid:80)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:86)(cid:29)(cid:18)(cid:18)(cid:90)(cid:90)(cid:90)(cid:17)(cid:86)(cid:83)(cid:76)(cid:72)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:79)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:70)(cid:82)(cid:81)(cid:73)(cid:72)(cid:85)(cid:72)(cid:81)(cid:70)(cid:72)(cid:16)(cid:83)(cid:85)(cid:82)(cid:70)(cid:72)(cid:72)(cid:71)(cid:76)(cid:81)(cid:74)(cid:86)(cid:16)(cid:82)(cid:73)(cid:16)(cid:86)(cid:83)(cid:76)(cid:72)(cid:3)(cid:82)(cid:81)(cid:3)(cid:21)(cid:27)(cid:3)(cid:39)(cid:72)(cid:70)(cid:3)(cid:21)(cid:19)(cid:21)(cid:21)
`Termsof Use: https://www.spiedigitallibrary.org/terms-of-use
`(cid:55)(cid:72)(cid:85)(cid:80)(cid:86)(cid:3)(cid:82)(cid:73)(cid:3)(cid:56)(cid:86)(cid:72)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:86)(cid:29)(cid:18)(cid:18)(cid:90)(cid:90)(cid:90)(cid:17)(cid:86)(cid:83)(cid:76)(cid:72)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:79)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:87)(cid:72)(cid:85)(cid:80)(cid:86)(cid:16)(cid:82)(cid:73)(cid:16)(cid:88)(cid:86)(cid:72)
`
`SPIE Vol. 2263 / 33
`
`2
`
`

`

`Starting with the parameters of the initial lens, the refractive index of the lens material is varied linearly along
`the optic axis of the lens while the other parameters (the radii of curvature of the surfaces and the back focal
`length) are kept constant. Then, values of the CMF are averaged over the entire entrance pupil and the average
`CMF is evaluated as a function of the GRIN parameter to reach the optimum axial GRIN design. Similarly, the
`optimum design of an aspheric lens has been obtained by variation of the aspherical deformation coefficients® of
`the spherical surfaces of the initial lens while the other parameters (refractive index, thickness, and the back focal
`length) are kept constant. In a computational program, all the deformation coefficients® of both surfaces of the
`lens are varied until a minimum value of the average CMF is achieved. This study has not addressed the issue of
`whether these designs represent global minima of the CMF andother optical merit functions.
`
`The optical performanceof the initial lens (homogeneouslens), the axial GRIN lens, the aspheric surfaces lens,
`and the axial GRIN lens given in Ref.
`[4] has been evaluated and compared for a wide rangeoffield angles, using
`the average CMF and the RMS?ofblurcircle radius. Also, for these lenses, the ray aberrations are evaluated
`and compared over the range of the entrance pupil radius by using the CMF.
`
`2. THEORETICAL ANALYSIS
`
`In general, tracing a single ray through an axial GRIN lensor an aspheric lens can be used to derive a formula
`for evaluating the irradiance or energy flux density®° along the path of this ray. Then,
`this formula can be
`employed to evaluate the caustic surface configurations at the focal plane of such a lens. The mathematical
`procedures for the derivation of the flux flow formula and the CMF are summarized below.
`
`2.1. Ray Trace Procedures
`
`2.1.1. Axial GRIN Lens
`
`Consider a ray incident at the boundary surface, S;, of an axial GRIN lens (see Fig. 1), which has a refractive
`index profile as
`
`(1)
`n(2) = no(1- a2),
`where mg is the refractive index at the vertex of the first surface of the lens, a@ is the gradient index parameter,
`and z-axis is the optic axis of the lens. Then, the solution of the ray equation!® in the axial GRIN medium gives
`the ray path which is expressed as
`
`*d
`
`r= 00+f a
`v=w+af T
`
`* dz
`zo
`
`(2)
`(3)
`
`where po and qo are the optical directioncosines of the rayas it leaves the surface S, and (20, yo, 20) are the initial
`coordinates of the incident point. Since n is a function of z alone, the optical direction cosines of the refracted ray
`through the axial GRIN inedium, p and q,are invariant along the path of this ray. That is, p = po and q = qo.
`Also, the optical direction of this ray in the z direction, /, can be expressed as
`U= (n?(z) — p? — q?)/? = (n?(z) — pp — 45)!”
`
`(4)
`
`Combining Eqs. 1-4 and carrying out the integration gives
`
`e=2o+ (po/noe) In QO,
`y = yo + (qo/noa) In Q,
`
`(5)
`(6)
`
`34 / SPIE Vol. 2263
`Downloaded From:https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 28 Dec 2022
`(cid:39)(cid:82)(cid:90)(cid:81)(cid:79)(cid:82)(cid:68)(cid:71)(cid:72)(cid:71)(cid:3)(cid:41)(cid:85)(cid:82)(cid:80)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:86)(cid:29)(cid:18)(cid:18)(cid:90)(cid:90)(cid:90)(cid:17)(cid:86)(cid:83)(cid:76)(cid:72)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:79)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:70)(cid:82)(cid:81)(cid:73)(cid:72)(cid:85)(cid:72)(cid:81)(cid:70)(cid:72)(cid:16)(cid:83)(cid:85)(cid:82)(cid:70)(cid:72)(cid:72)(cid:71)(cid:76)(cid:81)(cid:74)(cid:86)(cid:16)(cid:82)(cid:73)(cid:16)(cid:86)(cid:83)(cid:76)(cid:72)(cid:3)(cid:82)(cid:81)(cid:3)(cid:21)(cid:27)(cid:3)(cid:39)(cid:72)(cid:70)(cid:3)(cid:21)(cid:19)(cid:21)(cid:21)
`Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
`(cid:55)(cid:72)(cid:85)(cid:80)(cid:86)(cid:3)(cid:82)(cid:73)(cid:3)(cid:56)(cid:86)(cid:72)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:86)(cid:29)(cid:18)(cid:18)(cid:90)(cid:90)(cid:90)(cid:17)(cid:86)(cid:83)(cid:76)(cid:72)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:79)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:87)(cid:72)(cid:85)(cid:80)(cid:86)(cid:16)(cid:82)(cid:73)(cid:16)(cid:88)(cid:86)(cid:72)
`
`3
`
`

`

`=
`
`
`caustic sheet
`
`
`
`
`Figure 1: Schematic diagram for a ray trace in an axial GRIN lens.
`
`where
`
`|
`

`
`(2V 22 + bz + c+ 22 +6) /(24/ 23 + bz +04 229 +8),
`(np — po — 99) /(noa)”,
`—2/a.
`
`The intersection point of the ray with the second surface of the lens, Sp, and the optical direction cosines of
`this ray, A(s), just before this boundary, are specified by the use of a numerical ray trace technique.!! ‘Then, the
`optical directional cosines of the emergentray, as it leaves the second surface are specified by the use of the laws
`of refraction.}?
`
`2.1.2. Aspheric Surface Lens
`
`Consider a rotationally symmetric aspheric surface of an equation which is expressed as!*
`
`X(s,¢) =teosd + jsing + kA(s),
`
`(7)
`
`where
`
`Z(s
`
`cs”
`
`= Te Via
`s? =z? +y?, and c is the vertex radius of curvature, ¢ is the polar coordinate angle measured from the positive
`x-axis, and the numerical coefficients (e, f, g, and h) are the aspherical deformation constants, and the term
`O(s!”) stands for the rest of the termsin the series which are neglected in these numerical calculations.
`
`test+ fs t+gs? +hs? + O(s!?),
`
`In this study, only meridional rays are considered. Then, following the mathematical description given in Ref.
`[13], (see Eqs. 6-20 , Chap. 4), the incident ray is brought fairly close to the point where the ray actually crosses
`
`Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 28 Dec 2022
`(cid:39)(cid:82)(cid:90)(cid:81)(cid:79)(cid:82)(cid:68)(cid:71)(cid:72)(cid:71)(cid:3)(cid:41)(cid:85)(cid:82)(cid:80)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:86)(cid:29)(cid:18)(cid:18)(cid:90)(cid:90)(cid:90)(cid:17)(cid:86)(cid:83)(cid:76)(cid:72)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:79)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:70)(cid:82)(cid:81)(cid:73)(cid:72)(cid:85)(cid:72)(cid:81)(cid:70)(cid:72)(cid:16)(cid:83)(cid:85)(cid:82)(cid:70)(cid:72)(cid:72)(cid:71)(cid:76)(cid:81)(cid:74)(cid:86)(cid:16)(cid:82)(cid:73)(cid:16)(cid:86)(cid:83)(cid:76)(cid:72)(cid:3)(cid:82)(cid:81)(cid:3)(cid:21)(cid:27)(cid:3)(cid:39)(cid:72)(cid:70)(cid:3)(cid:21)(cid:19)(cid:21)(cid:21)
`Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
`(cid:55)(cid:72)(cid:85)(cid:80)(cid:86)(cid:3)(cid:82)(cid:73)(cid:3)(cid:56)(cid:86)(cid:72)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:86)(cid:29)(cid:18)(cid:18)(cid:90)(cid:90)(cid:90)(cid:17)(cid:86)(cid:83)(cid:76)(cid:72)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:79)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:87)(cid:72)(cid:85)(cid:80)(cid:86)(cid:16)(cid:82)(cid:73)(cid:16)(cid:88)(cid:86)(cid:72)
`
`SPIE Vol. 2263/35
`
`4
`
`

