

ANALOG Super Sequencer™ with Margining Control DEVICES and Auxiliary ADC Inputs

ADM1066

FEATURES

Complete supervisory and sequencing solution for up to 10 supplies

10 supply fault detectors enable supervision of supplies to <0.5% accuracy at all voltages at 25°C

< 1.0 % accuracy across all voltages and temperatures

5 selectable input attenuators allow supervision

Supplies up to 14.4 V on VH

Supplies up to 6 V on VP1 to VP4

5 dual-function inputs, VX1 to VX5

High impedance input to supply fault detector with thresholds between 0.573 V and 1.375 V

General-purpose logic input

10 programmable output drivers, PDO1 to PDO10

Open collector with external pull-up

Push/pull output, driven to VDDCAP or VPn

Open collector with weak pull-up to VDDCAP or VPn

Internally charge-pumped high drive for use with external N-FET (PDO1 to PDO6 only)

Sequencing engine (SE) implements state machine control of **PDO outputs**

State changes conditional on input events

Enables complex control of boards

Power-up and power-down sequence control

Fault event handling

Interrupt generation on warnings

Watchdog function can be integrated in SE

Program software control of sequencing through SMBus

Complete voltage-margining solution for 6 voltage rails

6 voltage output 8-bit DACs (0.300 V to 1.551 V) allow voltage adjustment via dc-to-dc converter trim/feedback node

12-bit ADC for readback of all supervised voltages

2 auxiliary (single-ended) ADC inputs

Reference input (REFIN) has 2 input options

Driven directly from 2.048 V (±0.25%) REFOUT pin

More accurate external reference for improved ADC performance

Device powered by the highest of VPn or VH for improved redundancy

User EEPROM: 256 bytes

Industry-standard 2-wire bus interface (SMBus)

Guaranteed PDO low with VH, VPn = 1.2 V

40-lead 6 mm × 6 mm LFCSP

48-lead 7 mm × 7 mm TQFP

For more information about the ADM1066 register map, refer to the AN-698 Application Note.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no onsibility is assumed by Analog Devices for its use, nor for any infringements of patents or othe

FUNCTIONAL BLOCK DIAGRAM

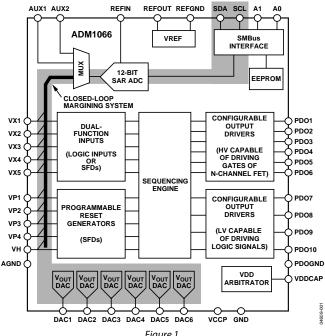


Figure 1.

APPLICATIONS

Central office systems Servers/routers Multivoltage system line cards **DSP/FPGA supply sequencing** In-circuit testing of margined supplies

GENERAL DESCRIPTION

The ADM1066 is a configurable supervisory/sequencing device that offers a single-chip solution for supply monitoring and sequencing in multiple-supply systems. In addition to these functions, the ADM1066 integrates a 12-bit ADC and six 8-bit voltage output DACs. These circuits can be used to implement a closed-loop margining system that enables supply adjustment by altering either the feedback node or reference of a dc-to-dc converter using the DAC outputs.

(continued on Page 4)

ADM1066

TABLE OF CONTENTS

Features	1
Functional Block Diagram	1
Applications	1
General Description	1
Revision History	3
General Description	4
Specifications	5
Pin Configurations and Function Descriptions	8
Absolute Maximum Ratings	10
Thermal Characteristics	10
ESD Caution	10
Typical Performance Characteristics	11
Powering the ADM1066	14
Inputs	15
Supply Supervision	15
Programming the Supply Fault Detectors	15
Input Comparator Hysteresis	16
Input Glitch Filtering	16
Supply Supervision with VXn Inputs	16
VXn Pins as Digital Inputs	16
Outputs	18
Supply Sequencing through Configurable Output I	Orivers 18
Default Output Configuration	19
Sequencing Engine	20
Overview	20
Warnings	20

	SMBus Jump/Unconditional Jump	20
	Sequencing Engine Application Example	21
	Fault and Status Reporting	23
7	oltage Readback	24
	Supply Supervision with the ADC	24
òı	upply Margining	25
	Overview	25
	Open-Loop Margining	25
	Closed-Loop Supply Margining	25
	Writing to the DACs	26
	Choosing the Size of the Attenuation Resistor	26
	DAC Limiting/Other Safety Features	26
١	pplications Diagram	27
2	ommunicating with the ADM1066	28
	Configuration Download at Power-Up	28
	Updating the Configuration	28
	Updating the Sequencing Engine	29
	Internal Registers	29
	EEPROM	29
	Serial Bus Interface	29
	SMBus Protocols for RAM and EEPROM	32
	Write Operations	32
	Read Operations	34
)	outline Dimensions	35
	Ordering Guide	36

ADM1066

REVISION HISTORY

5/06—Rev. A to Rev. B	
Changes to Features Section	
Changes to Table 1	
Changes to Table 2	
Changes to Table 3	1
Added Table 4	1
Added Default Output Configuration Section	1
Changes to Fault Reporting Section	1
Added Table 11	3
Changes to Ordering Guide	3

1/05—Rev. 0 to Rev. A	
Changes to Figure 1	1
Changes to Absolute Maximum Ratings Section	8
Change to Supply Sequencing through Configurable	
Output Drivers Section	16
Changes to Figure 33	23
Change to Table 10	32
-	

10/04—Revision 0: Initial Version

ADM1066

GENERAL DESCRIPTION

(continued from Page 1)

Supply margining can be performed with a minimum of external components. The margining loop can be used for in-circuit testing of a board during production (for example, to verify the board's functionality at -5% of nominal supplies), or can be used dynamically to accurately control the output voltage of a dc-to-dc converter.

The device also provides up to 10 programmable inputs for monitoring under, over, or out-of-window faults on up to 10 supplies. In addition, 10 programmable outputs can be used as logic enables. Six of them can also provide up to a 12 V output for driving the gate of an N-channel FET, which can be placed in the path of a supply.

The logical core of the device is a sequencing engine. This state-machine-based construction provides up to 63 different states. This design enables very flexible sequencing of the outputs, based on the condition of the inputs.

The device is controlled via configuration data that can be programmed into an EEPROM. The whole configuration can be programmed using an intuitive GUI-based software package provided by Analog Devices, Inc.



Figure 2. Detailed Block Diagram

SPECIFICATIONS

VH = 3.0~V to $14.4~V^1$, VPn = 3.0~V to $6.0~V^1$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$, unless otherwise noted.

Table 1.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
POWER SUPPLY ARBITRATION					
VH, VPn	3.0			V	Minimum supply required on one of VPn, VH
VP			6.0	V	Maximum VDDCAP = 5.1 V, typical
VH			14.4	V	VDDCAP = 4.75 V
VDDCAP	2.7	4.75	5.4	v	Regulated LDO output
	10	4./3	J. 4	μF	Minimum recommended decoupling capacitance
C _{VDDCAP} POWER SUPPLY	10			μΓ	Willimum recommended decoupling capacitance
		4.2	_		VDDCAD 475V DDO4+ DDO40 (CDAC (CADC (C
Supply Current, I _{VH} , I _{VPn}		4.2	6	mA	VDDCAP = 4.75 V, PDO1 to PDO10 off, DACs off, ADC off
Additional Currents					
All PDO FET Drivers On		1		mA	VDDCAP = 4.75 V, PDO1 to PDO6 loaded with 1 μ A each, PDO7 to PDO10 off
Current Available from VDDCAP			2	mA	Maximum additional load that can be drawn from all PDO pull-ups to VDDCAP
DACs Supply Current		2.2		mA	6 DACs on with 100 μA maximum load on each
ADC Supply Current		1		mA	Running round-robin loop
EEPROM Erase Current		10		mA	1 ms duration only, VDDCAP = 3 V
SUPPLY FAULT DETECTORS				1	
VH Pin					
Input Impedance		52		kΩ	
Input Attenuator Error		±0.05		%	Midrange and high range
•		±0.05		/0	Midrafige and flight range
Detection Ranges			111	.,	
High Range	6		14.4	V	
Midrange	2.5		6	V	
VPn Pins					
Input Impedance		52		kΩ	
Input Attenuator Error		±0.05		%	Low range and midrange
Detection Ranges					
Midrange	2.5		6	V	
Low Range	1.25		3	V	
Ultralow Range	0.573		1.375	V	No input attenuation error
VX Pins					
Input Impedance	1			ΜΩ	
Detection Ranges					
Ultralow Range	0.573		1.375	V	No input attenuation error
Absolute Accuracy			±1	%	VREF error + DAC nonlinearity + comparator offset error + input attenuation error
Threshold Resolution		8		Bits	
Digital Glitch Filter		0		μs	Minimum programmable filter length
3		100		μs	Maximum programmable filter length
ANALOG-TO-DIGITAL CONVERTER					1 3
Signal Range	0		V _{REFIN}	V	The ADC can convert signals presented to the VH, VPn, and VXn pins. VPn and VH input signals are attenuated depending on the selected range. A signal at the pin corresponding to the selected range is from 0.573 V to 1.375 V at the ADC input.
Input Reference Voltage on REFIN Pin, V_{REFIN}		2.048		V	
Resolution		12		Bits	
INL			±2.5	LSB	Endpoint corrected, V _{REFIN} = 2.048 V

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

