`IPR of U.S. Patent No. 19688-0196IP2
`
`DECLARATION OF JUNE ANN MUNFORD
`
`1
`
`LGE 1011
`
`
`
`Attorney Docket No. 10,693,700
`IPR of U.S. Patent No. 19688-0196IP2
`
`1. My name is June Ann Munford. I am over the age of 18, have personal
`
`knowledge of the facts set forth herein, and am competent to testify to the
`
`same.
`
`2. I earned a Master of Library and Information Science (MLIS) from the
`
`University of Wisconsin-Milwaukee in 2009. I have over ten years of
`
`experience in the library/information science field. Beginning in 2004, I
`
`have served in various positions in the public library sector including
`
`Assistant Librarian, Youth Services Librarian and Library Director. I have
`
`attached my Curriculum Vitae as Appendix CV.
`
`3. During my career in the library profession, I have been responsible for
`
`materials acquisition for multiple libraries. In that position, I have cataloged,
`
`purchased and processed incoming library works. That includes purchasing
`
`materials directly from vendors, recording publishing data from the material
`
`in question, creating detailed material records for library catalogs and
`
`physically preparing that material for circulation. In addition to my
`
`experience in acquisitions, I was also responsible for analyzing large
`
`collections of library materials, tailoring library records for optimal catalog
`
`1
`
`2
`
`
`
`
`
`
`
`
`
`
`
`
`Attorney Docket No. 10,693,700
`IPR of U.S. Patent No. 19688-0196IP2
`
`search performance and creating lending agreements between libraries
`
`during my time as a Library Director.
`
`
`4. I am familiar with the Internet Archive, a digital library formally certified by
`
`the State of California as a public library. Among other services that the
`
`Internet Archive makes available to the general public is the Wayback
`
`Machine, an online archive. The Internet Archive’s Wayback Machine
`
`service archives webpages as of a certain capture date to track changes in the
`
`web over time. The Internet Archive has been in operation as a nonprofit
`
`library since 1996 and has hosted the Wayback Machine service since its
`
`inception in 2001. During my time as a librarian, I frequently used the
`
`Internet Archive’s Wayback Machine for research and instruction purposes.
`
`This includes teaching instructional classes on using the Wayback Machine
`
`to library patrons and using the Wayback Machine to research reference
`
`inquiries that require hard-to-find online resources. I consider the Internet
`
`Archive’s recordskeeping to be as rigorous and detailed as other formal
`
`library recordskeeping practices such as MARC records, OCLC records and
`
`Dublin Core.
`
`
`
`2
`
`3
`
`
`
`
`
`
`
`
`
`
`
`
`Attorney Docket No. 10,693,700
`IPR of U.S. Patent No. 19688-0196IP2
`
`5. I have reviewed Exhibit LGE1023, a document entitled ATSC Standard:
`
`Physical Layer Protocol (A/322), 26 December 2018 by the Advanced
`
`Television Systems Committee.
`
`
`6. Attached hereto as Appendix 322a is a screen capture of the Internet Archive
`
`Wayback Machine entry for https://www.atsc.org/wp-
`
`content/uploads/2016/10/A322-2018-Physical-Layer-Protocol.pdf. I secured
`
`these screen captures myself from
`
`https://web.archive.org/web/20190501000000*/https://www.atsc.org/wp-
`
`content/uploads/2016/10/A322-2018-Physical-Layer-Protocol.pdf.
`
`
`7. Attached hereto as Appendix 322b is a copy of a file named “A322-2018-
`
`Physical-Layer-Protocol,pdf” containing ATSC Standard: Physical Layer
`
`Protocol (A/322), 26 December 2018. I secured this file from
`
`https://web.archive.org/web/20190301074735/https://www.atsc.org/wp-
`
`content/uploads/2016/10/A322-2018-Physical-Layer-Protocol.pdf. The PDF
`
`file contained within Appendix 322b is presented to the viewer upon visiting
`
`the website record captured in Appendix 322a. In comparing Appendix 322b
`
`to Exhibit LGE1023, it is my determination that Exhibit LGE1023 is a true
`
`and correct copy of ATSC Standard: Physical Layer Protocol (A/322), 26
`
`December 2018.
`
`3
`
`4
`
`
`
`
`
`
`
`
`
`
`
`
`Attorney Docket No. 10,693,700
`IPR of U.S. Patent No. 19688-0196IP2
`
`
`8. Attached hereto as Appendix 322c is a screen capture of the Internet Archive
`
`Wayback Machine entry for https://www.atsc.org/standards/atsc-3-0-
`
`standards/. I secured these screen captures myself from
`
`https://web.archive.org/web/20190701000000*/https://www.atsc.org/standar
`
`ds/atsc-3-0-standards/. On this web capture of the ATSC website, there is an
`
`entry for the 322:2018 Standard presented on page 3 of the document. The
`
`‘download PDF file’ button on this record forwards the user to the PDF copy
`
`presented in Appendix 322a and 322b.
`
`
`9. Attached hereto as Appendix 322d is a screen capture of the IEEE Xplore
`
`entry for “Mobile Performance Evaluation for ATSC 3.0 Physical Layer
`
`Modulation and Code Combinations Under TU-6 Channel” by Sungjun Ahn,
`
`et. al as published in IEEE Transactions on Broadcasting December 2020. I
`
`secured these screen captures myself from
`
`https://ieeexplore.ieee.org/document/8948331. On page 4 of this screen
`
`capture, the IEEE record indicates ATSC Standard: Physical Layer Protocol
`
`(A/322), 26 December 2018 was cited in “Mobile Performance Evaluation
`
`for ATSC 3.0 Physical Layer Modulation and Code Combinations Under
`
`TU-6 Channel”.
`
`
`
`4
`
`5
`
`
`
`
`
`
`
`
`
`
`
`
`Attorney Docket No. 10,693,700
`IPR of U.S. Patent No. 19688-0196IP2
`
`10. Attached hereto as Appendix 322e is a screen capture of the IEEE Xplore
`
`entry for “Experimental Verification of Transmitter Carrier Offset Scheme
`
`for ATSC 3.0 System” by Haechan Kwon, et. al as published in the
`
`proceedings of 2020 IEEE International Symposium on Broadband
`
`Multimedia Systems and Broadcasting (BMSB). I secured these screen
`
`captures myself from https://ieeexplore.ieee.org/document/9379726. On
`
`page 3 of this screen capture, the IEEE record indicates ATSC Standard:
`
`Physical Layer Protocol (A/322), 26 December 2018 was cited in
`
`“Experimental Verification of Transmitter Carrier Offset Scheme for ATSC
`
`3.0 System”.
`
`
`11. Appendix 322a and 322b indicate the ‘A322-2018-Physical-Layer-
`
`Protocol,pdf’ file containing ATSC Standard: Physical Layer Protocol
`
`(A/322), 26 December 2018 was first made available by the Internet Archive
`
`as of March 1, 2019. Appendix 322c indicates the ATSC website was
`
`making this same file available as of May 26, 2019 if not earlier. The use of
`
`ATSC Standard: Physical Layer Protocol (A/322), 26 December 2018 as a
`
`citation in Appendices 322d and 322e indicates this standard was broadly
`
`available as of the year 2020. Considering this information, it is also my
`
`determination that ATSC Standard: Physical Layer Protocol (A/322), 26
`
`5
`
`6
`
`
`
`
`
`
`
`
`
`
`Attorney Docket No. 10,693,700
`IPR of U.S. Patent No. 19688-0196IP2
`
`December 2018 was first available to the public by March 2019 if not earlier
`
`by the ATSC itself.
`
`
`12. I have been retained on behalf of the Petitioner to provide assistance in the
`
`above-illustrated matter in establishing the authenticity and public
`
`availability of the documents discussed in this declaration. I am being
`
`compensated for my services in this matter at the rate of $100.00 per hour
`
`plus reasonable expenses. My statements are objective, and my
`
`compensation does not depend on the outcome of this matter.
`
`
`13. I declare under penalty of perjury that the foregoing is true and correct. I
`
`hereby declare that all statements made herein of my own knowledge are
`
`true and that all statements made on information and belief are believed to
`
`be true; and further that these statements were made the knowledge that
`
`willful false statements and the like so made are punishable by fine or
`
`imprisonment, or both, under Section 1001 of Title 18 of the United States
`
`Code.
`
`
`
`Dated: 12/9/2022
`
`
`
`June Ann Munford
`
`
`
`6
`
`7
`
`
`
`(cid:36)(cid:51)(cid:51)(cid:40)(cid:49)(cid:39)(cid:44)(cid:59)(cid:3)(cid:22)(cid:21)(cid:21)(cid:36)
`APPENDIX 322A
`
`8
`
`
`
`12/7/22, 12:53 PM
`
`nimbus screenshot app print
`
`screenshot-web.archive.org-2022.12.07-12_53_26
`https://web.archive.org/web/20191101000000*/https://www.atsc.org/wp-content/uploads/2016/10/A322-2018-Physical-Layer-Protocol.pdf
`07.12.2022
`
`chrome-extension://bpconcjcammlapcogcnnelfmaeghhagj/edit.html
`
`9
`
`1/1
`
`
`
`12/7/22, 12:51 PM
`
`nimbus screenshot app print
`
`screenshot-web.archive.org-2022.12.07-12_50_31
`https://web.archive.org/web/20190301074735/https://www.atsc.org/wp-content/uploads/2016/10/A322-2018-Physical-Layer-Protocol.pdf
`07.12.2022
`
`chrome-extension://bpconcjcammlapcogcnnelfmaeghhagj/edit.html
`
`10
`
`1/1
`
`
`
`(cid:36)(cid:51)(cid:51)(cid:40)(cid:49)(cid:39)(cid:44)(cid:59)(cid:3)(cid:22)(cid:21)(cid:21)(cid:37)
`APPENDIX 322B
`
`11
`
`
`
`ATSC A/322:2018
`
`Physical Layer Protocol
`
`26 December 2018
`
`
`
`
`
`
`ATSC Standard:
`Physical Layer Protocol
`(A/322)
`
`Doc. A/322:2018
`26 December 2018
`
`Advanced Television Systems Committee
`1776 K Street, N.W.
`Washington, D.C. 20006
`202-872-9160
`
`
`
`i
`
`12
`
`
`
`ATSC A/322:2018
`
`Physical Layer Protocol
`
`26 December 2018
`
`The Advanced Television Systems Committee, Inc., is an international, non-profit organization
`developing voluntary standards and recommended practices for digital television. ATSC member
`organizations represent the broadcast, broadcast equipment, motion picture, consumer electronics,
`computer, cable, satellite, and semiconductor industries. ATSC also develops digital television
`implementation strategies and supports educational activities on ATSC standards. ATSC was
`formed in 1983 by the member organizations of the Joint Committee on Inter-society Coordination
`(JCIC): the Electronic Industries Association (EIA), the Institute of Electrical and Electronic
`Engineers (IEEE), the National Association of Broadcasters (NAB), the National Cable
`Telecommunications Association (NCTA), and the Society of Motion Picture and Television
`Engineers (SMPTE). For more information visit www.atsc.org.
`
`Note: The user's attention is called to the possibility that compliance with this standard may
`require use of an invention covered by patent rights. By publication of this standard, no position
`is taken with respect to the validity of this claim or of any patent rights in connection therewith.
`One or more patent holders have, however, filed a statement regarding the terms on which such
`patent holder(s) may be willing to grant a license under these rights to individuals or entities
`desiring to obtain such a license. Details may be obtained from the ATSC Secretary and the patent
`holder.
`
`Implementers with feedback, comments, or potential bug reports relating to this document may
`contact ATSC at https://www.atsc.org/feedback/.
`
`Disclaimer
`Not all optional settings that are combinations with non-optional settings have been tested at the
`time of release of this document.
`
`Revision History
`
`Version
`A/322:2016 approved
`Revision 1 approved as A/322:2017
` Amendment No. 1 to A/322:2017 approved as a roll-up
`Revision 2 approved as A/322:2018
`
`
`Date
`7 September 2016
`9 February 2017
`6 June 2017
`26 December 2018
`
`
`
`ii
`
`13
`
`
`
`ATSC A/322:2018
`
`Physical Layer Protocol
`
`26 December 2018
`
`5.
`
`5.2
`
`Table of Contents
`1. SCOPE ..................................................................................................................................................... 1
`1.1
`1
`Introduction and Background
`1.2
`1
`Organization
`2. REFERENCES ......................................................................................................................................... 2
`2.1
`2
`Normative References
`2.2
`2
`Informative References
`3. DEFINITION OF TERMS .......................................................................................................................... 2
`3.1
`2
`Compliance Notation
`3.2
`3
`Treatment of Syntactic Elements
`3.2.1
`3
`Reserved Elements
`3
`3.3
`Acronyms, Abbreviations and Mathematical Operators
`5
`3.4
`Terms
`4. SYSTEM OVERVIEW ............................................................................................................................... 6
`4.1
`6
`Features
`4.2
`7
`System Architecture
`4.3
`10
`Central Concepts
`INPUT FORMATTING ............................................................................................................................ 10
`5.1
`11
`Encapsulation and Compression
`5.1.1
`11
`Number of PLPs
`11
`Baseband Formatting
`5.2.1
`12
`Mapping ALP Packets to Baseband Packets
`5.2.2
`13
`Baseband Packet Header
`5.2.3
`16
`Scrambling of Baseband Packets
`6. BIT INTERLEAVED CODING AND MODULATION (BICM) .................................................................. 17
`6.1
`17
`Forward Error Correction (FEC)
`6.1.1
`17
`FEC Frame Structure
`6.1.2
`19
`Outer Encoding
`6.1.3
`21
`Inner Encoding
`24
`Bit Interleavers
`6.2.1
`24
`Parity Interleaver
`6.2.2
`24
`Group-Wise Interleaver
`6.2.3
`25
`Block Interleavers
`29
`Constellation Mapping
`6.3.1
`30
`Constellation Overview
`6.3.2
`30
`Modulation and Coding Combinations
`6.3.3
`31
`Demultiplexing Operation
`6.3.4
`32
`Bit to IQ Mapping
`34
`Layered Division Multiplexing (LDM)
`6.4.1
`34
`LDM Encoding
`6.4.2
`36
`Injection Level Controller
`6.4.3
`36
`Power Normalizer
`6.4.4
`37
`LDM Example
`38
`Protection for L1 Signaling
`6.5.1
`38
`Overview
`
`6.2
`
`6.3
`
`6.4
`
`6.5
`
`
`
`iii
`
`14
`
`
`
`ATSC A/322:2018
`
`Physical Layer Protocol
`
`26 December 2018
`
`7.2
`
`8.2
`
`8.3
`8.4
`
`39
`6.5.2
`Common Blocks for L1-Basic and L1-Detail
`50
`6.5.3
`L1-Detail Specific Block Details
`7. FRAMING AND INTERLEAVING ........................................................................................................... 55
`7.1
`55
`Time Interleaving
`7.1.1
`55
`Time Interleaver Modes
`7.1.2
`56
`Time Interleaver Size
`7.1.3
`56
`Extended Interleaving
`7.1.4
`57
`Convolutional Time Interleaver (CTI) Mode
`7.1.5
`58
`Hybrid Time Interleaver (HTI) Mode
`67
`Framing
`7.2.1
`67
`Overview
`7.2.2
`67
`Frame Structure
`7.2.3
`69
`Number of Carriers
`7.2.4
`69
`Frame Symbol Types
`7.2.5
`70
`Preamble
`7.2.6
`72
`Cell Multiplexing
`7.2.7
`81
`PLP Multiplexing Approaches within a Subframe
`90
`7.3
`Frequency Interleaving
`8. WAVEFORM GENERATION .................................................................................................................. 94
`8.1
`95
`Pilot Insertion
`8.1.1
`95
`Introduction
`8.1.2
`95
`Reference Sequence
`8.1.3
`96
`Scattered Pilot Insertion
`8.1.4
`97
`Continual Pilot Insertion
`8.1.5
`99
`Edge Pilot Insertion
`8.1.6
`99
`Preamble Pilot Insertion
`8.1.7
`101
`Subframe Boundary Pilot Insertion
`101
`MISO
`8.2.1
`101
`Transmit Diversity Code Filter Sets
`102
`Inverse Fast Fourier Transform (IFFT)
`105
`Peak to Average Power Ratio Reduction Techniques
`8.4.1
`105
`Tone Reservation
`8.4.2
`106
`Active Constellation Extension (ACE)
`106
`Guard Interval
`8.5.1
`106
`Guard Interval Extension for Time-aligned Frames
`108
`8.6
`Bootstrap
`9. L1 SIGNALING ..................................................................................................................................... 108
`9.1
`108
`Bootstrap
`9.1.1
`108
`Versioning
`9.1.2
`108
`Bootstrap Symbol 1
`9.1.3
`109
`Bootstrap Symbol 2
`9.1.4
`109
`Bootstrap Symbol 3
`109
`Syntax for L1-Basic Data
`9.2.1
`110
`L1-Basic System and Frame Parameters
`9.2.2
`112
`L1-Basic Parameters for L1-Detail
`9.2.3
`113
`L1-Basic Parameters for First Subframe
`
`8.5
`
`9.2
`
`
`
`iv
`
`15
`
`
`
`ATSC A/322:2018
`
`Physical Layer Protocol
`
`26 December 2018
`
`9.3
`
`114
`9.2.4
`L1-Basic Miscellaneous Parameters
`115
`Syntax and Semantics for L1-Detail Data
`117
`9.3.1
`L1-Detail Miscellaneous Parameters
`118
`9.3.2
`L1-Detail Channel Bonding Parameters (Frame)
`119
`9.3.3
`L1-Detail Subframe Parameters
`122
`9.3.4
`L1-Detail PLP Parameters
`124
`9.3.5
`L1-Detail LDM Parameters
`125
`9.3.6
`L1-Detail Channel Bonding Parameters (PLP)
`126
`9.3.7
`L1-Detail MIMO Parameters (PLP)
`126
`9.3.8
`L1-Detail Cell Multiplexing Parameters
`127
`9.3.9
`L1-Detail Time Interleaver (TI) Parameters
`ANNEX A : LDPC CODES .......................................................................................................................... 130
`A.1
`130
`LDPC Code Matrices (Ninner = 64800)
`A.2
`142
`LDPC Code Matrices (Ninner = 16200)
`ANNEX B : BIT INTERLEAVER SEQUENCES .......................................................................................... 147
`B.1
`147
`Permutation sequences of group-wise interleaving for Ninner = 64800 (Ngroup = 180)
`B.2
`160
`Permutation sequences of group-wise interleaving for Ninner = 16200 (Ngroup = 45)
`ANNEX C : CONSTELLATION DEFINITIONS AND FIGURES .................................................................. 164
`C.1
`164
`Constellation Definitions
`C.2
`171
`Constellation Figures
`C.3
`175
`Constellation Labeling
`ANNEX D : CONTINUAL PILOT (CP) PATTERNS ..................................................................................... 178
`D.1
`178
`Reference and Additional CP Indices
`ANNEX E : SCATTERED PILOT (SP) PATTERNS .................................................................................... 182
`E.1
`182
`SISO Scattered Pilot Patterns
`ANNEX F : NUMBER OF ACTIVE DATA CELLS IN SUBFRAME BOUNDARY SYMBOL ....................... 187
`F.1
`187
`Subframe Boundary Symbol Active Data Cell Tables
`F.2
`192
`Calculation of Subframe Boundary Symbol Null Cells (Informative)
`ANNEX G : TONE RESERVATION CARRIER INDICES ............................................................................ 193
`G.1
`193
`Tone Reservation Carrier Indices
`ANNEX H : PREAMBLE PARAMETERS FOR BOOTSTRAP .................................................................... 196
`H.1
`196
`Preamble Structure Parameter Values
`ANNEX I : TOTAL SYMBOL POWER ......................................................................................................... 200
`I.1
`200
`Preamble Symbol Frequency Domain Power
`I.2
`201
`Data and Subframe Boundary Symbol Frequency Domain Power
`ANNEX J : MISO ......................................................................................................................................... 207
`J.1
`207
`MISO Frequency Domain Coefficients
`ANNEX K : CHANNEL BONDING .............................................................................................................. 212
`K.1
`212
`Introduction
`K.2
`213
`Plain Channel Bonding
`K.3
`214
`Channel Bonding with SNR Averaging
`ANNEX L : MIMO ........................................................................................................................................ 216
`L.1
`216
`Overview
`L.2
`217
`FEC Coding
`
`
`
`v
`
`16
`
`
`
`ATSC A/322:2018
`
`Physical Layer Protocol
`
`26 December 2018
`
`L.3
`L.4
`
`L.5
`
`217
`Bit Interleaving
`217
`MIMO Mapping
`217
`L.4.1
`Demultiplexer
`217
`L.4.2
`Constellations
`218
`L.4.3
`Constellation Superposition for LDM
`218
`Precoding
`219
`L.5.1
`Stream Combining
`220
`L.5.2
`I/Q Polarization Interleaving
`220
`L.5.3
`Phase Hopping
`220
`Time Interleaver
`221
`Framer
`221
`Frequency Interleaving
`221
`Pilot Patterns
`221
`L.9.1
`Pilot Antenna Encoding
`224
`L.9.2
`Pilot Schemes
`233
`L.10 MISO
`233
`L.11
`PAPR Reduction
`233
`L.12 Channel Bonding
`233
`L.13
`L1 signalling for MIMO
`ANNEX M : PEAK TO AVERAGE POWER RATIO REDUCTION ALGORITHMS (INFORMATIVE) ......... 235
`M.1
`235
`PAPR Reduction Algorithms
`M.2
`235
`TR Algorithm
`M.3
`237
`ACE Algorithms
`M.3.1
`237
`1-D ACE algorithm
`M.3.2
`239
`2-D ACE Algorithm
`M.3.3
`241
`2-D ACE Constellation Diagrams
`ANNEX N : TRANSMITTER IDENTIFICATION (TXID) ............................................................................... 245
`N.1
`245
`Overview
`N.2
`245
`Code Generation
`N.2.1
`246
`Multiple Shift Registers
`N.2.2
`247
`Clock Rate
`N.2.3
`247
`Preloaded Values
`N.2.4
`247
`Synchronization with Preamble Symbol
`248
`Code Transmission
`N.3.1
`248
`BPSK Modulation
`N.3.2
`248
`TxID Injection Level
`249
`Signaling Fields
`
`L.6
`L.7
`L.8
`L.9
`
`N.3
`
`N.4
`
`
`
`
`
`
`
`vi
`
`17
`
`
`
`ATSC A/322:2018
`
`Physical Layer Protocol
`
`26 December 2018
`
`Index of Figures
`Figure 4.1 Block diagram of the system architecture for one RF channel. .................................... 7
`Figure 4.2 Block diagram (simplified) of a single PLP system architecture. ................................ 8
`Figure 4.3 Block diagram (simplified) of a multiple PLP system architecture. ............................ 8
`Figure 4.4 Block diagram (simplified) of the LDM system architecture. ...................................... 9
`Figure 4.5 Block diagram (simplified) of a channel bonded system. .......................................... 10
`Figure 5.1 Block diagram of input formatting. ............................................................................ 11
`Figure 5.2 Block diagram of baseband formatting. ..................................................................... 12
`Figure 5.3 Baseband Packet structure showing Header, Payload and mapping example of
`ALP packets to a Baseband Packet. .................................................................................. 12
`Figure 5.4 Baseband Packet Header structure details. ................................................................. 13
`Figure 5.5 Structure of Extension Field for the Mixed Extension Mode. .................................... 15
`Figure 5.6 Shift register of the PRBS encoder for baseband scrambling. ................................... 17
`Figure 6.1 Block diagram of BICM. ............................................................................................ 17
`Figure 6.2 Structure of FEC Frame when BCH or CRC is used as Outer Code. ......................... 18
`Figure 6.3 Structure of FEC Frame when no Outer Code is used. .............................................. 18
`Figure 6.4 Shift register for CRC-32. .......................................................................................... 20
`Figure 6.5 Bit interleaver structure. ............................................................................................. 24
`Figure 6.6 Parity interleaved LDPC codeword bit groups. .......................................................... 25
`Figure 6.7 Write/Read operation of Type A block interleaving. ................................................. 28
`Figure 6.8 Write operation of Part 1 Type B block interleaving for 256QAM. .......................... 29
`Figure 6.9 Read operation of Part 1 Type B block interleaving for 256QAM. ........................... 29
`Figure 6.10 Mapper structure. ...................................................................................................... 30
`Figure 6.11 De-multiplexing of bits into sub-streams. ................................................................ 32
`Figure 6.12 Example 16-NUC for code rate 6/15. ....................................................................... 33
`Figure 6.13 Example 1024-NUC for code rate 6/15. ................................................................... 34
`Figure 6.14 Block diagram of LDM encoding. ............................................................................ 35
`Figure 6.15 Constellation superposition for two-layer LDM. ..................................................... 35
`Figure 6.16 Examples of (a, left) Core Layer and (b, right) Enhanced Layer constellations. ..... 38
`Figure 6.17 Example combined constellation after normalization. ............................................. 38
`Figure 6.18 Block diagram of L1-Basic protection. .................................................................... 39
`Figure 6.19 Block diagram of the L1-Detail protection. .............................................................. 39
`Figure 6.20 Format of data after LDPC encoding of L1-Basic/-Detail signaling. ....................... 42
`Figure 6.21 Parity interleaved LDPC codeword bit groups. ........................................................ 44
`
`Figure 6.22 Parity Repetition ((cid:2170)(cid:2200)(cid:2187)(cid:2198)(cid:2187)(cid:2183)(cid:2202)(cid:3409)(cid:2170)(cid:2194)(cid:2186)(cid:2198)(cid:2185)_(cid:2198)(cid:2183)(cid:2200)(cid:2191)(cid:2202)(cid:2207)). ................................................... 46
`Figure 6.23 Parity Repetition ((cid:2170)(cid:2200)(cid:2187)(cid:2198)(cid:2187)(cid:2183)(cid:2202)>(cid:2170)(cid:2194)(cid:2186)(cid:2198)(cid:2185)_(cid:2198)(cid:2183)(cid:2200)(cid:2191)(cid:2202)(cid:2207)). ................................................... 46
`
`Figure 6.24 Example 1 of parity puncturing after repetition. ...................................................... 48
`Figure 6.25 Example 2 of parity puncturing after repetition. ...................................................... 48
`Figure 6.26 Example of removal of zero-padding bits. ............................................................... 48
`Figure 6.27 Block interleaving scheme. ....................................................................................... 49
`Figure 6.28 Example of bit demultiplexing rule for 16-NUC. ..................................................... 49
`Figure 6.29 Segmentation of L1-Detail signaling. ....................................................................... 51
`Figure 6.30 Additional parity for L1-Detail signaling. ................................................................ 52
`Figure 6.31 Repeated LDPC codeword. ...................................................................................... 52
`Figure 6.32 Additional parity generation for L1-Detail signaling (NAP (cid:148)Npunc). ......................... 54
`Figure 6.33 Additional parity generation for L1-Detail signaling (NAP >Npunc). ......................... 54
`
`
`
`vii
`
`18
`
`
`
`ATSC A/322:2018
`
`Physical Layer Protocol
`
`26 December 2018
`
`Figure 7.1 Block diagram of framing and interleaving. ............................................................... 55
`Figure 7.2 Block diagram for time interleaving for CTI Mode. .................................................. 57
`Figure 7.3 Block diagram of the Convolutional Time Interleaver. .............................................. 57
`Figure 7.4 Block diagram for time interleaving for HTI mode. .................................................. 59
`Figure 7.5 Block diagram of the Cell Interleaver: (a) Linear writing operation,
`(b) Pseudo-random reading operation. .............................................................................. 60
`Figure 7.6 Example of joint operation of TBI and CDL in the HTI. ........................................... 62
`Figure 7.7 Block diagram of Twisted Block Interleaver: (a) linear writing operation, (b)
`diagonal-wise reading operation. ...................................................................................... 64
`Figure 7.8 Block diagram of Convolutional Delay Line used in the HTI. .................................. 65
`Figure 7.9 Example of HTI for L1D_plp_HTI_inter_subframe = 0 and 1, and for
`L1D_plp_HTI_num_ti_blocks = 0 and 1. ................................................................... 66
`Figure 7.10 Frame structure. ........................................................................................................ 68
`Figure 7.11 Mapping of L1-Basic and L1-Detail into Preamble symbol(s). ............................... 71
`Figure 7.12 Data cell addressing when a Preamble symbol is associated with a subframe. ........ 73
`Figure 7.13 Data cell addressing when a Preamble symbol is not associated with a subframe. . 74
`Figure 7.14 Data carrier indices for null and active data carriers. ............................................... 79
`Figure 7.15 Data cell indices used for illustrative multiplexing examples. ................................. 82
`Figure 7.16 Example of cell multiplexing for a single PLP per subframe. .................................. 82
`Figure 7.17 Example of time division multiplexing of PLPs. ..................................................... 83
`Figure 7.18 LDM Example #1 (1 Core PLP, 1 Enhanced PLP). ................................................. 84
`Figure 7.19 LDM Example #2 (2 Core PLPs, 1 Enhanced PLP). ................................................ 85
`Figure 7.20 LDM Example #3 (2 Core PLPs, 2 Enhanced PLPs). .............................................. 85
`Figure 7.21 LDM Example #4 (1 Core PLP, 3 Enhanced PLPs). ................................................ 86
`Figure 7.22 LDM Example #5 (3 Core PLPs, 1 Enhanced PLP). ................................................ 87
`Figure 7.23 Example Insertion of Enhanced Layer dummy modulation values when the
`HTI mode is used with Layered-Division Multiplexing. .................................................. 87
`Figure 7.24 Example of frequency division multiplexing of PLPs. ............................................. 89
`Figure 7.25 Example of time and frequency division multiplexing of PLPs. .............................. 89
`Figure 7.26 Frequency interleaving overview. ............................................................................ 90
`Figure 7.27 FI address generation scheme for the 8K FFT size. ................................................. 91
`Figure 7.28 FI address generation scheme for the 16K FFT size. ............................................... 91
`Figure 7.29 FI address generation scheme for the 32K FFT size. ............................................... 92
`Figure 8.1 Block diagram of waveform generation. .................................................................... 94
`Figure 8.2 Reference sequence generator. ................................................................................... 96
`Figure 8.3 Block diagram showing example MISO transmission. ............................................ 102
`Figure 8.4 Illustration of the assignment of extra samples to the guard interval of each
`non-Preamble OFDM symbol in a frame........................................................................ 107
`Figure 8.5 Illustration of remaining leftover extra samples being assigned to a cyclic
`postfix of the final OFDM symbol of the final subframe of the frame. .......................... 108
`Figure 9.1 Illustration of the time information position and the time information being
`transmitted in the Preamble. ........................................................................................... 118
`Figure 9.2 L1D_plp_CTI_fec_block_start graphical description ....................................... 128
`Figure C.2.1 Constellation of QPSK. ........................................................................................ 172
`Figure C.2.2 Constellations of 16QAM. .................................................................................... 172
`Figure C.2.3 Constellations of 64QAM. .................................................................................... 173
`
`
`
`viii
`
`19
`
`
`
`ATSC A/322:2018
`
`Physical Layer Protocol
`
`26 December 2018
`
`Figure C.2.4 Constellations of 256QAM. .................................................................................. 173
`Figure C.2.5 Constellations of 1024QAM. ................................................................................ 174
`Figure C.2.6 Constellations of 4096QAM. ................................................................................ 174
`Figure E.1.1 Scattered pilot pattern SP3_2 (SISO, DX = 3, DY = 2). ......................................... 182
`Figure E.1.2 Scattered pilot pattern SP3_4 (SISO, DX = 3, DY = 4). ........................................ 182
`Figure E.1.3 Scattered pilot pattern SP4_2 (SISO, DX = 4, DY = 2). ......................................... 182
`Figure E.1.4 Scattered pilot pattern SP4_4 (SISO, DX = 4, DY = 4). ........................................ 183
`Figure E.1.5 Scattered pilot pattern SP6_2 (SISO, DX = 6, DY = 2). ........................................ 183
`Figure E.1.6 Scattered pilot pattern SP6_4 (SISO, DX = 6, DY = 4). ......................................... 183
`Figure E.1.7 Scattered pilot pattern SP8_2 (SISO, DX = 8, DY = 2). ........................................ 183
`Figure E.1.8 Scattered pilot pattern SP8_4 (SISO, DX = 8, DY = 4). ........................................ 184
`Figure E.1.9 Scattered pilot pattern SP12_2 (SISO, DX = 12, DY = 2). .................................... 184
`Figure E.1.10 Scattered pilot pattern SP12_4 (SISO, DX = 12, DY = 4). ................................... 184
`Figure E.1.11 Scattered pilot pattern SP16_2 (SISO, DX = 16, DY = 2). .................................. 184
`Figure E.1.12 Scattered pilot pattern SP16_4 (SISO, DX = 16, DY = 4). .................................. 185
`Figure E.1.13 Scattered p