`

`the aspheric surface S;(see Fig. 4-2, Ref. [13]). Next, one considers the refraction process at this point and uses
`Eqs. 21-39 in Ref.
`[13] to compute the optical direction cosines of the refracted ray as it leaves the S; toward
`the second surface S2. Similarly, the same procedures are repeated to determine the intersection point of the ray
`with S> and the optical direction cosines of the emergent ray from this surface.
`
`2.2 Caustic Merit Function
`
`The configurations of the caustic surfaces® in the image plane of a singlet lens can be specified throughout
`the use of the flux flow equation? which represents the illuminance associated with each traced ray through such
`a lens. For an axial GRIN lens and an aspheric surfaces lens, the mathematical descriptions for the derivation of
`the CMF are summarized below
`
`2.2.1. Axial GRIN Lens
`
`[9]) is obtained from theinitial direction of the
`The input to the flux density formula (see Eq. 28 in Ref.
`incident rays, the equations of the lens surfaces, the equations of the geodesic in the axial GRIN lens, and the
`intersection points of the traced rays with the surfacesof the lens (see Fig. 1). Since the caustic surfaces represents
`the loci of singularities of the flux density,!* then equating the denominator of Eq. 28 in Ref.
`[9] to zero gives the
`distancesalong the emergent ray, r; and r,, from the intersection point of this ray with S_ to the caustic points,
`X; and Xs, 1in the tangential and sagittal planes respectively (see Fig. 1):
`
`X; = X(2) +1: B,
`X, = X(2)+r, 8,
`
`(8)
`(9)
`
`where B is a unit vector along the emergent ray and X (2) is the position vector of the intersection point of this
`ray with the second surface of the lens. Following the notation given in Ref.
`[5], the CMF is expressed as
`
`CMF =| Xi— Xz |+| Xs - X;|,
`
`(10)
`
`where Xx} is the position vector of the paraxial image.
`
`2.2.2. Aspheric Surfaces Lens
`
`To derive the CMF for a meridional ray which is traced through an aspheric surfaces lens, the mathematical
`description given in Ref.
`[15] has been used to specify the values of r; and r,. Then, the use of Eqs. 8-10 specifies
`the value of CMF.
`
`3. Results and Analysis
`
`The parameters of both optimized designs, the axial GRIN and the aspheric surfaces lens, and a comparison
`between the optical performance of these designs with that of the initial lens are presented below.
`
`36 / SPIE Vol. 2263
`Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 28 Dec 2022
`(cid:39)(cid:82)(cid:90)(cid:81)(cid:79)(cid:82)(cid:68)(cid:71)(cid:72)(cid:71)(cid:3)(cid:41)(cid:85)(cid:82)(cid:80)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:86)(cid:29)(cid:18)(cid:18)(cid:90)(cid:90)(cid:90)(cid:17)(cid:86)(cid:83)(cid:76)(cid:72)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:79)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:70)(cid:82)(cid:81)(cid:73)(cid:72)(cid:85)(cid:72)(cid:81)(cid:70)(cid:72)(cid:16)(cid:83)(cid:85)(cid:82)(cid:70)(cid:72)(cid:72)(cid:71)(cid:76)(cid:81)(cid:74)(cid:86)(cid:16)(cid:82)(cid:73)(cid:16)(cid:86)(cid:83)(cid:76)(cid:72)(cid:3)(cid:82)(cid:81)(cid:3)(cid:21)(cid:27)(cid:3)(cid:39)(cid:72)(cid:70)(cid:3)(cid:21)(cid:19)(cid:21)(cid:21)
`Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
`(cid:55)(cid:72)(cid:85)(cid:80)(cid:86)(cid:3)(cid:82)(cid:73)(cid:3)(cid:56)(cid:86)(cid:72)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:86)(cid:29)(cid:18)(cid:18)(cid:90)(cid:90)(cid:90)(cid:17)(cid:86)(cid:83)(cid:76)(cid:72)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:79)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:87)(cid:72)(cid:85)(cid:80)(cid:86)(cid:16)(cid:82)(cid:73)(cid:16)(cid:88)(cid:86)(cid:72)
`
`5
`
`

`

`3.1. Optimized Axial GRIN Lens
`
`A singlet spherical surface lens of a constant refractive index is considered as a trial lens. The paramteres of
`this lens are: surface curvatures 2.126026 and 21.45789 cm~, thickness 0.6 cm, and a refractive index 1.877091.
`Then, the refractive index is varied linearly along the optical axis (see Eq. 1) while the back focal length, fs, is
`kept constant. For an axial GRIN lens, @ can be expressed in termsof the other parameters of the lens as follows
`
`fo = f(1- (na - 1erd*),
`
`(11)
`
`where
`
`1/f = c1(ng — 1) — co(ng — 1) + c1c0(mo — 1)(ma — 1)a",
`dad = In(l—ad)/(ano),
`nq = no(l—ad),
`
`c; and cp are the surface curvatures of the lens and d its thickness. Then, expanding In(1 — wd) to the third
`order!® and rearranging the terms of Eq. 11 gives a quadratic equation of a as
`
`a*( fos) + afory2 — wd? /2) + (for + pd —1) =0,
`
`(12)
`
`where
`
`3 == —d*c1¢9(no — 1)/2,
`y2 = —Nocod + Ci c2(n3 = 1) d?/(2no),
`y1 = (no — 1)(er +c +.1€2(no + 1)d/no),
`b= (no — 1)e1/no.
`
`In the optimization program, the value of d is varied and Eq. 12 is solved for the corresponding value of a.
`Then, the corresponding values of CMF are averaged over the entire area of the entrance pupil of radius 1.3 cm.
`For plane waves incident on the lens, the average CMFis evaluated as a function of a (see Fig. 2). Results show
`that the average CMFhas a minimum value for a = 0.10887 cra~' and d=0.5408 cm. This value of a is nearly
`equal to that value given in Ref.
`[4].
`
`3.2. Optimized Aspheric Surfaces Design
`
`In this study, the effect of the deformation of the lens surface on the caustic merit function has been investigated
`for the plane waves incident upon the lens. The average CMF i: evaluated as a functionofthefirst deformation
`coefficient, e, of the surface 5; while the other deformation coefficients of both lens surfaces are equated to zero
`(see Fig. 3). Referring to this figure, the average CMFhas a minimum value for e =-0.0075. To obtain the final
`optimized design, all the deformation coefficients of both lens surfaces have been varied at the same time in the
`computational program. The parameters of the optimized aspheric surfaces design are given in Table 1, where
`the reader should be reminded that extensive efforts have not been put forth in this study to establish whether
`these optimized lenses represent systems with a global minimafor the CMFand other optical merit functions.
`
`3.3. Comparison of Optical Performance of Optimized Designs
`
`To compare the optical performance of these lenses, the values of CMF are averaged over the entire area of
`the entrance pupil. For plane waves incident uponthe following lenses:
`theinitial, the optimized axial GRIN, the
`
`Downloaded From:https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 28 Dec 2022
`(cid:39)(cid:82)(cid:90)(cid:81)(cid:79)(cid:82)(cid:68)(cid:71)(cid:72)(cid:71)(cid:3)(cid:41)(cid:85)(cid:82)(cid:80)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:86)(cid:29)(cid:18)(cid:18)(cid:90)(cid:90)(cid:90)(cid:17)(cid:86)(cid:83)(cid:76)(cid:72)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:79)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:70)(cid:82)(cid:81)(cid:73)(cid:72)(cid:85)(cid:72)(cid:81)(cid:70)(cid:72)(cid:16)(cid:83)(cid:85)(cid:82)(cid:70)(cid:72)(cid:72)(cid:71)(cid:76)(cid:81)(cid:74)(cid:86)(cid:16)(cid:82)(cid:73)(cid:16)(cid:86)(cid:83)(cid:76)(cid:72)(cid:3)(cid:82)(cid:81)(cid:3)(cid:21)(cid:27)(cid:3)(cid:39)(cid:72)(cid:70)(cid:3)(cid:21)(cid:19)(cid:21)(cid:21)
`Termsof Use: https://www.spiedigitallibrary.org/terms-of-use
`(cid:55)(cid:72)(cid:85)(cid:80)(cid:86)(cid:3)(cid:82)(cid:73)(cid:3)(cid:56)(cid:86)(cid:72)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:86)(cid:29)(cid:18)(cid:18)(cid:90)(cid:90)(cid:90)(cid:17)(cid:86)(cid:83)(cid:76)(cid:72)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:79)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:87)(cid:72)(cid:85)(cid:80)(cid:86)(cid:16)(cid:82)(cid:73)(cid:16)(cid:88)(cid:86)(cid:72)
`
`SPIE Vol. 2263 / 37
`
`6
`
`

`

`
`
`soeSs9a8a8AVERAGECAUSTICMERITFUNCTIONCM) 9 S
`
`
`
`
`
`
`To
`0.05
`8.18
`0.15
`8.20
`0.25
`e.38
`GRADIENT INDEX PARAMETER (1/cm)
`
`Figure 2: Average CMF as a function of the GRIN parameter.
`
`FIRST ASPHERIC SURFACE
`
`8.78
`
`8888AVERAGECAUSTICMERITFUNCTION 8
`
`
`
`
`
`8.10
`
`6.00
`-8.015
`
`9.005
`2.000
`- 9,005
`-8.018
`FIRST DEFORMATION COEFFICIENT
`
`8.018
`
`Figure 3: Average CMFas a functionofthefirst deformation coefficient of thefirst surface on the lens.
`
`38/ SPIE Vol. 2263
`Downloaded From: https:/Awww.spiedigitallibrary.org/conference-proceedings-of-spie on 28 Dec 2022
`(cid:39)(cid:82)(cid:90)(cid:81)(cid:79)(cid:82)(cid:68)(cid:71)(cid:72)(cid:71)(cid:3)(cid:41)(cid:85)(cid:82)(cid:80)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:86)(cid:29)(cid:18)(cid:18)(cid:90)(cid:90)(cid:90)(cid:17)(cid:86)(cid:83)(cid:76)(cid:72)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:79)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:70)(cid:82)(cid:81)(cid:73)(cid:72)(cid:85)(cid:72)(cid:81)(cid:70)(cid:72)(cid:16)(cid:83)(cid:85)(cid:82)(cid:70)(cid:72)(cid:72)(cid:71)(cid:76)(cid:81)(cid:74)(cid:86)(cid:16)(cid:82)(cid:73)(cid:16)(cid:86)(cid:83)(cid:76)(cid:72)(cid:3)(cid:82)(cid:81)(cid:3)(cid:21)(cid:27)(cid:3)(cid:39)(cid:72)(cid:70)(cid:3)(cid:21)(cid:19)(cid:21)(cid:21)
`Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
`(cid:55)(cid:72)(cid:85)(cid:80)(cid:86)(cid:3)(cid:82)(cid:73)(cid:3)(cid:56)(cid:86)(cid:72)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:86)(cid:29)(cid:18)(cid:18)(cid:90)(cid:90)(cid:90)(cid:17)(cid:86)(cid:83)(cid:76)(cid:72)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:79)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:87)(cid:72)(cid:85)(cid:80)(cid:86)(cid:16)(cid:82)(cid:73)(cid:16)(cid:88)(cid:86)(cid:72)
`
`7
`
`

`

`
`Surface
`
`2.126026|21.457898
`-0.0075
`-0.0030
`-0.00016
`0.0022
`-0.00030
`-0.0004
`-0.0016
`-0.0001
`0.6
`2.302234
`1.877091
`
`Table 1: Parameters of optimized asheric surfaces lens.
`
`1.00
`2988 8.20
`
`
`ss9©»8§8&8CAUSTICMERITFUNCTION(CM)
`
`HOMOGENEOUS LENS
`1
`ENS
`3 AXIAL GRIN LENS
`--- LENS GIVEN IN REF. [4]
`
`ae
`
`8.88
`2.40
`RAY HEIGHT AT INPUT PLANE (CM)
`
`1.28
`
`Figure 4: Comparison of the CMF as a function of the ray height at the entrance pupil.
`
`optimized aspheric surfaces, and the axial GRIN lens given in Ref. [4], the values of average CMF are 0.44337,
`0.06201, 0.07942, and 0.08914, respectively. This shows that the optimized axial GRIN has the smallest value of
`the average CMF when comparedto other lenses in the group. Figure 4 presents the values of CMF as a function
`of the ray height at the entrance pupil for the group of lenses. Comparedto the other lenses in the group, these
`results show that the axial GRIN lens has the smallest values of the CMF over the range of the entrance pupil
`radius. Figure 5 displays the values of the average CMFas a function offield angles. Through the rangeoffield
`angle 0 - 20°, these results show that the optimized axial GRIN lens has much smaller values of average CMF than
`the optimized aspheric lens or initial lens and has similar performance as the GRIN lens reported in Ref.[13].
`
`‘To investigate the ray distribution at the focal plane of the lens, the values of RMS blur circle radius are
`compared as a function of the field angles in Fig. 6. Results show that the use of axial GRIN optimization
`technique has reduced the values of RMSoftheinitial lens by 50% and 23% for the incident angles 0 and 20°,
`respectively, while the use of aspheric surfaces optimization technique has reduced the values of RMS by 23.7%
`and 12.8% for the same field angles. Figure 6 also shows that the values of RMSare very similar for the optimized
`axial GRIN lens and the GRINlens given in Ref.[4].
`
`Downloaded From:https:/Avww.spiedigitallibrary.org/conference-proceedings-of-spie on 28 Dec 2022
`(cid:39)(cid:82)(cid:90)(cid:81)(cid:79)(cid:82)(cid:68)(cid:71)(cid:72)(cid:71)(cid:3)(cid:41)(cid:85)(cid:82)(cid:80)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:86)(cid:29)(cid:18)(cid:18)(cid:90)(cid:90)(cid:90)(cid:17)(cid:86)(cid:83)(cid:76)(cid:72)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:79)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:70)(cid:82)(cid:81)(cid:73)(cid:72)(cid:85)(cid:72)(cid:81)(cid:70)(cid:72)(cid:16)(cid:83)(cid:85)(cid:82)(cid:70)(cid:72)(cid:72)(cid:71)(cid:76)(cid:81)(cid:74)(cid:86)(cid:16)(cid:82)(cid:73)(cid:16)(cid:86)(cid:83)(cid:76)(cid:72)(cid:3)(cid:82)(cid:81)(cid:3)(cid:21)(cid:27)(cid:3)(cid:39)(cid:72)(cid:70)(cid:3)(cid:21)(cid:19)(cid:21)(cid:21)
`Termsof Use: https://www.spiedigitallibrary.org/terms-of-use
`(cid:55)(cid:72)(cid:85)(cid:80)(cid:86)(cid:3)(cid:82)(cid:73)(cid:3)(cid:56)(cid:86)(cid:72)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:86)(cid:29)(cid:18)(cid:18)(cid:90)(cid:90)(cid:90)(cid:17)(cid:86)(cid:83)(cid:76)(cid:72)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:79)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:87)(cid:72)(cid:85)(cid:80)(cid:86)(cid:16)(cid:82)(cid:73)(cid:16)(cid:88)(cid:86)(cid:72)
`
`SPIE Vol. 2263 / 39
`
`8
`
`

`

`12
`
`ASPHERIC LEN
`3 AXIAL GRIN LENS
`DOTS= R. N. PFISTERER LENS.
`
`
`
`
`AVERAGECAUSTICMERITFUNCTION(CM>rNNV»88888
`° 8 .08
`
`5.00
`
`15.00
`10.08
`FIELD ANGLE (DEG.>
`
`20:00
`
`25.00
`
`Figure 5: Comparison of average CMFas a function offield angles.
`
`8.23
`
`HOMOGENEOUS LENS
`1
`2 ASPHERIC LENS
`3 AXIAL GRIN LENS
`>--
`
`LENS GIVEN IN REF.[4] 8.28
`
`5.00
`
`15.00
`18.08
`FIELD ANGLE ( DEG.)
`
`20.00
`
`25.08
`
`Figure 6: Comparison of RMSblurcircle radius as a function offield angles.
`
`40 / SPIE Vol. 2263
`Downloaded From: https:/Awww.spiedigitallibrary.org/conference-proceedings-of-spie on 28 Dec 2022
`(cid:39)(cid:82)(cid:90)(cid:81)(cid:79)(cid:82)(cid:68)(cid:71)(cid:72)(cid:71)(cid:3)(cid:41)(cid:85)(cid:82)(cid:80)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:86)(cid:29)(cid:18)(cid:18)(cid:90)(cid:90)(cid:90)(cid:17)(cid:86)(cid:83)(cid:76)(cid:72)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:79)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:70)(cid:82)(cid:81)(cid:73)(cid:72)(cid:85)(cid:72)(cid:81)(cid:70)(cid:72)(cid:16)(cid:83)(cid:85)(cid:82)(cid:70)(cid:72)(cid:72)(cid:71)(cid:76)(cid:81)(cid:74)(cid:86)(cid:16)(cid:82)(cid:73)(cid:16)(cid:86)(cid:83)(cid:76)(cid:72)(cid:3)(cid:82)(cid:81)(cid:3)(cid:21)(cid:27)(cid:3)(cid:39)(cid:72)(cid:70)(cid:3)(cid:21)(cid:19)(cid:21)(cid:21)
`Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
`(cid:55)(cid:72)(cid:85)(cid:80)(cid:86)(cid:3)(cid:82)(cid:73)(cid:3)(cid:56)(cid:86)(cid:72)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:86)(cid:29)(cid:18)(cid:18)(cid:90)(cid:90)(cid:90)(cid:17)(cid:86)(cid:83)(cid:76)(cid:72)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:79)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:87)(cid:72)(cid:85)(cid:80)(cid:86)(cid:16)(cid:82)(cid:73)(cid:16)(cid:88)(cid:86)(cid:72)
`
`9
`
`

`

`4. CONCLUSION
`
`Theresults of this study indicate that the caustic surfaces and the associated CMF, which represents spread of
`the image of the optical system from the ideal focal point of the system whenall orders of geometrical aberrations
`are considered, are useful methodsfor optimizing the imaging performance of a GRINlens with spherical surfaces
`and
`a constant index lens with aspherical surfaces. Further, this study suggest that an axial GRIN lens provides
`bett
`er optical performance than an aspherical lens with constant index media.
`
`5.REFERENCES
`
`. G. G. Slyusarev, Aberration and Optical Design Theory
`Chap. 9.
`
`(Adam Hilger Ltd, Bristol, England, 1984),
`
`. D. T. Moore,“ Design of singlet with continuously varying indices ofrefractions,” J. Opt. Soc. Am. 61, 886
`(1971).
`
`P. J. Sands,“ Third order aberrations of inhomogeneouslenses,” J. Opt. Soc. Am. 60.11, 1436-1443 (1976).
`
`R. N. Pfisterer,“ Design of a 35-mm photographic objective using axial GRIN materials,” Proc. SPIE 2000,
`359-365 (1993).
`,
`
`A. M. Kassim, D. L. Shealy and D. G. Burkhard, “ Caustic merit function for optical design,” Appl. Opt. 28.3,
`601-606 (1989).
`
`A. Nussbaum and R. A. Phillips, Contemporary Optics for Scientists and Engineers (Prentice-Hall, Inc.,
`Englewood Cliffs, New Jersey, 1976), Chap. 3.
`
`. T. H. Jamieson, Optimization Techniques in Lens Design (American Elsevier Publishing Company, New
`York, 1971), pp. 16-20.
`
`D. G. Burkhard and D.

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket