throbber
Super Sequencer™ with Margining Control
`and Auxiliary ADC Inputs
`ADM1066
`
`
`
`
`
`FUNCTIONAL BLOCK DIAGRAM
`
`AUX1
`
`AUX2
`
`REFIN
`
`REFOUT
`
`REFGND
`
`SDA SCL A1
`
`A0
`
`ADM1066
`
`VREF
`
`SMBus
`INTERFACE
`
`PDO1
`PDO2
`PDO3
`PDO4
`PDO5
`PDO6
`
`PDO7
`
`PDO8
`
`PDO9
`
`PDO10
`
`PDOGND
`
`VDDCAP
`
`
`
`04609-001
`
`EEPROM
`
`CONFIGURABLE
`OUTPUT
`DRIVERS
`
`(HV CAPABLE
`OF DRIVING
`GATES OF
`N-CHANNEL FET)
`
`CONFIGURABLE
`OUTPUT
`DRIVERS
`
`(LV CAPABLE
`OF DRIVING
`LOGIC SIGNALS)
`
`12-BIT
`SAR ADC
`
`MUX
`
`CLOSED-LOOP
`MARGINING SYSTEM
`
`DUAL-
`FUNCTION
`INPUTS
`(LOGIC INPUTS
`OR
`SFDs)
`
`PROGRAMMABLE
`RESET
`GENERATORS
`
`(SFDs)
`
`SEQUENCING
`ENGINE
`
`VOUT
`DAC
`
`VOUT
`DAC
`
`VOUT
`DAC
`
`VOUT
`DAC
`
`VOUT
`DAC
`
`VOUT
`DAC
`
`VDD
`ARBITRATOR
`
`DAC1
`
`DAC2
`
`DAC3
`
`DAC4
`
`DAC5
`DAC6
`Figure 1.
`
`VCCP
`
`GND
`
`VX1
`VX2
`VX3
`VX4
`VX5
`
`VP1
`VP2
`VP3
`VP4
`VH
`
`AGND
`
`APPLICATIONS
`Central office systems
`Servers/routers
`Multivoltage system line cards
`DSP/FPGA supply sequencing
`In-circuit testing of margined supplies
`
`GENERAL DESCRIPTION
`
`The ADM1066 is a configurable supervisory/sequencing device
`that offers a single-chip solution for supply monitoring and
`sequencing in multiple-supply systems. In addition to these
`functions, the ADM1066 integrates a 12-bit ADC and six 8-bit
`voltage output DACs. These circuits can be used to implement a
`closed-loop margining system that enables supply adjustment
`by altering either the feedback node or reference of a dc-to-dc
`converter using the DAC outputs.
`
`(continued on Page 4)
`
`
`
`
`FEATURES
`Complete supervisory and sequencing solution for up to
`10 supplies
`10 supply fault detectors enable supervision of supplies to
`<0.5% accuracy at all voltages at 25°C
`<1.0 % accuracy across all voltages and temperatures
`5 selectable input attenuators allow supervision
`Supplies up to 14.4 V on VH
`Supplies up to 6 V on VP1 to VP4
`5 dual-function inputs, VX1 to VX5
`High impedance input to supply fault detector with
`thresholds between 0.573 V and 1.375 V
`General-purpose logic input
`10 programmable output drivers, PDO1 to PDO10
`Open collector with external pull-up
`Push/pull output, driven to VDDCAP or VPn
`Open collector with weak pull-up to VDDCAP or VPn
`Internally charge-pumped high drive for use with external
`N-FET (PDO1 to PDO6 only)
`Sequencing engine (SE) implements state machine control of
`PDO outputs
`State changes conditional on input events
`Enables complex control of boards
`Power-up and power-down sequence control
`Fault event handling
`Interrupt generation on warnings
`Watchdog function can be integrated in SE
`Program software control of sequencing through SMBus
`Complete voltage-margining solution for 6 voltage rails
`6 voltage output 8-bit DACs (0.300 V to 1.551 V) allow voltage
`adjustment via dc-to-dc converter trim/feedback node
`12-bit ADC for readback of all supervised voltages
`2 auxiliary (single-ended) ADC inputs
`Reference input (REFIN) has 2 input options
`Driven directly from 2.048 V (±0.25%) REFOUT pin
`More accurate external reference for improved ADC
`performance
`Device powered by the highest of VPn or VH for improved
`redundancy
`User EEPROM: 256 bytes
`Industry-standard 2-wire bus interface (SMBus)
`Guaranteed PDO low with VH, VPn = 1.2 V
`40-lead 6 mm × 6 mm LFCSP
`48-lead 7 mm × 7 mm TQFP
`
`For more information about the ADM1066 register map,
`refer to the AN-698 Application Note.
`
`Rev. B
`Information furnished by Analog Devices is believed to be accurate and reliable. However, no
`responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
`rights of third parties that may result from its use. Specifications subject to change without notice. No
`license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
`Trademarks and registered trademarks are the property of their respective owners.
`
`
`
`
`
`One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
`www.analog.com
`Tel: 781.329.4700
`Fax: 781.461.3113
`©2006 Analog Devices, Inc. All rights reserved.
`
`Samsung Electronics Co., Ltd.
`Ex. 1061, p. 1
`
`

`

`ADM1066
`
`
`
`TABLE OF CONTENTS
`Features .............................................................................................. 1
`Functional Block Diagram .............................................................. 1
`Applications....................................................................................... 1
`General Description ......................................................................... 1
`Revision History ............................................................................... 3
`General Description ......................................................................... 4
`Specifications..................................................................................... 5
`Pin Configurations and Function Descriptions ........................... 8
`Absolute Maximum Ratings.......................................................... 10
`Thermal Characteristics ............................................................ 10
`ESD Caution................................................................................ 10
`Typical Performance Characteristics ........................................... 11
`Powering the ADM1066 ................................................................ 14
`Inputs................................................................................................ 15
`Supply Supervision..................................................................... 15
`Programming the Supply Fault Detectors............................... 15
`Input Comparator Hysteresis.................................................... 16
`Input Glitch Filtering ................................................................. 16
`Supply Supervision with VXn Inputs ...................................... 16
`VXn Pins as Digital Inputs........................................................ 16
`Outputs ............................................................................................ 18
`Supply Sequencing through Configurable Output Drivers .. 18
`Default Output Configuration.................................................. 19
`Sequencing Engine ......................................................................... 20
`Overview...................................................................................... 20
`Warnings...................................................................................... 20
`
`
`
`SMBus Jump/Unconditional Jump .......................................... 20
`Sequencing Engine Application Example............................... 21
`Fault and Status Reporting........................................................ 23
`Voltage Readback............................................................................ 24
`Supply Supervision with the ADC........................................... 24
`Supply Margining ........................................................................... 25
`Overview ..................................................................................... 25
`Open-Loop Margining .............................................................. 25
`Closed-Loop Supply Margining ............................................... 25
`Writing to the DACs .................................................................. 26
`Choosing the Size of the Attenuation Resistor....................... 26
`DAC Limiting/Other Safety Features ...................................... 26
`Applications Diagram .................................................................... 27
`Communicating with the ADM1066........................................... 28
`Configuration Download at Power-Up................................... 28
`Updating the Configuration ..................................................... 28
`Updating the Sequencing Engine............................................. 29
`Internal Registers........................................................................ 29
`EEPROM ..................................................................................... 29
`Serial Bus Interface..................................................................... 29
`SMBus Protocols for RAM and EEPROM.............................. 32
`Write Operations........................................................................ 32
`Read Operations......................................................................... 34
`Outline Dimensions....................................................................... 35
`Ordering Guide .......................................................................... 36
`
`Samsung Electronics Co., Ltd.
`Ex. 1061, p. 2
`
`

`

`
`
`
`REVISION HISTORY
`
`5/06—Rev. A to Rev. B
`Changes to Features Section ............................................................1
`Changes to Table 1 ............................................................................5
`Changes to Table 2 ............................................................................8
`Changes to Table 3 ..........................................................................10
`Added Table 4 ..................................................................................10
`Added Default Output Configuration Section............................19
`Changes to Fault Reporting Section .............................................19
`Added Table 11 ................................................................................30
`Changes to Ordering Guide...........................................................36
`
`ADM1066
`
`1/05—Rev. 0 to Rev. A
`Changes to Figure 1 ..........................................................................1
`Changes to Absolute Maximum Ratings Section .........................8
`Change to Supply Sequencing through Configurable
`Output Drivers Section ..................................................................16
`Changes to Figure 33 ......................................................................23
`Change to Table 10..........................................................................32
`
`10/04—Revision 0: Initial Version
`
`Rev. B | Page 3 of 36
`
`Samsung Electronics Co., Ltd.
`Ex. 1061, p. 3
`
`

`

`ADM1066
`
`
`
`GENERAL DESCRIPTION
`(continued from Page 1)
`
`Supply margining can be performed with a minimum of
`external components. The margining loop can be used for
`in-circuit testing of a board during production (for example, to
`verify the board’s functionality at −5% of nominal supplies),
`or can be used dynamically to accurately control the output
`voltage of a dc-to-dc converter.
`
`The device also provides up to 10 programmable inputs for
`monitoring under, over, or out-of-window faults on up to 10
`supplies. In addition, 10 programmable outputs can be used as
`logic enables. Six of them can also provide up to a 12 V output
`for driving the gate of an N-channel FET, which can be placed
`in the path of a supply.
`
`
`
`The logical core of the device is a sequencing engine. This state-
`machine-based construction provides up to 63 different states.
`This design enables very flexible sequencing of the outputs,
`based on the condition of the inputs.
`
`The device is controlled via configuration data that can be
`programmed into an EEPROM. The whole configuration can
`be programmed using an intuitive GUI-based software package
`provided by Analog Devices, Inc.
`
`AUX2
`
`AUX1
`
`REFIN
`
`REFOUT
`
`REFGND
`
`SDA SCL A1
`
`A0
`
`ADM1066
`
`VREF
`
`SMBus
`INTERFACE
`
`PDO1
`
`PDO2
`PDO3
`PDO4
`PDO5
`
`PDO6
`
`PDO7
`
`PDO8
`PDO9
`
`PDO10
`
`PDOGND
`
`
`
`04609-002
`
`12-BIT
`SAR ADC
`
`GPI SIGNAL
`CONDITIONING
`
`SFD
`
`GPI SIGNAL
`CONDITIONING
`
`SFD
`
`SFD
`
`SFD
`
`REG 5.25V
`CHARGE PUMP
`
`VOUT
`DAC
`
`DEVICE
`CONTROLLER
`
`OSC
`
`EEPROM
`
`CONFIGURABLE
`O/P DRIVER
`(HV)
`
`SEQUENCING
`ENGINE
`
`CONFIGURABLE
`O/P DRIVER
`(HV)
`
`CONFIGURABLE
`O/P DRIVER
`(LV)
`
`CONFIGURABLE
`O/P DRIVER
`(LV)
`
`VOUT
`DAC
`
`GND
`
`DAC2 DAC3 DAC4 DAC5
`DAC1
`VCCP
`Figure 2. Detailed Block Diagram
`
`DAC6
`
`VX1
`
`VX2
`VX3
`VX4
`
`VX5
`
`VP1
`
`VP2
`VP3
`VP4
`
`VH
`
`AGND
`
`VDDCAP
`
`SELECTABLE
`ATTENUATOR
`
`SELECTABLE
`ATTENUATOR
`
`VDD
`ARBITRATOR
`
`Rev. B | Page 4 of 36
`
`Samsung Electronics Co., Ltd.
`Ex. 1061, p. 4
`
`

`

`
`
`ADM1066
`
`
`
`SPECIFICATIONS
`VH = 3.0 V to 14.4 V1, VPn = 3.0 V to 6.0 V1, TA = −40°C to +85°C, unless otherwise noted.
`Table 1.
`Parameter
`POWER SUPPLY ARBITRATION
`VH, VPn
`VP
`VH
`VDDCAP
`CVDDCAP
`POWER SUPPLY
`Supply Current, IVH, IVPn
`Additional Currents
`All PDO FET Drivers On
`
`Min
`
`3.0
`
`
`2.7
`10
`
`
`
`
`
`Typ
`
`
`
`
`4.75
`
`
`4.2
`
`1
`
`Max
`
`
`6.0
`14.4
`5.4
`
`
`6
`
`
`
`Unit
`
`V
`V
`V
`V
`μF
`
`mA
`
`mA
`
`Current Available from VDDCAP
`
`
`
`
`
`2
`
`mA
`
`Test Conditions/Comments
`
`Minimum supply required on one of VPn, VH
`Maximum VDDCAP = 5.1 V, typical
`VDDCAP = 4.75 V
`Regulated LDO output
`Minimum recommended decoupling capacitance
`
`VDDCAP = 4.75 V, PDO1 to PDO10 off, DACs off, ADC off
`
`VDDCAP = 4.75 V, PDO1 to PDO6 loaded with 1 μA each,
`PDO7 to PDO10 off
`Maximum additional load that can be drawn from all PDO
`pull-ups to VDDCAP
`6 DACs on with 100 μA maximum load on each
`Running round-robin loop
`1 ms duration only, VDDCAP = 3 V
`
`
`
`Midrange and high range
`
`
`
`
`
`Low range and midrange
`
`
`
`No input attenuation error
`
`
`
`No input attenuation error
`VREF error + DAC nonlinearity + comparator offset error +
`input attenuation error
`
`Minimum programmable filter length
`Maximum programmable filter length
`
`The ADC can convert signals presented to the VH, VPn,
`and VXn pins. VPn and VH input signals are attenuated
`depending on the selected range. A signal at the pin
`corresponding to the selected range is from 0.573 V to
`1.375 V at the ADC input.
`
`
`
`Endpoint corrected, VREFIN = 2.048 V
`
`DACs Supply Current
`ADC Supply Current
`EEPROM Erase Current
`SUPPLY FAULT DETECTORS
`VH Pin
`Input Impedance
`Input Attenuator Error
`Detection Ranges
`High Range
`Midrange
`VPn Pins
`Input Impedance
`Input Attenuator Error
`Detection Ranges
`Midrange
`Low Range
`Ultralow Range
`VX Pins
`Input Impedance
`Detection Ranges
`Ultralow Range
`Absolute Accuracy
`
`Threshold Resolution
`Digital Glitch Filter
`
`ANALOG-TO-DIGITAL CONVERTER
`Signal Range
`
`
`
`
`
`
`
`
`
`6
`2.5
`
`
`
`
`2.5
`1.25
`0.573
`
`1
`
`0.573
`
`
`
`
`
`
`0
`
`2.2
`1
`10
`
`
`52
`±0.05
`
`
`
`
`52
`±0.05
`
`
`
`
`
`
`
`
`
`
`8
`0
`100
`
`
`
`mA
`
`mA
`
`mA
`
`
`
`
`
`kΩ
`
`%
`
`
`
`V
`14.4
`V
`6
`
`
`kΩ
`
`%
`
`
`
`V
`6
`V
`3
`1.375 V
`
`
`
`MΩ
`
`
`1.375 V
`±1
`%
`
`
`
`
`
`VREFIN
`
`Bits
`μs
`μs
`
`V
`
`V
`
`Bits
`LSB
`
`Rev. B | Page 5 of 36
`
`Input Reference Voltage on REFIN Pin,
`VREFIN
`Resolution
`INL
`
`
`
`
`
`
`2.048
`
`
`
`12
`
`
`
`±2.5
`
`Samsung Electronics Co., Ltd.
`Ex. 1061, p. 5
`
`

`

`ADM1066
`
`
`Parameter
`Gain Error
`Conversion Time
`
`Offset Error
`Input Noise
`AUX1, AUX2 Input Impedance
`BUFFERED VOLTAGE OUTPUT DACs
`Resolution
`Code 0x7F Output Voltage
`
`Range 1
`Range 2
`Range 3
`Range 4
`Output Voltage Range
`LSB Step Size
`INL
`DNL
`Gain Error
`Maximum Load Capacitance
`Settling Time into 50 pF Load
`Load Regulation
`PSRR
`
`
`REFERENCE OUTPUT
`Reference Output Voltage
`Load Regulation
`
`Minimum Load Capacitance
`PSRR
`PROGRAMMABLE DRIVER OUTPUTS
`High Voltage (Charge Pump) Mode
`(PDO1 to PDO6)
`Output Impedance
`VOH
`VOH
`VOH
`2
`IOUTAVG
`Standard (Digital Output) Mode
`(PDO1 to PDO10)
`VOH
`VOH
`VOH
`VOL
`IOL
`2
`ISINK
`2
`RPULL-UP
`ISOURCE (VPn)2
`
`Min
`
`
`
`
`
`1
`
`
`
`
`0.592
`0.796
`0.996
`1.246
`
`
`
`
`
`
`
`
`
`
`
`2.043
`
`
`1
`
`
`
`
`
`11
`10.5
`8
`
`
`
`2.4
`
`VPU − 0.3
`0
`
`
`16
`
`
`Three-State Output Leakage Current
`Oscillator Frequency
`
`
`
`90
`
`
`Typ
`
`0.44
`84
`
`0.25
`
`
`8
`
`
`0.6
`0.8
`1
`1.25
`601.25
`2.36
`
`
`
`
`
`2.5
`60
`40
`
`2.048
`−0.25
`0.25
`
`60
`
`
`
`500
`12.5
`12
`10
`20
`
`
`
`
`
`
`
`
`20
`
`
`
`100
`
`
`Test Conditions/Comments
`Max
`Unit
`VREFIN = 2.048 V
`±0.05 %
`One conversion on one channel
`
`ms
`All 12 channels selected, 16x averaging enabled
`
`ms
`VREFIN = 2.048 V
`±2
`LSB
`
`LSBrms Direct input (no attenuator)
`
`MΩ
`
`
`
`
`
`Bits
`
`
`
`6 DACs are individually selectable for centering on one of
`four output voltage ranges
`
`
`
`
`Same range, independent of center point
`
`Endpoint corrected
`
`
`
`
`Per mA
`DC
`100 mV step in 20 ns with 50 pF load
`
`No load
`Sourcing current, IDACnMAX = −100 μA
`Sinking current, IDACnMAX = 100 μA
`Capacitor required for decoupling, stability
`DC
`
`
`
`0.603 V
`0.803 V
`1.003 V
`1.253 V
`
`mV
`
`mV
`±0.75
`LSB
`±0.4
`LSB
`1
`%
`50
`pF
`2
`μs
`
`mV
`
`dB
`
`dB
`
`
`2.053 V
`
`mV
`
`mV
`
`μF
`
`dB
`
`
`
`
`
`
`IOH = 0
`IOH = 1 μA
`IOH = 7 μA
`2 V < VOH < 7 V
`
`
`VPU (pull-up to VDDCAP or VPn) = 2.7 V, IOH = 0.5 mA
`VPU to VPn = 6.0 V, IOH = 0 mA
`VPU ≤ 2.7 V, IOH = 0.5 mA
`IOL = 20 mA
`Maximum sink current per PDO pin
`Maximum total sink for all PDOs
`Internal pull-up
`Current load on any VPn pull-ups, that is, total source
`current available through any number of PDO pull-up
`switches configured onto any one
`VPDO = 14.4 V
`All on-chip time delays derived from this clock
`
`
`
`14
`13.5
`13.5
`
`
`
`
`4.5
`
`0.50
`20
`60
`29
`2
`
`10
`110
`
`
`kΩ
`V
`V
`V
`μA
`
`
`V
`V
`V
`V
`mA
`mA
`kΩ
`mA
`
`μA
`kHz
`
`
`Rev. B | Page 6 of 36
`
`Samsung Electronics Co., Ltd.
`Ex. 1061, p. 6
`
`

`

`
`
`
`Parameter
`DIGITAL INPUTS (VXn, A0, A1)
`Input High Voltage, VIH
`Input Low Voltage, VIL
`Input High Current, IIH
`Input Low Current, IIL
`Input Capacitance
`Programmable Pull-Down Current,
`IPULL-DOWN
`SERIAL BUS DIGITAL INPUTS (SDA, SCL)
`Input High Voltage, VIH
`Input Low Voltage, VIL
`Output Low Voltage, VOL
`2
`SERIAL BUS TIMING
`Clock Frequency, fSCLK
`Bus Free Time, tBUF
`Start Setup Time, tSU;STA
`Start Hold Time, tHD;STA
`SCL Low Time, tLOW
`SCL High Time, tHIGH
`SCL, SDA Rise Time, tr
`SCL, SDA Fall Time, tf
`Data Setup Time, tSU;DAT
`Data Hold Time, tHD;DAT
`Input Low Current, IIL
`SEQUENCING ENGINE TIMING
`State Change Time
`
`Min
`
`2.0
`
`−1
`
`
`
`
`
`2.0
`
`
`
`
`4.7
`4.7
`4
`4.7
`4
`
`
`250
`5
`
`
`
`
`Typ
`
`
`
`
`
`5
`20
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`10
`
`Max
`
`
`0.8
`
`1
`
`
`
`
`
`0.8
`0.4
`
`400
`
`
`
`
`
`1000
`300
`
`
`1
`
`
`
`Unit
`
`V
`V
`μA
`μA
`pF
`μA
`
`
`V
`V
`V
`
`kHz
`μs
`μs
`μs
`μs
`μs
`μs
`μs
`ns
`ns
`μA
`
`μs
`
`ADM1066
`
`Test Conditions/Comments
`
`Maximum VIN = 5.5 V
`Maximum VIN = 5.5 V
`VIN = 5.5 V
`VIN = 0
`
`VDDCAP = 4.75, TA = 25°C, if known logic state is required
`
`
`
`
`IOUT = −3.0 mA
`
`
`
`
`
`
`
`
`
`
`
`VIN = 0
`
`
`
` 1
`
` At least one of the VH, VPn pins must be ≥3.0 V to maintain the device supply on VDDCAP.
`2 Specification is not production tested, but is supported by characterization data at initial product release.
`
`
`Rev. B | Page 7 of 36
`
`Samsung Electronics Co., Ltd.
`Ex. 1061, p. 7
`
`

`

`ADM1066
`
`
`
`PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS
`
`
`
`
`PDOGND
`VCCP
`
`32
`
`31
`
`A0 3
`A1 3
`SCL 3
`SDA 3
`AUX2
`AUX1
`VDDCAP
`
`5
`
`4
`
`3
`
`39
`
`38
`
`37
`
`6
`
`PIN 1
`INDICATOR
`
`ADM1066
`TOP VIEW
`(Not to Scale)
`
`GND 4
`
`0
`
`VX1 1
`VX2 2
`VX3 3
`VX4 4
`VX5 5
`VP1 6
`VP2 7
`VP3 8
`VP4 9
`VH 10
`
`6
`
`7
`
`8
`
`9
`
`0
`
`DAC62
`DAC51
`DAC41
`DAC31
`DAC21
`DAC11
`REFOUT1
`REFIN1
`REFGND1
`AGND1
`
`1
`
`2
`
`3
`
`4
`
`5
`
`Figure 3. LFCSP Pin Configuration
`
`NC 3
`
`7
`
`PDOGND
`VCCP
`
`39
`
`38
`
`A0 4
`A1 4
`SCL 4
`SDA 4
`AUX2
`AUX1
`VDDCAP
`
`46
`
`45
`
`44
`
`3
`
`2
`
`1
`
`0
`
`GND 4
`NC 4
`
`8
`
`7
`
`36
`35
`34
`33
`32
`31
`30
`29
`28
`27
`26
`25
`
`NC
`PDO1
`PDO2
`PDO3
`PDO4
`PDO5
`PDO6
`PDO7
`PDO8
`PDO9
`PDO10
`NC
`
`04609-004
`
`
`
`PIN 1
`INDICATOR
`
`ADM1066
`TOP VIEW
`(Not to Scale)
`
`NC 1
`VX1 2
`VX2 3
`VX3 4
`VX4 5
`VX5 6
`VP1 7
`VP2 8
`VP3 9
`VP4 10
`VH 11
`NC 12
`
`1
`
`2
`
`3
`
`4
`
`NC2
`DAC62
`DAC52
`DAC42
`DAC32
`DAC21
`DAC11
`REFOUT1
`REFIN1
`REFGND1
`AGND1
`NC1
`
`3
`
`4
`
`5
`
`6
`
`7
`
`8
`
`9
`
`0
`
`NC = NO CONNECT
`Figure 4. TQFP Pin Configuration
`
`30
`29
`28
`27
`26
`25
`24
`23
`22
`21
`
`PDO1
`PDO2
`PDO3
`PDO4
`PDO5
`PDO6
`PDO7
`PDO8
`PDO9
`PDO10
`
`
`
`04609-003
`
`
`Table 2. Pin Function Descriptions
`Pin No.
`LFCSP
`TQFP
`
`1, 12, 13,
`24, 25, 36,
`37, 48
`2 to 6
`
`Mnemonic
`NC
`
`VX1 to VX5
`(VXn)
`VP1 to VP4
`(VPn)
`
`VH
`
`AGND1
`REFGND1
`REFIN
`
`REFOUT
`
`1 to 5
`
`6 to 9
`
`7 to 10
`
`10
`
`11
`12
`13
`
`14
`
`11
`
`14
`15
`16
`
`17
`
`15 to 20
`21 to 30
`
`18 to 23
`26 to 35
`
`31
`32
`
`33
`34
`35
`36
`37, 38
`
`
`
`38
`39
`
`40
`41
`42
`43
`44, 45
`
`
`
`DAC1 to DAC6
`PDO10 to
`PDO1
`PDOGND1
`VCCP
`
`A0
`A1
`SCL
`SDA
`AUX2, AUX 1
`
`
`
`Description
`No Connection.
`
`High Impedance Inputs to Supply Fault Detectors. Fault thresholds can be set from 0.573 V to
`1.375 V. Alternatively, these pins can be used as general-purpose digital inputs.
`Low Voltage Inputs to Supply Fault Detectors. Three input ranges can be set by altering the input
`attenuation on a potential divider connected to these pins, the output of which connects to a supply
`fault detector. These pins allow thresholds from 2.5 V to 6.0 V, 1.25 V to 3.00 V, and 0.573 V to 1.375 V.
`High Voltage Input to Supply Fault Detectors. Three input ranges can be set by altering the input
`attenuation on a potential divider connected to this pin, the output of which connects to a
`supply fault detector. This pin allows thresholds from 6.0 V to 14.4 V and from 2.5 V to 6.0 V.
`Ground Return for Input Attenuators.
`Ground Return for On-Chip Reference Circuits.
`Reference Input for ADC. Nominally, 2.048 V. This pin must be driven by a reference voltage.
`The on-board reference can be used by connecting the REFOUT pin to the REFIN pin.
`2.048 V Reference Output. Typically connected to REFIN. Note that the capacitor must be
`connected between this pin and REFGND. A 10 μF capacitor is recommended for this purpose.
`Voltage Output DACs. These pins default to high impedance at power-up.
`Programmable Output Drivers.
`
`Ground Return for Output Drivers.
`Central Charge-Pump Voltage of 5.25 V. A reservoir capacitor must be connected between this pin
`and GND. A 10 μF capacitor is recommended for this purpose.
`Logic Input. This pin sets the seventh bit of the SMBus interface address.
`Logic Input. This pin sets the sixth bit of the SMBus interface address.
`SMBus Clock. Input pin. Open-drain. Requires external resistive pull-up.
`SMBus Data. Bidirectional pin. Open-drain. Requires external resistive pull-up.
`Auxiliary, Single-Ended ADC Inputs.
`
`
`
`Rev. B | Page 8 of 36
`
`Samsung Electronics Co., Ltd.
`Ex. 1061, p. 8
`
`

`

`
`
`
`
`Pin No.
`LFCSP
`TQFP
`39
`46
`
`Mnemonic
`VDDCAP
`
`40
`
`47
`
`GND1
`
`ADM1066
`
`Description
`Device Supply Voltage. Linearly regulated from the highest of the VPn, VH pins to a typical of 4.75 V.
`Note that the capacitor must be connected between this pin and GND. A 10 μF capacitor is
`recommended for this purpose.
`Supply Ground.
`
` 1
`
` In a typical application, all ground pins are connected together.
`
`
`
`Rev. B | Page 9 of 36
`
`Samsung Electronics Co., Ltd.
`Ex. 1061, p. 9
`
`

`

`ADM1066
`
`
`
`ABSOLUTE MAXIMUM RATINGS
`Table 3.
`Parameter
`Voltage on VH Pin
`Voltage on VPn Pins
`Voltage on VXn Pins
`Voltage on AUX1, AUX2, REFIN Pins
`Voltage on A0, A1 Pins
`Voltage on REFIN, REFOUT Pins
`Voltage on VDDCAP, VCCP Pins
`Voltage on DACn Pins
`Voltage on PDOn Pins
`Voltage on SDA, SCL Pins
`Voltage on GND, AGND, PDOGND,
`REFGND Pins
`Input Current at Any Pin
`Package Input Current
`Maximum Junction Temperature (TJ max)
`Storage Temperature Range
`Lead Temperature,
`Soldering Vapor Phase, 60 sec
`ESD Rating, All Pins
`
`
`Rating
`16 V
`7 V
`−0.3 V to +6.5 V
`−0.3 V to +5 V
`−0.3 V to +7 V
`5 V
`6.5 V
`6.5 V
`16 V
`7 V
`−0.3 V to +0.3 V
`
`±5 mA
`±20 mA
`150°C
`−65°C to +150°C
`
`215°C
`2000 V
`
`Stresses above those listed under Absolute Maximum Ratings
`may cause permanent damage to the device. This is a stress
`rating only; functional operation of the device at these or any
`other conditions above those indicated in the operational
`section of this specification is not implied. Exposure to absolute
`maximum rating conditions for extended periods may affect
`device reliability.
`
`THERMAL CHARACTERISTICS
` θJA is specified for the worst-case conditions, that is, a device
`soldered in a circuit board for surface-mount packages.
`Table 4. Thermal Resistance
`Package Type
`40-Lead LFCSP
`48-Lead TQFP
`
`
`Unit
`°C/W
`°C/W
`
`θJA
`25
`50
`
`
`
`ESD CAUTION
`ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on
`the human body and test equipment and can discharge without detection. Although this product features
`proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy
`electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance
`degradation or loss of functionality.
`
`
`
`
`Rev. B | Page 10 of 36
`
`Samsung Electronics Co., Ltd.
`Ex. 1061, p. 10
`
`

`

`ADM1066
`
`
`
`04609-053
`
`6
`
`5
`
`4
`
`1
`
`2
`
`3
`VVP1 (V)
`Figure 8. IVP1 vs. VVP1 (VP1 Not as Supply)
`
`
`04609-054
`
`2
`
`4
`
`6
`
`10
`
`
`
`
`
`TYPICAL PERFORMANCE CHARACTERISTICS
`
`180
`
`160
`
`140
`
`120
`
`100
`
`80
`
`60
`
`40
`
`20
`
`0
`
`0
`
`5.0
`
`4.5
`
`4.0
`
`3.5
`
`3.0
`
`2.5
`
`2.0
`
`1.5
`
`1.0
`
`0.5
`
`0
`
`IVP1 (μA)
`
`IVH (mA)
`
`
`
`04609-050
`
`6
`
`5
`
`04609-051
`
`4
`
`2
`
`3
`VVP1 (V)
`Figure 5. VVDDCAP vs. VVP1
`
`
`0
`
`1
`
`6
`
`012345
`
`6
`
`012345
`
`VVDDCAP (V)
`
`VVDDCAP (V)
`
`8
`VVH (V)
`Figure 9. IVH vs. VVH (VH as Supply)
`
`
`12
`
`14
`
`16
`
`
`
`
`
`04609-055
`
`6
`
`5
`
`4
`
`1
`
`2
`
`3
`VVH (V)
`Figure 10. IVH vs. VVH (VH Not as Supply)
`
`
`0
`
`350
`
`300
`
`250
`
`200
`
`150
`
`100
`
`50
`
`0
`
`0
`
`IVH (μA)
`
`10
`
`4
`
`6
`
`8
`VVH (V)
`Figure 6. VVDDCAP vs. VVH
`
`
`12
`
`14
`
`16
`
`
`
`
`
`04609-052
`
`6
`
`5
`
`4
`
`1
`
`2
`
`3
`VVP1 (V)
`Figure 7. IVP1 vs. VVP1 (VP1 as Supply)
`
`
`0
`
`2
`
`5.0
`
`4.5
`
`4.0
`
`3.5
`
`3.0
`
`2.5
`
`2.0
`
`1.5
`
`1.0
`
`0.5
`
`0
`
`0
`
`IVP1 (mA)
`
`Rev. B | Page 11 of 36
`
`Samsung Electronics Co., Ltd.
`Ex. 1061, p. 11
`
`

`

`04609-066
`
`
`
`3000
`
`4000
`
`1000
`
`2000
`CODE
`Figure 14. DNL for ADC
`
`
`1.0
`
`0.8
`
`0.6
`
`0.4
`
`0.2
`
`0
`
`–0.2
`
`–0.4
`
`–0.6
`
`–0.8
`
`–1.0
`
`0
`
`DNL (LSB)
`
`1.0
`
`0.8
`
`0.6
`
`0.4
`
`0.2
`
`0
`
`–0.2
`
`–0.4
`
`–0.6
`
`INL (LSB)
`
`
`
`04609-056
`
`15.0
`
`ADM1066
`
`
`
`14
`
`12
`
`10
`
`8 6 4 2 0
`
`5.0
`
`4.5
`
`4.0
`
`3.5
`
`3.0
`
`2.5
`
`2.0
`
`1.5
`
`1.0
`
`0.5
`
`0
`
`VPDO1 CHARGE PUMPED
`
`VPDO1 (V)
`
`2.5
`
`5.0
`
`7.5
`ILOAD (μA)
`Figure 11. VPDO1 (FET Drive Mode) vs. ILOAD
`
`
`10.0
`
`12.5
`
`VP1 = 5V
`
`VP1 = 3V
`
`04609-063
`
`
`
`3000
`
`4000
`
`1000
`
`2000
`CODE
`Figure 15. INL for ADC
`
`
`9894
`
`04609-064
`
`
`
`25
`
`81
`
`2047
`
`2048
`CODE
`Figure 16. ADC Noise, Midcode Input, 10,000 Reads
`
`
`2049
`
`–0.8
`
`–1.0
`
`0
`
`12000
`
`10000
`
`8000
`
`6000
`
`4000
`
`2000
`
`0
`
`HITS PER CODE
`
`
`
`04609-057
`
`6
`
`
`
`04609-058
`
`60
`
`Rev. B | Page 12 of 36
`
`1
`
`2
`
`3
`ILOAD (mA)
`Figure 12. VPDO1 (Strong Pull-Up VP) vs. ILOAD
`
`
`4
`
`5
`
`VP1 = 5V
`
`VP1 = 3V
`
`10
`
`20
`
`30
`ILOAD (μA)
`Figure 13. VPDO1 (Weak Pull-Up to VP) vs. ILOAD
`
`
`40
`
`50
`
`0
`
`0
`
`4.5
`
`4.0
`
`3.5
`
`3.0
`
`2.5
`
`2.0
`
`1.5
`
`1.0
`
`0.5
`
`0
`
`0
`
`VPDO1 (V)
`
`Samsung Electronics Co., Ltd.
`Ex. 1061, p. 12
`
`

`

`ADM1066
`
`VP1 = 3.0V
`
`VP1 = 4.75V
`
`
`
`
`
`04609-065
`
`80
`
`100
`
`04609-061
`
`80
`
`100
`
`–20
`
`0
`
`40
`20
`TEMPERATURE (°C)
`Figure 19. DAC Output vs. Temperature
`
`
`60
`
`VP1 = 3.0V
`
`VP1 = 4.75V
`
`–20
`
`0
`
`40
`20
`TEMPERATURE (°C)
`Figure 20. REFOUT vs. Temperature
`
`
`60
`
`1.005
`
`1.004
`
`1.003
`
`1.002
`
`1.001
`
`1.000
`
`0.999
`
`0.998
`
`0.997
`
`0.996
`
`0.995
`–40
`
`2.058
`
`2.053
`
`2.048
`
`2.043
`
`2.038
`–40
`
`DAC OUTPUT
`
`REFOUT (V)
`
`DAC
`BUFFER
`OUTPUT
`
`20kΩ
`
`47pF
`
`PROBE
`POINT
`
`
`
`04609-059
`
`CH1 200mV
`
`M1.00μs
`
`CH1 756mV
`
`Figure 17. Transient Response of DAC Code Change into Typical Load
`
`
`100kΩ
`
`DAC
`BUFFER
`OUTPUT
`
`1V
`
`PROBE
`POINT
`
`
`
`04609-060
`
`CH1 200mV
`
`M1.00μs
`
`CH1 944mV
`
`Figure 18. Transient Response of DAC to Turn-On from HI-Z State
`
`
`
`
`
`
`1
`
`1
`
`
`
`
`
`Rev. B | Page 13 of 36
`
`Samsung Electronics Co., Ltd.
`Ex. 1061, p. 13
`
`

`

`VDDCAP
`
`INTERNAL
`DEVICE
`SUPPLY
`
`
`
`04609-022
`
`OUT
`4.75V
`LDO
`
`OUT
`4.75V
`LDO
`
`OUT
`4.75V
`LDO
`
`OUT
`4.75V
`LDO
`
`OUT
`4.75V
`LDO
`
`IN
`
`EN
`
`IN
`
`EN
`
`IN
`
`EN
`
`IN
`
`EN
`
`IN
`
`EN
`
`SUPPLY
`COMPARATOR
`
`Figure 21. VDD Arbitrator Operation
`
`ADM1066
`
`
`
`POWERING THE ADM1066
`The ADM1066 is powered from the highest voltage input on
`either the positive-only supply inputs (VPn) or the high voltage
`supply input (VH). This technique offers improved redundancy
`because the device is not dependent on any particular voltage
`rail to keep it operational. The same pins are used for supply
`fault detection (discussed later in the Supply Supervision
`section). A VDD arbitrator on the device chooses which supply
`to use. The arbitrator can be considered an OR’ing of five LDOs
`together. A supply comparator chooses the highest input to
`provide the on-chip supply. There is minimal switching loss
`with this architecture (~0.2 V), resulting in the ability to power
`the ADM1066 from a supply as low as 3.0 V. The supply on the
`VXn pins cannot be used to power the device.
`
`An external capacitor to GND is required to decouple the on-chip
`supply from noise. This capacitor should be connected to the
`VDDCAP pin, as shown in Figure 21. The capacitor has another
`use during brownouts (momentary loss of power). Under these
`conditions, when the input supply (VPn or VH) dips transiently
`below VDD, the synchronous rectifier switch immediately turns
`off so that it does not pull VDD down. The VDD capacitor can
`then act as a reservoir to keep the device active until the next
`highest supply takes over the powering of the device. A 10 μF
`capacitor is recommended for this reservoir/decoupling function.
`
`When two or more supplies are within 100 mV of each other,
`the supply that first takes control of VDD keeps control. For
`example, if VP1 is connected to a 3.3 V supply, VDD powers up
`to approximately 3.1 V through VP1. If VP2 is then connected
`to another 3.3 V supply, VP1 still powers the device, unless VP2
`goes 100 mV higher than VP1.
`
`VP1
`
`VP2
`
`VP3
`
`VP4
`
`VH
`
`
`
`
`
`
`
`
`
`Rev. B | Page 14 of 36
`
`Samsung Electronics Co., Ltd.
`Ex. 1061, p. 14
`
`

`

`
`
`
`
`INPUTS
`SUPPLY SUPERVISION
`The ADM1066 has 10 programmable inputs. Five of these are
`dedicated supply fault detectors (SFDs). These dedicated inputs
`are called VH and VPn (VP1 to VP4) by default. The other five
`inputs are labeled VXn (VX1 to VX5) and have dual functionality.
`They can be used as either supply fault detectors, with similar
`functionality as VH and VPn, or CMOS/TTL-compatible logic
`inputs to the devices. Therefore, the ADM1066 can have up to 10
`analog inputs, a minimum of five analog inputs and five digital
`inputs, or a combination. If an input is used as an analog input,
`it cannot be used as a digital input. Therefore, a configuration
`requiring 10 analog inputs has no available digital inputs. Table 6
`shows the details of each input.
`
`OV
`COMPARATOR
`
`GLITCH
`FILTER
`
`FAULT
`OUTPUT
`
`ADM1066
`
`The resolution is given by
`Step Size = Threshold Range/255
`
`Therefore, if the high range is selected on VH, the step size can
`be calculated as follows:
`(14.4 V − 4.8 V)/255 = 37.6 mV
`
`Table 5 lists the upper and lower limit of each available range,
`the bottom of each range (VB), and the range itself (VR).
`Table 5. Voltage Range Limits
`VB (V)
`Voltage Range (V)
`0.573
`0.573 to 1.375
`1.25
`1.25 to 3.00
`2.5
`2.5 to 6.0
`4.8
`4.8 to 14.4
`The threshold value required is given by
`VT = (VR × N)/255 + VB
`
`VR (V)
`0.802
`1.75
`3.5
`9.6
`
`+ –
`
`+ –
`
`RANGE
`SELECT
`
`ULTRA
`LOW
`
`VPn
`
`VREF
`
`LOW
`
`MID
`
`where:
`
`VT is the desired threshold voltage (UV or OV).
`VR is the voltage range.
`N is the decimal value of the 8-bit code.
`VB is the bottom of the range.
`
`
`
`04609-023
`
`UV
`COMPARATOR
`
`FAULT TYPE
`SELECT
`
`Figure 22. Supply Fault Detector Block
`
`PROGRAMMING THE SUPPLY FAULT DETECTORS
`The ADM1066 has up to 10 supply fault detectors (SFDs) on its
`10 input channels. These highly programmable reset generators
`enable the supervision of up to 10 supply voltages. The supplies
`can be as low as 0.573 V and as high as 14.4 V. The inputs can
`be configured to detect an undervoltage fault (the input voltage
`drops below a preprogrammed value), an overvoltage fault (the
`input voltage rises above a preprogrammed value), or an out-of-
`window fault (undervoltage or overvoltage). The thresholds can
`be programmed to an 8-bit resolution in registers provided in
`the ADM1066. This translates to a voltage resolution that is
`dependent on the range selected.
`
`Reversing the equation, the code for a desired threshold is given by
`N = 255 × (VT − VB)/VR
`
`If, for example, the user wants to set a 5 V OV threshold on
`VP1, the code to be programmed in the PS1OVTH register
`(discussed in the AN-698 Application Note) is given by
`N = 255 × (5 − 2.5)/3.5
`
`Therefore, N = 182 (1011 0110 or 0xB6).
`
`
`
`
`
`
`
`Table 6. Input Functions, Thresholds, and Ranges
`Input
`Function
`Voltage Range (V)
`VH
`High V Analog Input
`2.5 to 6.0
`
`
`4.8 to 14.4
`VPn
`Positive Analog Input
`0.573 to 1.375
`
`
`1.25 to 3.00
`
`
`2.5 to 6.0
`VXn
`High Z Analog Input
`0.573 to 1.375
`
`Digital Input
`0 to 5
`
`Maximum Hysteresis
`425 mV
`1.16 V
`97.5 mV
`212 mV
`425 mV
`97.5 mV
`N/A
`
`Voltage Resolution (mV)
`13.7
`37.6
`3.14
`6.8
`13.7
`3.14
`N/A
`
`Glitch Filter (μs)
`0 to 100
`0 to 100
`0 to 100
`0 to 100
`0 to 100
`0 to 100
`0 to 100
`
`Rev. B | Page 15 of 36
`
`Samsung Electronics Co., Ltd.
`Ex. 1061, p. 15
`
`

`

`ADM1066
`

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket