throbber

`Kee, UNIVERSITAT
`‘ lib POLITECNICA
`
`tes”
`DE VALENCIA
`

`
`DEPARTAMENTODE
`COMUNICACIONES
`
`Non-Uniform Constellations
`for Next-Generation Digital
`Terrestrial Broadcast Systems
`
`Departamento de Comunicaciones
`
`Universitat Politécnica de Valencia
`
`A thesis for the degree of
`
`PhD in Telecommunications Engineering
`
`Valencia, June 2017
`
`Manuel Fuentes Muela
`
`Author:
`
`Supervisors:
`Dr. David Gémez Barquero
`Prof. Narcis Cardona Marcet
`
`LGE 1030
`LG Electronics, Inc. v. Constellation Designs, LLC
`IPR2023-00319
`
`LGE 1030
`LG Electronics, Inc. v. Constellation Designs, LLC
`IPR2023-00319
`
`1
`
`

`

`2
`
`

`

`Abstract
`
`Nowadays, the digital terrestrial television (DTT) market is characterized by
`the high capacity needed for high definition TV services, and the limited spec-
`trum available. There is a need for an efficient use of the broadcast spec-
`trum, which requires new technologies to guarantee increased capacities. Non-
`Uniform Constellations (NUC)arise as one of the most innovative techniques
`to approach those requirements. These constellations have been implemented
`in next-generation broadcast systems such as DVB-NGH(Digital Video Broad-
`casting - Next Generation Handheld) or ATSC 3.0 (Advanced Television Sys-
`tems Committee - Third Generation). NUCs reduce the gap between uniform
`Gray-labelled Quadrature Amplitude Modulation (QAM) constellations and
`the theoretical unconstrained Shannon limit. With these constellations, sym-
`bols are optimized in both in-phase (I) and quadrature (Q) components by
`means ofsignal geometrical shaping, considering a certain signal-to-noise ratio
`(SNR) and channel model.
`There are two types of NUC, depending on the numberof real-valued di-
`mensions considered in the optimization process, i.e. one-dimensional and two
`dimensional NUCs (1D-NUC and 2D-NUC,respectively). 1D-NUCs maintain
`the squared shape from QAM, but relaxing the distribution between constella-
`tion symbols in a single component, with non-uniform distance between them.
`These constellations provide better SNR performance than QAM,without any
`demapping complexity increase. 2D-NUCsalso relax the square shape con-
`straint, allowing to optimize the symbol positions in both dimensions,
`thus
`achieving higher capacity gains and lower SNR requirements. However, the
`use of 2D-NUCsimplies a higher demapping complexity, since a 2D-demapper
`is needed, i.e. I and Q components cannot be separated.
`In this dissertation, NUCs are analyzed from both transmit and receive
`point of views, using either single-input single-output (SISO) or multiple-input
`multiple-output (MIMO) antenna configurations. In SISO transmissions, 1D-
`NUCsand 2D-NUCsare optimized for a wide range of SNRs, several channel
`models and different constellation orders, using the Nelder-Mead optimization
`
`

`

`ABSTRACT
`
`algorithm. The optimization of rotated 2D-NUCsis also investigated, including
`the rotation angle as an additional variable in the optimization. Even though
`the demapping complexity is not increased, the SNR gain of these constellations
`is not significant. The highest rotation gain is obtained for low-order conste-
`llations and high SNRs. However, with multi-RF techniques such as Channel
`Bonding (CB) or Time-Frequency Slicing (TFS), the SNR gain is drastically
`increased, since I and Q components are transmitted in different RF channels.
`In this thesis, multi-RF gains of NUCs with and without rotation are provided
`for some representative scenarios.
`At the receiver,
`two different implementation bottlenecks are explored.
`First, the demapping complexity of all considered constellations is analyzed.
`Afterwards, two complexity reduction algorithms for 2D-NUCs are proposed.
`Both algorithms drastically reduce the number of distances to compute the
`output log-likelihood ratios (LLR). Moreover, both are finally combined in a
`single demapper. Quantization of NUCsis also explored in this dissertation,
`since LLR values and I/Q components are modified when using these conste-
`llations, compared to traditional QAM constellations. A new algorithm that is
`based on the optimization of the quantizer levels for a particular constellation
`is proposed. The proposed algorithm reduces the number of quantization bits
`and can be also extrapolated to QAM.
`The use of NUCsin multi-antenna communications is also investigated. In
`this dissertation, parameters that affect the optimization process are evaluated,
`when using a 2 x 2 dual polarized MIMOsystem. It includes the optimization
`in one or two antennas, the use of power imbalance, the cross-polar discrim-
`ination (XPD) between receive antennas, the use of different optimum and
`sub-optimum demappers, equalization methods and different channel models.
`Assuming different values for the parameters evaluated, new Multi-Antenna
`Non-Uniform Constellations (MA-NUC)are obtained by means of a particu-
`larized re-optimization process, specific for MIMO. At the receiver, an extended
`demapping complexity analysis is performed, where it is shown that the use of
`2D-NUCs in MIMOextremely increases the demapping complexity. In multi-
`antenna systems, the optimum demapping complexity grows exponentially with
`the number of antennas and the constellation order. As an alternative, an ef-
`ficient solution for 2D-NUCs and MIMOsystems based on Soft-Fixed Sphere
`Decoding (SFSD) is proposed. The main drawback is that SFSD demappers do
`not work with 2D-NUCs,since they perform a Successive Interference Cancel-
`lation (SIC) step that needs to be performed in separated I and Q components.
`The proposed method quantifies the closest symbol using Voronoi regions and
`allows SFSD demappers to work.
`
`

`

`Resumen
`
`Hoy en dia, el mercadodela televisién digital terrestre (TDT) esta caracter-
`izado por la alta capacidad requerida para transmitir servicios de televisi6n
`de alta definicién y el espectro disponible, el cual se encuentra muy limitado.
`Es necesario por tanto un uso eficiente del espectro radioeléctrico, el cual re-
`quiere nuevas tecnologias para garantizar mayores capacidades. Las constela-
`ciones no-uniformes (NUC) emergen como unadelas técnicas mas innovadoras
`para abordar tales requerimientos. Estas constelaciones han sido adoptadas
`en sistemas de televisién de siguiente generacién tales como DVB-NGH (Dig-
`ital Video Broadcasting - Next Generation Handheld) o ATSC 3.0 (Advanced
`Television Systems Committee - Third Generation). Las NUC reducen el es-
`pacio existente entre las constelaciones uniformes QAMyel limite tedrico de
`Shannon. Con estas constelaciones, los simbolos se optimizan en ambas com-
`ponentes fase (I) y cuadratura (Q) mediante técnicas geométricas de modelado
`de la senal, considerando un nivel sefal a ruido (SNR) concreto y un modelo
`de canal especifico.
`Hay dos tipos de NUC, dependiendo del nimero de dimensionesreales con-
`sideradas en el proceso de optimizacion, es decir, NUCs unidimensionales y bidi-
`mensionales (1D-NUC y 2D-NUC, respectivamente). Las 1D-NUC mantienen
`la forma cuadrada de las QAM, pero permiten cambiar la distribucién entre
`los simbolos en una componente concreta, teniendo una distancia no uniforme
`entre ellos. Estas constelaciones proporcionan un mejor rendimiento SNR que
`QAM,sin ningtin incremento en la complejidad en el demapper. Las 2D-NUC
`también permiten cambiar la forma cuadrada de la constelacién, permitiendo
`optimizar los simbolos en ambas dimensiones y por tanto obteniendo mayores
`ganancias en capacidad y menores requerimientos en SNR. Sin embargo,el uso
`de 2D-NUCsimplica una mayor complejidad en el receptor, puesto que se nece-
`sita un demapper 2D, donde las componentes I y Q no pueden ser separadas.
`En esta tesis se analizan las NUC desde el punto de vista tanto de trans-
`misi6n como de recepcion, utilizando bien configuraciones con una antena
`(SISO) o con miltiples antenas (MIMO). En transmisiones SISO, se han op-
`
`

`

`RESUMEN
`
`timizado 1D-NUCs para un rango amplio de distintas SNR, distintos modelos
`de canal y varios 6rdenes de constelacién. También se ha investigado la op-
`timizaci6én de 2D-NUCsrotadas, donde el angulo de rotacion se incluye en la
`optimizacién como unavariable adicional. Aunque la complejidad no aumenta,
`la ganancia SNRdeestas constelaciones noessignificativa. La mayor ganancia
`por rotacién se obtiene para bajos é6rdenes de constelacién y altas SNR. Sin
`embargo, utilizando técnicas multi-RF como Channel Bonding (CB) o Time-
`Frequency Slicing (TFS), la ganancia aumenta drdsticamente puesto que las
`componentes I y Q se transmiten en distintos canales RF. En esta tesis, se
`han estudiado varias ganancias multi-RF representativas de las NUC, con o sin
`rotacion.
`En el receptor, se han identificado dos cuellos de botella diferentes en la
`implementacion. Primero, se ha analizado la complejidad en el receptor para
`todas las constelaciones consideradas y, posteriormente, se proponen dosalgo-
`ritmos para reducir la complejidad con 2D-NUCs. Ambos algoritmos reducen
`drasticamente el numero de distancias para computar los LLR en el demapper
`con 2D-NUCs. Ademas, los dos pueden combinarse en un tinico demapper.
`También se ha explorado la cuantizacién de estas constelaciones, ya que tanto
`los valores LLR como las componentes I/Q se ven modificados, comparando
`con constelaciones QAM tradicionales. Ademas, se ha propuesto un algoritmo
`que se basa en la optimizacién para diferentes niveles de cuantizacién, para una
`NUC concreta. El algoritmo propuesto reduce el numero de bits a utilizar y
`puedeser utilizado también con QAM.
`Igualmente, se ha investigado en detalle el uso de NUCs en MIMO. En
`esta tesis se han evaluado los distintos parametros que afectan al proceso de
`optimizacion cuandoseutilizan sistemas MIMO 2 x 2 dual polarizados. Se ha
`incluido la optimizacion en una sola o en dos antenas, el uso de un desbalance
`de potencia, factores de discriminacién entre antenas receptoras (XPD), el uso
`de distintos demappers 6ptimos y subdptimos, métodos de ecualizacion y dis-
`tintos canales. Asumiendo distintos valores, se han obtenido nuevas constela-
`ciones multi-antena (MA-NUC)gracias a un nuevo proceso de re-optimizacién
`especifico para MIMO.Enelreceptor, se ha extendidoel andlisis de compleji-
`dad en el demapper, la cual se incrementa enormemente con el uso de 2D-NUCs
`y sistemas MIMO. En concreto, la complejidad aumenta exponencialmente con
`el numero de antenas y el orden de constelacién. Como alternativa, se propone
`una solucién basada en el algoritmo Soft-Fixed Sphere Decoding (SFSD). El
`principal problema es que estos demappers no funcionan con 2D-NUCs, puesto
`que necesitan de un paso adicional en el que las componentes I y Q necesitan
`separarse. El método propuesto cuantifica el simbolo mas cercano utilizando
`las regiones de Voronoi, permitiendoel uso de este tipo de receptor.
`
`

`

`Resum
`
`Actualment, el mercat de la televisié digital terrestre (TDT) esta caracter-
`itzat per l’alta capacitat requerida per a transmetre servicis de televisio d’alta
`definicié i l’espectre disponible, el qual es troba molt limitat. Es necessari
`per tant un us eficient de l’espectre radioelectric, el qual requereix noves tec-
`nologies per a garantir majors capacitats i millors servicis. Les constel-lacions
`no-uniformes (NUC) emergeixen com una de les técniques més innovadores
`en els sistemes de televisid de segiient generacid per a abordar tals requeri-
`ments. Les NUC redueixen l’espai existent entre les constel-lacions uniformes
`QAMi el limit tedric de Shannon. Amb estes constel-lacions, els simbols
`s’optimitzen en ambddés components fase (I) i quadratura (Q) per mitja de
`tecniques geometriques de modelatge del senyal, considerant un nivell senyal a
`soroll (SNR) concret i un model de canal especific.
`Hi ha dos tipus de NUC, depenent del nombre de dimensions reals consid-
`eradesen el procés d’optimitzacid, és a dir, NUCs unidimensionals i bidimen-
`sionals (1D-NUC i 2D-NUC, respectivament). 1D-NUCs mantenen la forma
`quadrada de les QAM,pero permet canviar la distribucié entre els simbols en
`una component concreta, tenint una distancia no uniforme entre ells. Estes
`constel-lacions proporcionen un millor rendiment SNR que QAM, sense cap
`increment en la complexitat al demapper. 2D-NUC també canvien la forma
`quadradade la constel-lacié6, permetent optimitzar els simbols en ambdés di-
`mensions i per tant obtenint majors guanys en capacitat i menors requeriments
`en SNR. No obstant aixo, l’is de 2D-NUCs implica una major complexitat en
`el receptor, ja que es necessita un demapper 2D, on les components I i Q no
`poden ser separades.
`Enesta tesi s’analitzen les NUC des del punt de vista tant de transmissié
`com de recepcié, utilitzant bé configuracions amb una antena (SISO) o amb
`multiples antenes (MIMO). En transmissions SISO,s’han optimitzat 1D-NUCs,
`per a un rang ampli de distintes SNR, diversos models de canal i diferents ordes
`de constel-lacid. També s’ha investigat l’optimitzacid de 2D-NUCsrotades,
`on l’angle de rotacié s’inclou en l’optimitzacid com una variable addicional.
`
`

`

`RESUM
`
`Encara que la complexitat no augmenta, el guany SNR d’estes constel-lacions
`no és significativa. El major guany per rotacio s’obté per a baixos ordes de
`constel-lacié i altes SNR. No obstant aixo, utilitzant tecniques multi-RF com
`Channel Bonding (CB) o Time-Frequency Slicing (TFS) , el guany augmenta
`drasticament ja que les components I i Q es transmeten en distints canals RF.
`Enesta tesi, s’ha estudiat el guany multi-RF de les NUC, ambosense rotacio.
`En el receptor, s’han identificat dos colls de botella diferents en la imple-
`mentaci6. Primer, s’ha analitzat la complexitat en el receptor per a totes
`les constel-lacions considerades i, posteriorment, es proposen dos algoritmes
`per a reduir la complexitat amb 2D-NUCs. Ambdés algoritmes redueixen
`drasticament el nombre de distancies per a computar els LLR en el demap-
`per amb 2D-NUCs. A més, els dos poden combinar-se en un tinic demap-
`per. També s’ha explorat la quantitzacié d’estes constel-lacions, ja que tant
`els valors LLR com les components I/Q es veuen modificats, comparant amb
`constel-lacions QAM tradicionals. A més, s’ha proposat un algoritme que es
`basa en l’optimitzacio per a diferents nivells de quantitzaci6, per a una NUC
`concreta. L’algoritme proposat redueix el nombre de bits a utilitzar i pot ser
`utilitzat també amb QAM.
`Igualment, s’ha investigat en detall l’s de NUCs en MIMO.Enesta tesi
`s’han avaluat els distints parametres que afecten el procés d’optimitzacié quan
`s’utilitzen sistemes 2 x 2 MIMO dual polaritzats. S’ha inclos l’optimitzacié en
`una sola o en dos antenes, |’tis d’un desbalang de poténcia, factors de discrim-
`inacié entre antenes receptores (XPD) , l’tis de distints demappers optims i
`suboptims, métodes d’equalitzacié i distints canals. Assumint distints valors,
`s’han obtingut noves constel-lacions multi-antena (MA-NUC)gracies a un nou
`procés de re-optimitzacié especific per a MIMO. Enel receptor, s’ha modi-
`ficat l’analisi de complexitat al demapper, la qual s’incrementa enormement
`amb l’us de 2D-NUCsi sistemes MIMO.En concret, la complexitat augmenta
`exponencialment amb el nombre d’antenes i l’orde de constel-lacié. Com a
`alternativa, es proposa una solucié basada en l’algoritme Soft-Fixed Sphere
`Decoding (SFSD). El principal problema és que estos demappers no funcionen
`amb 2D-NUCs,ja que necessiten d’un pas addicional en qué les componentsI
`i Q necessiten separar-se. El metode proposat quantifica el simbol més proxim
`utilitzant les regions de Voronoi, permetent 1|’lis d’este tipus de receptor.
`
`

`

`Acknowledgements
`
`First of all, I would like to thank my two supervisors for their assistance and
`guidance. From the very beginning, Dr. David Gomez Barquero gave me the
`opportunity to be part of the Institute de Telecommunications and Multimedia
`Applications (TEAM)at the Universitat Politécnica de Valéncia (UPV). His
`advice and support during all these years has been fundamental to improve
`as an engineer and researcher. Prof. Narcis Cardona also received me with
`open arms and gave me the chance to pursuit my Ph.D. in his group. Thanks
`to both of them, I could present my work to many people around the world,
`enjoying the experience and achieving new skills.
`Very special thanks go to my colleagues of the Mobile Communications
`Group (MCG). During these three years,
`the people that had been part of
`this group have helped me to grow not only as a professional, but also as a
`person. Thank you to my friends Gerardo, Edu, Carlos Andreu, Carlos Barjau,
`Alejandro, Jordi Joan, Shitomi, Conchi, Tere, Josetxo, Carlos Herranz, Alicia,
`Sonia, Irene, Jorge, Sofia, Martina, José Luis, Sergio, Sandra and many others.
`I also want to thank my old colleagues David Vargas, Jaime and Jefferson for
`the good moments we spent together. I’m also indebted to Prof. Gerald Matz
`from the Technical University of Vienna, for inviting me to his research team.
`It has been one of the best experiences in mylife, and I will be eternally grateful
`to him. Very special thanks also go to Georg Pichler, who helped me every
`single day during my stay there.
`Y por supuesto, esta tesis va dedicada a toda mi familia. En especial a mis
`padres, por darme la oportunidad de venir a Valencia a estudiar y convertirme
`en lo que hoy en dia soy. A mi hermano, por los grandes momentos que hemos
`vividos juntos y los que nos quedan por vivir. Y a mi novia, por su grandisimo
`apoyo, amor incondicional e incontables consejos que me ha dado durante estos
`anos. Os quiero a todos.
`
`

`

`ACKNOWLEDGEMENTS
`
`10
`
`

`

`Table of contents
`
`1
`
`Introduction
`15
`1.1 Evolution and New Challenges of Digital Terrestrial Broadcasting 15
`1.2 Preliminaries ..... 2... 0.0.0... 000000022 eee 19
`1.3. Research Challenges on Non-Uniform Constellations ..... .
`22
`1.4 Objectives and Scope. ............-.2220200005 23
`1.5 State-of-the-Art... 2.0.0.0... 0.000.020 000000004
`25
`
`1.6 Thesis Outline and Contributions. ................
`
`1.7 List of Publications... 2... 2.2. ..020.2..0.2.2...000048.
`
`1.7.1 Publications and Activities Related to this Thesis ...
`
`1.7.2. Other Publications... ...............0.0.
`
`2 Background
`2.1 System Model Overview ............-.-.+2.22+000-
`2.1.1
` Multi-Antenna Considerations ..............
`2.1.2 BICM Components. .................2..
`2.2. BICM Capacity Limits. ......................
`2.2.1. The Unconstrained Shannon Limit ............
`2.2.2 Capacity Calculation for BICM............2..
`2.2.3. BICM Limits for Uniform QAM Constellations .....
`2.2.4 Extension to MIMO-BICM Systems ...........
`2.3 Single-Antenna Receivers
`...........-.2.-02.22+000-
`2.3.1. Demapping Algorithms ..................
`2.3.2
`Signal Quantization .................-.4.
`2.4 Multi-Antenna Receivers. ............-.-.2.22+000-
`2.4.1 ML and Max-Log Demappers...............
`2.4.2 ZF and MMSE Detectors .................
`2.4.3.
`Sphere Decoding Techniques ...............
`
`3l
`
`34
`
`34
`
`35
`
`37
`37
`39
`Al
`43
`43
`44
`45
`48
`49
`50
`53
`55
`56
`57
`58
`
`11
`
`

`

`TABLE OF CONTENTS
`
`3 Optimization and Performance Evaluation of Non-Uniform Cons-
`tellations
`61
`3.1 Non-Uniform Constellations Optimization ............
`61
`3.1.1. One-Dimensional Non-Uniform Constellations... ...
`62
`3.1.2. Two-Dimensional Non-Uniform Constellations .....
`70
`3.1.3. BICM Capacity Improvements ..............
`79
`3.2 Non-Uniform Rotated Constellations ...............
`77
`3.2.1. Optimization Before Rotation. ..............
`78
`3.2.2. Optimization with Additional Rotation .........
`80
`3.3. Application of NURC to Multi-RF Techniques .........
`82
`3.4 Performance Analysis Based on Physical Layer Simulations ..
`84
`3.4.1. Non-Uniform Constellations Gain... ........2..
`85
`3.4.22 Rotation Gain ...........2.2.. 0.2.22 00.
`87
`3.4.3. Non-Uniform Rotated Constellations with Multiple RF
`Channels 2... 2... 0... ee ee 87
`3.5 Conclusion
`.. 2... 2. ee 94
`
`97
`4 Low-Complexity Demapping and Quantization Algorithms
`98
`4.1 Demapping Complexity at the Receiver .............
`4.2 Low-Complexity Demapping Algorithm ............. 100
`4.2.1 Quadrant Search Reduction (QSR)............
`100
`4.2.2 Condensed Symbols Reduction (CSR) .......... 102
`4.2.3 Quadrant Condensed Search Reduction (QCSR) .... 104
`4.3 Performance Evaluation: Minimum Numberof Distances. .. .
`105
`4.3.1 Calculation of the Minimum Number of Distances ...
`105
`4.3.2
`Performance Loss with Alternative Channel Models
`..
`108
`4.3.3. QCSR with Non-Uniform Rotated Constellations .... 110
`44 Digital Quantization of LLR and I/Q Components ....... 111
`4.4.1.
`System Model and Considered Scenario ......... 112
`4.4.2 Quantization of Log-Likelihood Ratios .......... 115
`4.4.3 Quantization of [/Q Components.............
`118
`4.5 Quantization Loss vs. Time De-Interleaving Memory Trade-Off
`121
`4.5.1
`Performance Loss of LLR Quantization ......... 121
`4.5.2
`Performance Loss of I/Q Components Quantization ..
`124
`4.5.3 Time De-Interleaving Memory Requirements ...... 125
`4.6 Conclusion
`........2..2.02.2.0 0000002002004 127
`
`5 Non-Uniform Constellations for MIMO Communications
`129
`5.1 Multi-Antenna Non-Uniform Constellations ........... 130
`5.1.1 Preliminary Design... ........0.......0.0. 131
`5.1.2. Re-optimization without Power Imbalance ........ 138
`
`12
`
`

`

`TABLE OF CONTENTS
`
`5.1.3 Re-optimization with Power Imbalance. .........
`5.2. Performance Evaluation of Multi-Antenna Non-Uniform Cons-
`tellations 2...
`5.2.1 Transmission without Power Imbalance .........
`5.2.2 Transmission with Power Imbalance of 6dB.......
`5.3 Demapping Complexity Analysis .................
`5.4 Fixed Sphere Decoder for Two-Dimensional NUCs in MIMO
`5.4.1
`Successive Interference Cancellation ...........
`5.4.2 Voronoi Regions Selection Algorithm ...........
`5.4.3 Resolution vs. Performance Trade-Off ..........
`5.5 Conclusion .... 2... 020.0000 ee
`
`140
`
`146
`
`147
`
`153
`
`Conclusions and Future Work
`6.1 Concluding Remarks .................-..+.2045
`6.1.1 Non-Uniform Constellations Optimization ........
`6.1.2 Complexity Implications at the Receiver. ........
`155
`6.1.3 Multi-Antenna Optimization and Complexity Reduction 157
`6.2 Constellation and CR Recommendation .............
`158
`6.3 Future work... 2... 0. ee
`161
`6.3.1 High-Order Two-Dimensional Non-Uniform Constellations 161
`6.3.2 Further Optimization for MIMO Systems ........ 161
`6.3.3 The Future of Broadcasting: Constellations for 5G Com-
`munications... 2... ee ee 161
`
`154
`
`154
`
`163
`Physical Layer Simulator
`A.1 Transmitter Block Diagram .................... 163
`A.2 Receiver Block Diagram ...............-....2-45 168
`A.3 Channel Models... 2... ..0.020.0002020.0 000000000045 170
`
`175
`Optimization Algorithm
`175
`B.1 Nelder-Mead Simplex Method...................
`B.2 Application to Use Cases Considered ..............- 179
`
`Acronyms
`
`References
`
`183
`
`187
`
`13
`
`

`

`TABLE OF CONTENTS
`
`14
`
`

`

`Chapter 1
`
`Introduction
`
`1.1 Evolution and New Challenges of Digital
`Terrestrial Broadcasting
`
`Television (TV) is one of the most popular and extended telecommunication
`systems in the world. Commercial TV as it is known today began in the late
`1940s. Its implementation introduced dramatic social changes and facilitated
`the appearance of new business models. TV has coexisted with society during
`more than 70 years, experiencing big transformations such as the transition
`from black and white to color, or from analog to digital. With the arrival
`of flat-screen displays, Digital Terrestrial Television (DTT) communications
`and video compression systems, TV has experienced a high-speed and large
`evolution in the 21st century.
`The switch from analog to digital entailed several advantages such as the
`transmission of noise-free high-quality video and audio, a larger exploitation of
`the Radio Frequency (RF) spectrum, the delivery of multilingual audio tracks,
`subtitles and interactivity, or the use of a flexible network with configurable pa-
`rameters such as transmission power, capacity or quality of service. Currently,
`DTTis the main TV system adopted in many European countries including the
`United Kingdom, France, Spain, Portugal and Italy, being ahead other services
`such as cable or satellite TV. DTT systems are capable of providing a specific
`set of services without any restriction in the numberof users [1]. DTT allows
`for an efficient delivery of free-to-air content to large audiences with a guar-
`anteed quality of service, and provides a near universal coverage of over 98 %
`population [2]. With DTT, the Ultra-High Frequency (UHF) spectrum needed
`to transmit a single analog channel is used to carry several multiplexed digital
`
`15
`
`

`

`CHAPTER 1. INTRODUCTION
`
`services. In other words, the same set of services can be transmitted using just
`a reduced part of the spectrum available. As a consequence, the spectral effi-
`ciency increase offered by DT'T systems attracted emerging technologies such
`as Long Term Evolution (LTE) to request part of the UHF spectrum.
`
`First and Second Digital Dividends
`
`In the World Radiocommunication Conference (WRC)-07, the International
`Telecommunications Union (ITU) decided to allocate the upper part of the TV
`broadcasting band to International Mobile Telecommunications (IMT) tech-
`nologies, giving room to which is knownas Digital Dividend (DD) [3]. Regions
`1 (Europe and Africa) and 3 (Asia) allocated the 800 MHz band (790-862
`MHz, channels 61-69) for fourth generation (4G) LTE services, and Region 2
`(America) allocated the 700 MHz band (698-806 MHz, channels 52-69).
`In
`the WRC-12, the ITU concluded with a decision to allocate additional UHF
`spectrum to mobile services. This situation will remain for more than 10 years,
`since in the WRC-15 it was decided that there will not be any change to the
`allocation in the 470-694 MHz bandfor the time being.
`The new mobile allocation, also known as Second Digital Dividend (DD2),
`is to be made in Region 1 in the 700 MHz band. The main difference compared
`to the 800 MHz bandlies in the fact that the Uplink (UL) is located in the
`lower part, instead of the Downlink (DL). For most countries, releasing the 700
`MHz band will require a new re-tune of existing DTT networks. Implementing
`the DD2 within ITU Region 1 affects up to eleven more DTTchannels (49-60),
`creating a numberof challenges. Since cellular terminals are closer to the DTT
`receivers than base stations, interference issues may be relevant in the 700 MHz
`band [4]. The DD2 is particularly problematic in countries where terrestrial
`TV is the main distribution platform.
`The DD2arises as a turning point for introducing new DTTsystems and
`video compression standards,in order to increase the network spectral efficiency
`and provide new services such as Ultra High-Definition TV (UHDTV).
`In
`fact, reference [5] presents an overview of the upcoming television broadcast
`spectrum incentive auction in the United States, reviews the potential plans
`for the 600 MHz band, and discusses the opportunities that could bring the
`use of new digital terrestrial television specifications.
`
`Initial DTT Technologies
`
`Nowadays,several first generation DTT technologies are in place over the world,
`such as Advanced Television Systems Committee (ATSC) in North Amer-
`ica and South Korea [6], Integrated Services Digital Broadcasting — Terres-
`trial (ISDB-T) in Japan and South America [7], or Digital Terrestrial Multime-
`
`16
`
`

`

`1.1 Evolution and New Challenges of Digital Terrestrial
`Broadcasting
`
`dia Broadcast (DTMB)in China[8]. Although these technologies are utilized in
`many countries, Digital Video Broadcasting - Terrestrial (DVB-T) is the most
`widely implemented DTTstandard in the world. DVB-T permits to configure a
`numberof parameters in order to adapt the system to a particular network and
`transmission requirements. The DVB-T specification provides bit rates ranging
`from 4 to 30 Mbps [9]. DVB-T, together with ISDB-T and DTMBspecifica-
`tions, is based on the multi-carrier Orthogonal Frequency-Division Multiplex-
`ing (OFDM) modulation [10]. All data carriers are modulated using differ-
`ent uniform Quadrature Amplitude Modulation (QAM)constellations, thatis,
`QPSK, 16QAM or 64QAM. DVB-Tpermits to use several Coding Rates (CR),
`Guard Intervals (GI) or Fast Fourier Transform (FFT) sizes to adapt the sig-
`nal. However,first generation standardsarestill far from the theoretical Shan-
`non capacity limit [11]. Motivated by technological progress and new advanced
`techniques, different standardization forums decided to develop next-generation
`DTT specifications.
`
`Next-Generation Digital Terrestrial Broadcasting
`
`The DVB forum developed a second generation standard, known as DVB -
`Terrestrial Second Generation (DVB-T2) [12], which provides a 50%increase
`of spectral efficiency compared to DVB-T. It permits to use a more advanced
`configuration of parameters to transmit, including a wider set of coding rates.
`DVB-T2 employs a serial concatenation of inner Low Density Parity Check
`(LDPC) codes and outer Bose Chadhuri Hocquenghem (BCH)codes. It is also
`based on the multi-carrier OFDM modulation, and permits the use of a single
`or multiple Physical Layer Pipes (PLP) that allow to transmit different services
`with specific capacity and robustness. The DVB-T2 specification provides an
`extended interleaving that increases robustness in both time and frequency
`domains.
`It also supports the concept of Rotated Constellations (RC) and
`includes an additional 256QAMconstellation.
`Standardization activities were also addressed on the development of mo-
`bile broadcasting systems, despite the lack of market and financing needed
`[13]. The handheld evolution of DVB-T2, Digital Video Broadcasting - Next
`Generation Handheld (DVB-NGH), is the state-of-the-art standard for DTT
`mobile communications, and includes some of the most advanced transmis-
`sion techniques to cope with adversities and characteristics of mobile chan-
`nels [14]. It was the first broadcasting system including the concept of one-
`dimensional Non-Uniform Constellation (NUC), for 64 and 256 orders. An-
`other relevant technique included in DVB-NGHwasthe use of Multiple-Input
`Multiple-Output (MIMO). The concept of MIMO is based on the use of sev-
`eral transmit and receive antennas to transmit different signals at the same
`
`17
`
`

`

`CHAPTER 1. INTRODUCTION
`
`
`
`
`
`
`
`
`
`4
`
`
`
`|
`
`4
`
`J
`
`4
`
`20
`
`25
`
`30
`
`35
`
`8)
`
`aoo
`5S 6b
`2
`Sao
`= 4+
`5o
`
`
`
`aa
`
`)
`
`0
`-10
`
`-5
`
`|
`0
`
`|
`5
`
`|
`10
`
`|
`15
`
`
`
`T
`T
`T
`T
`T
`T
`T
`T
`Shannon limit
`@ DVB-T
`=
`pvp-T2
`& ATSC3.0
`
`12
`
`NOP]
`x
`
`2&
`
`Figure 1.1: Spectral efficiency of DVB-T, DVB-T2 and ATSC 3.0 specifications compared to
`the Shannon capacity limit, for AWGN channel.
`
`SNR (dB)
`
`time. The transmission of two or more streams in parallel permits to increase
`transmission capacity, but also robustness.
`The use of new digital standards along with moreefficient video coding
`arises as an opportunity to introduce two new features simultaneously, guar-
`anteeing an efficient use of the remaining spectrum. The state-of-the-art ter-
`restrial broadcasting standard, ATSC - Third Generation (ATSC 3.0), tries to
`solve this problem. It focuses on shortening the gap to Shannon limit through
`more efficient constellations and very-low coding rates, the aggregation of mul-
`tiple RF channels in which is known as Channel Bonding (CB), or the combined
`provision of fixed and mobile services, among others [15]. Fig. 1.1 shows the
`performanceachieved with ATSC 3.0 in terms of spectralefficiency (bit /s/Hz)
`vs. SNR (dB), for AWGN channel. ATSC 3.0 is also compared with someofits
`antecessors, i.e. DVB-T and DVB-T2. ATSC 3.0 includes some of the newest
`techniques developed in broadcasting such as MIMOor Layered Division Mul-
`tiplexing (LDM)[16]. LDM enables the efficient provision of mobile and fixed
`services by superposing two independent signals with different power levels in
`a single RF channel. With ATSC 3.0, it is also possible to split service data
`across two RF channels, so that peak data rate can be doubled. ATSC 3.0 also
`includes two-dimensional (2D) NUCsfrom 16 to 256 constellation symbols, and
`1D-NUCfor new high-orders such as 1024NUC (or LkKNUC) and 4096NUC(or
`AkNUC) [17].
`
`18
`
`

`

`1.2 Preliminaries
`
`1.2 Preliminaries
`
`The problem of designing a system that operates close to the unconstrained
`Shannon theoretical limit has been one of the most important and challenging
`problemsin information/communication theory [11]. As reference [18] states,
`one straightforward answer to the question of how to efficiently transmit more
`than one bit per symbol is a Coded Modulation (CM) scheme, where the chan-
`nel encoder is combined with a modulator and several bits are mapped into a
`symbol. What is not straightforward is how to configure a system that oper-
`ates close to the Shannon capacity limit, but with low complexity. In [19], the
`idea of jointly design the channel encoder and modulator was firstly proposed,
`which inspired several CM schemes suc

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket