throbber
(cid:926)(cid:3)(cid:1005)(cid:1013)(cid:1013)(cid:1010)(cid:3)(cid:18)(cid:258)(cid:396)(cid:367)(cid:3)(cid:44)(cid:258)(cid:374)(cid:400)(cid:286)(cid:396)(cid:3)(cid:115)(cid:286)(cid:396)(cid:367)(cid:258)(cid:336)(cid:856)(cid:3)(cid:4)(cid:367)(cid:367)(cid:3)(cid:396)(cid:349)(cid:336)(cid:346)(cid:410)(cid:400)(cid:3)(cid:396)(cid:286)(cid:400)(cid:286)(cid:396)(cid:448)(cid:286)(cid:282)(cid:856)(cid:3)
`(cid:69)(cid:381)(cid:3)(cid:437)(cid:374)(cid:258)(cid:437)(cid:410)(cid:346)(cid:381)(cid:396)(cid:349)(cid:460)(cid:286)(cid:282)(cid:3)(cid:282)(cid:349)(cid:400)(cid:272)(cid:367)(cid:381)(cid:400)(cid:437)(cid:396)(cid:286)(cid:3)(cid:381)(cid:396)(cid:3)(cid:396)(cid:286)(cid:393)(cid:396)(cid:381)(cid:282)(cid:437)(cid:272)(cid:410)(cid:349)(cid:381)(cid:374)(cid:854)(cid:3)(cid:367)(cid:349)(cid:272)(cid:286)(cid:374)(cid:400)(cid:286)(cid:282)(cid:3)(cid:410)(cid:381)(cid:3)(cid:393)(cid:437)(cid:396)(cid:272)(cid:346)(cid:258)(cid:400)(cid:286)(cid:396)(cid:3)(cid:381)(cid:374)(cid:367)(cid:455)(cid:856)
`
`0601
`
`EX1008 (Part 3 of 3)
`Yita v. MacNeil
`IPR2020-01139
`
`

`

`8.2 Forming Thin Films
`
`585
`
`Double Bubble
`
`Collapsing Frame
`
`
`
`Blown Film Bubble
`
`
`
`Frost Line
`
`
`
`
`External Air Ring~.
`
`Extruder
`
` =|___. IntarnalAir Inlet
`
`Figure 8.1 Typical blown film tower with optional double bubble stretching section [2]
`
`Regrind isdifficult to accommodatein calendering, and dirt, gels and contamination
`can be a problem.
`Films are also produced by solution casting, Any polymerthat can be solvated or
`dissolved in a carrier can be cast
`into film. Typically, polymers that cannot be
`extruded or melt processed are solution cast into films. Examples include polyimides,
`polyazoles and latexes. Solution casting is usually a manual batch process although
`
`(cid:926)(cid:3)(cid:1005)(cid:1013)(cid:1013)(cid:1010)(cid:3)(cid:18)(cid:258)(cid:396)(cid:367)(cid:3)(cid:44)(cid:258)(cid:374)(cid:400)(cid:286)(cid:396)(cid:3)(cid:115)(cid:286)(cid:396)(cid:367)(cid:258)(cid:336)(cid:856)(cid:3)(cid:4)(cid:367)(cid:367)(cid:3)(cid:396)(cid:349)(cid:336)(cid:346)(cid:410)(cid:400)(cid:3)(cid:396)(cid:286)(cid:400)(cid:286)(cid:396)(cid:448)(cid:286)(cid:282)(cid:856)(cid:3)
`© 1996 Carl Hanser Verlag. All rights reserved.
`(cid:69)(cid:381)(cid:3)(cid:437)(cid:374)(cid:258)(cid:437)(cid:410)(cid:346)(cid:381)(cid:396)(cid:349)(cid:460)(cid:286)(cid:282)(cid:3)(cid:282)(cid:349)(cid:400)(cid:272)(cid:367)(cid:381)(cid:400)(cid:437)(cid:396)(cid:286)(cid:3)(cid:381)(cid:396)(cid:3)(cid:396)(cid:286)(cid:393)(cid:396)(cid:381)(cid:282)(cid:437)(cid:272)(cid:410)(cid:349)(cid:381)(cid:374)(cid:854)(cid:3)(cid:367)(cid:349)(cid:272)(cid:286)(cid:374)(cid:400)(cid:286)(cid:282)(cid:3)(cid:410)(cid:381)(cid:3)(cid:393)(cid:437)(cid:396)(cid:272)(cid:346)(cid:258)(cid:400)(cid:286)(cid:396)(cid:3)(cid:381)(cid:374)(cid:367)(cid:455)(cid:856)
`No unauthorized disclosure or reproduction; licensed to purchaser only.
`
`0602
`
`0602
`
`

`

`586
`
`Producing Sheet and Film
`
`[Refs. on p. 644]
`
` Two-RollMill +) ©
`
`"L" Calender Roll Stack
`
`Inverted "L" Calender Roll Stack
`
`Figure 8.2 Two calendering roll stack configurations. Redrawn from [3] and used with permission of
`copyright owner
`
`Two-RollMill C+) S
`
`RAY
`
`CA
`
`+)
`
`"FE" Calender Roll Stack
`
`"2" Calender Roll Stack
`
` Two-Rall Mill
`
`= =,
`
`&
`
`Figure 8.3 Two calendering roll stack configura-
`tions. Redrawn from [4] and used with permission
`of copyright owner
`
`the resulting films are quite
`latex casting has been automated. With proper care,
`uniform in thickness and properties. Films having thicknesses of | mil, 0.001 in or
`25 um or less are common.Solvent cast films are usually quite expensive. Residual
`solvent can be a serious problem during reheating of the film in the forming
`operation.
`Thin films are also needed when coextruded sheet is required. In this case, the
`polymeris melt-extruded with a secondary extruder into a special multilayer die. This
`is discussed below.
`
`(cid:926)(cid:3)(cid:1005)(cid:1013)(cid:1013)(cid:1010)(cid:3)(cid:18)(cid:258)(cid:396)(cid:367)(cid:3)(cid:44)(cid:258)(cid:374)(cid:400)(cid:286)(cid:396)(cid:3)(cid:115)(cid:286)(cid:396)(cid:367)(cid:258)(cid:336)(cid:856)(cid:3)(cid:4)(cid:367)(cid:367)(cid:3)(cid:396)(cid:349)(cid:336)(cid:346)(cid:410)(cid:400)(cid:3)(cid:396)(cid:286)(cid:400)(cid:286)(cid:396)(cid:448)(cid:286)(cid:282)(cid:856)(cid:3)
`© 1996 Carl Hanser Verlag. All rights reserved.
`(cid:69)(cid:381)(cid:3)(cid:437)(cid:374)(cid:258)(cid:437)(cid:410)(cid:346)(cid:381)(cid:396)(cid:349)(cid:460)(cid:286)(cid:282)(cid:3)(cid:282)(cid:349)(cid:400)(cid:272)(cid:367)(cid:381)(cid:400)(cid:437)(cid:396)(cid:286)(cid:3)(cid:381)(cid:396)(cid:3)(cid:396)(cid:286)(cid:393)(cid:396)(cid:381)(cid:282)(cid:437)(cid:272)(cid:410)(cid:349)(cid:381)(cid:374)(cid:854)(cid:3)(cid:367)(cid:349)(cid:272)(cid:286)(cid:374)(cid:400)(cid:286)(cid:282)(cid:3)(cid:410)(cid:381)(cid:3)(cid:393)(cid:437)(cid:396)(cid:272)(cid:346)(cid:258)(cid:400)(cid:286)(cid:396)(cid:3)(cid:381)(cid:374)(cid:367)(cid:455)(cid:856)
`No unauthorized disclosure or reproduction; licensed to purchaser only.
`
`0603
`
`0603
`
`

`

`The criteria for judging the quality of thin films are the same as those for heavier
`gage sheet. These are discussed below. With thin films,
`there is a greater concern
`about gels, fish-eyes and other occlusions in the sheet simply because the dimensions
`of these defects may be equal to or greater than the thickness of the film.
`
`§.3 Forming Sheet
`
`587
`
`8.3 Forming Sheet
`
`As noted, calendering is used to produce thin-gage sheet to 50 mils, 0.050 in or
`1250 pm in thickness. Its use is usually restricted to polymers that require fluxing or
`masticating and those that are thermally sensitive. Polyviny] chloride is the domi-
`nant polymer produced as calendered sheet. High molecular weight polymethyl
`methacrylate is sought for clarity and chemical resistance in pools, spas, shower
`stalls, and most glazing applications. It is produced by cell casting [5]. Generally,
`methyl methacrylate monomer with its hydroquinone inhibitor removed is mixed
`with benzoyl peroxide catalyst and heated to 90-95°C. The catalyzed syrup is cast
`between two highly polished plates separated by flexible polyvinyl chloride or
`polyviny] alcohol gaskets. The plates are held against the gaskets with carefully
`calibrated spring-loaded clips since the polymer increases in density or decreases in
`volume as its molecular weight increases. Temperature is maintained at 40°C early
`in the polymerization but gradually raised to 95-97°C after several hours to allow
`the polymerization to proceed to completion. The sheet
`is then cooled to below
`40°C, removed from the plates and annealed for up to 2 hours at 140°C to minimize
`internal stresses.
`Although the original batch processis still used to produce sheets with special
`sizes and thicknesses or acrylics that are lightly crosslinked, the continuouscell-cast
`process dominates the production of most commercial glazing acrylic sheets. The
`continuous process uses a monomer/polymer syrup containing up to 20% high-
`molecular weight polymer. Although the abrasion and chemical resistances are
`thought
`to be somewhat
`inferior to the batch cell-cast product,
`this product
`is
`substantially less expensive. Continuouscell-cast acrylic can also be crosslinked to
`improve impact strength. With proper temperature control, lower molecular weight
`polymethyl methacrylate pellets and granules are extruded into sheets using conven-
`tional single-screw extruders. Such products have lowered abrasion,
`impact and
`scratch resistances and may not have the surface quality and clarity of higher
`molecular weight acrylics. And extrusion-grade acrylics are usually not crosslinked.
`Extrusion through a slot die is
`the primary method of producing sheet
`of thicknesses from 10 mils, 0.010 in or 250 pm to 500 mils, 0.500 in or 12 mm
`or more. Table 8.2 lists the scope of continuous screw extrusion techniques.
`Plasticating single-screw extruders and twin-screw extruders dominate production of
`sheet for thermoforming. Of the rest, two-stage and tandem extruders are used to
`produce foam sheet. This is covered in some detail in Chapter 9 on forming foam
`sheet.
`
`(cid:926)(cid:3)(cid:1005)(cid:1013)(cid:1013)(cid:1010)(cid:3)(cid:18)(cid:258)(cid:396)(cid:367)(cid:3)(cid:44)(cid:258)(cid:374)(cid:400)(cid:286)(cid:396)(cid:3)(cid:115)(cid:286)(cid:396)(cid:367)(cid:258)(cid:336)(cid:856)(cid:3)(cid:4)(cid:367)(cid:367)(cid:3)(cid:396)(cid:349)(cid:336)(cid:346)(cid:410)(cid:400)(cid:3)(cid:396)(cid:286)(cid:400)(cid:286)(cid:396)(cid:448)(cid:286)(cid:282)(cid:856)(cid:3)
`© 1996 Carl Hanser Verlag. All rights reserved.
`(cid:69)(cid:381)(cid:3)(cid:437)(cid:374)(cid:258)(cid:437)(cid:410)(cid:346)(cid:381)(cid:396)(cid:349)(cid:460)(cid:286)(cid:282)(cid:3)(cid:282)(cid:349)(cid:400)(cid:272)(cid:367)(cid:381)(cid:400)(cid:437)(cid:396)(cid:286)(cid:3)(cid:381)(cid:396)(cid:3)(cid:396)(cid:286)(cid:393)(cid:396)(cid:381)(cid:282)(cid:437)(cid:272)(cid:410)(cid:349)(cid:381)(cid:374)(cid:854)(cid:3)(cid:367)(cid:349)(cid:272)(cid:286)(cid:374)(cid:400)(cid:286)(cid:282)(cid:3)(cid:410)(cid:381)(cid:3)(cid:393)(cid:437)(cid:396)(cid:272)(cid:346)(cid:258)(cid:400)(cid:286)(cid:396)(cid:3)(cid:381)(cid:374)(cid:367)(cid:455)(cid:856)
`No unauthorized disclosure or reproduction; licensed to purchaser only.
`
`0604
`
`0604
`
`

`

`588
`
`Producing Sheet and Film
`
`[Refs. on p. 644]
`
`Table 8.2 Types of Continuous Screw Extruders
`
`
`
`Single-screw extruders
`
`
`Mullti-screw extruders
`
`
`Melt fed or plasticating
`Twin screw
`
`Single stage
`Gear pump
`Multi-stage
`Planetary gear
`
`Plastic
`Multi-screw (>2)
`Rubber
`
`
`Single-Screw Extrusion
`
`Figure 8.4 is a cut-away schematic of a conventional single-screw extruder. The basic
`elements are:
`
`Constant diameter flighted screw,
`Constant bore barrel,
`Zoned heater bands,
`Keyed bearing block,
`Feed hopper,
`Venting ports,
`
`Barrel (EEELLLCLLa(agea4
`
`Screw
`
`Gear Box EDD
`
`Heater Band
`
`SS
`
`Figure 8.4 Schematic of single-screw extruder for thermoplastics
`
`(cid:926)(cid:3)(cid:1005)(cid:1013)(cid:1013)(cid:1010)(cid:3)(cid:18)(cid:258)(cid:396)(cid:367)(cid:3)(cid:44)(cid:258)(cid:374)(cid:400)(cid:286)(cid:396)(cid:3)(cid:115)(cid:286)(cid:396)(cid:367)(cid:258)(cid:336)(cid:856)(cid:3)(cid:4)(cid:367)(cid:367)(cid:3)(cid:396)(cid:349)(cid:336)(cid:346)(cid:410)(cid:400)(cid:3)(cid:396)(cid:286)(cid:400)(cid:286)(cid:396)(cid:448)(cid:286)(cid:282)(cid:856)(cid:3)
`© 1996 Carl Hanser Verlag. All rights reserved.
`(cid:69)(cid:381)(cid:3)(cid:437)(cid:374)(cid:258)(cid:437)(cid:410)(cid:346)(cid:381)(cid:396)(cid:349)(cid:460)(cid:286)(cid:282)(cid:3)(cid:282)(cid:349)(cid:400)(cid:272)(cid:367)(cid:381)(cid:400)(cid:437)(cid:396)(cid:286)(cid:3)(cid:381)(cid:396)(cid:3)(cid:396)(cid:286)(cid:393)(cid:396)(cid:381)(cid:282)(cid:437)(cid:272)(cid:410)(cid:349)(cid:381)(cid:374)(cid:854)(cid:3)(cid:367)(cid:349)(cid:272)(cid:286)(cid:374)(cid:400)(cid:286)(cid:282)(cid:3)(cid:410)(cid:381)(cid:3)(cid:393)(cid:437)(cid:396)(cid:272)(cid:346)(cid:258)(cid:400)(cid:286)(cid:396)(cid:3)(cid:381)(cid:374)(cid:367)(cid:455)(cid:856)
`No unauthorized disclosure or reproduction; licensed to purchaser only.
`
`0605
`
`0605
`
`

`

`8.3 Forming Sheet
`
`589
`
`Table 8.3 Typical Compression Ratios Single-Screw
` Extruders
`
`Polymer
`
`Compression ratio
`
`Regrind polyethylene fiuff
`Polyethylene powder
`Regrind polystyrene foam
`Other amorphous powders
`Polypropylene pellets
`PYC pellets
`Polystyrene pellets
`ABSpellets
`Crystalline PET pellets
`Polyamide (nylon) pellets
`
`4.5:1
`4.0:1
`4.03
`3.5:1
`3.0:1
`2.531
`2,5:1
`25:1
`2.0:1
`1.5:1
`
`e Electric motor,
`*
`Power coupling between motor and flighted screw, and
`* Temperature and speed controls.
`
`The most common screw is single-flighted. The screw serves to advance the polymer
`from the hopper to the die end, compressing, melting and increasing the pressure on
`it as it advances. The screw root increases along the screw, compressing and pressing
`the polymer against the heated barrel inner wall. The amount of compressionis the
`compression ratio, Table 8.3 gives typical compression ratios for some polymers. The
`function of the screw is intellectually divided into three segments (Fig. 8.5) [6]:
`

`
`Solids conveying. where the plastic pellets or powder is augered from the hopper
`into the barrel. Energy transfer to the polymer is minimal. Friction between the
`semi-solid polymer and the barrel and screw surfaces dominates. Typically the
`screw root dimension does not change in this zone.
`
`Metering SectionelETheNtoringSeteFeed Section Transition Section
`
`
`
`
`
`
`
`-s|
`
`Key
`
`Screw Flight
`
`
`
`Screw Tip
`
`Channel DepthShank Screw Diameter
`
`
` |AAPPETTITTTTY
`Pubs | Ne
`Pitch
`
`
`Helix Angle Screw Root Screw Flight~Channel Width
`
`Figure 8.5 Schematic of screw for single-screw extruder with identification of various screw ele-
`ments. Redrawn from [6] and used with permission of copyright owner
`
`(cid:926)(cid:3)(cid:1005)(cid:1013)(cid:1013)(cid:1010)(cid:3)(cid:18)(cid:258)(cid:396)(cid:367)(cid:3)(cid:44)(cid:258)(cid:374)(cid:400)(cid:286)(cid:396)(cid:3)(cid:115)(cid:286)(cid:396)(cid:367)(cid:258)(cid:336)(cid:856)(cid:3)(cid:4)(cid:367)(cid:367)(cid:3)(cid:396)(cid:349)(cid:336)(cid:346)(cid:410)(cid:400)(cid:3)(cid:396)(cid:286)(cid:400)(cid:286)(cid:396)(cid:448)(cid:286)(cid:282)(cid:856)(cid:3)
`© 1996 Carl Hanser Verlag. All rights reserved.
`(cid:69)(cid:381)(cid:3)(cid:437)(cid:374)(cid:258)(cid:437)(cid:410)(cid:346)(cid:381)(cid:396)(cid:349)(cid:460)(cid:286)(cid:282)(cid:3)(cid:282)(cid:349)(cid:400)(cid:272)(cid:367)(cid:381)(cid:400)(cid:437)(cid:396)(cid:286)(cid:3)(cid:381)(cid:396)(cid:3)(cid:396)(cid:286)(cid:393)(cid:396)(cid:381)(cid:282)(cid:437)(cid:272)(cid:410)(cid:349)(cid:381)(cid:374)(cid:854)(cid:3)(cid:367)(cid:349)(cid:272)(cid:286)(cid:374)(cid:400)(cid:286)(cid:282)(cid:3)(cid:410)(cid:381)(cid:3)(cid:393)(cid:437)(cid:396)(cid:272)(cid:346)(cid:258)(cid:400)(cid:286)(cid:396)(cid:3)(cid:381)(cid:374)(cid:367)(cid:455)(cid:856)
`No unauthorized disclosure or reproduction; licensed to purchaser only.
`
`0606
`
`0606
`
`

`

`590
`
`Producing Sheet and Film
`
`[Refs. on p. 644)
`
`Molten Polymer Film
`
`Barrel
`
`SS SS
`
`PTE
`
`Mall Poo!
`
`Solid Polymer Granular Bed
`
`Figure 8.6 Schematic of the interrelationship of solid and melt polymer and screw and barrel in the
`plastication region for single-screw extruder [7]
`
`« Plasticating or melting, where the compressed cake melts against the barrel surface
`and the melt is continuously conveyed into a pool at the front ofthe trailing flight
`(Fig. 8.6) [7]. In this zone, the screw root dimension linearly increases.
`e Melt pumping, where the molten polymer is homogenized and compressed to build
`pressure necessary to flow through the extrusion sheet die. In this zone, the screw
`root dimension remains constant.
`
`These extruders are usually described in terms of screw diameter and the screw
`length-to-diameter ratio, L/D. In the US, screw diameters are given in inches as 1,
`14, 2, 25, 35, 45, 6, 8, 10, 12 and so on. In Europe and other metric areas, screw
`diameters are given in mm as 20, 25, 30, 35, 40, 50, 60, 90, 120, 150 and so on. L/D
`ratios are as low as 12:1] to 16:1 for rubber and thermoplastic elastomeric polymers
`to 20:] to 36:] for most commercial extruders to 48:1 for certain olefinic extruders.
`24:1 and 30:1 extruders make up the bulk of sheet extrusion capability in the US
`while most European extruders are typically 30:1 to 36:1. Increased L/D allows for
`improved solids conveying and melt homogenization but increases the residence time
`and shear history on the polymer melt. Table 8.4 gives an overview of the capacities
`of extruders of various diameters [8], Extruder throughput rates are also dependent
`on the type of polymer, as seen in Table 8.5 [9]. These rates represent extruder
`capacity when the flow rate through the die is not controlling. This is the case for
`most heavy-gage sheet extrusion. For thin-gage sheet extrusion, on the other hand,
`extruder throughput rates may be reduced by flow resistance through the die, as seen
`in Table 8.6 for the extrusion of 15 to 80 mil, 0.015 to 0.080 in or 400 to 2000 pm
`flat sheet of certain polymers [10]. Example 8.1 showsthe relative output for a given
`extruder screw diameter.
`
`(cid:926)(cid:3)(cid:1005)(cid:1013)(cid:1013)(cid:1010)(cid:3)(cid:18)(cid:258)(cid:396)(cid:367)(cid:3)(cid:44)(cid:258)(cid:374)(cid:400)(cid:286)(cid:396)(cid:3)(cid:115)(cid:286)(cid:396)(cid:367)(cid:258)(cid:336)(cid:856)(cid:3)(cid:4)(cid:367)(cid:367)(cid:3)(cid:396)(cid:349)(cid:336)(cid:346)(cid:410)(cid:400)(cid:3)(cid:396)(cid:286)(cid:400)(cid:286)(cid:396)(cid:448)(cid:286)(cid:282)(cid:856)(cid:3)
`© 1996 Carl Hanser Verlag. All rights reserved.
`(cid:69)(cid:381)(cid:3)(cid:437)(cid:374)(cid:258)(cid:437)(cid:410)(cid:346)(cid:381)(cid:396)(cid:349)(cid:460)(cid:286)(cid:282)(cid:3)(cid:282)(cid:349)(cid:400)(cid:272)(cid:367)(cid:381)(cid:400)(cid:437)(cid:396)(cid:286)(cid:3)(cid:381)(cid:396)(cid:3)(cid:396)(cid:286)(cid:393)(cid:396)(cid:381)(cid:282)(cid:437)(cid:272)(cid:410)(cid:349)(cid:381)(cid:374)(cid:854)(cid:3)(cid:367)(cid:349)(cid:272)(cid:286)(cid:374)(cid:400)(cid:286)(cid:282)(cid:3)(cid:410)(cid:381)(cid:3)(cid:393)(cid:437)(cid:396)(cid:272)(cid:346)(cid:258)(cid:400)(cid:286)(cid:396)(cid:3)(cid:381)(cid:374)(cid:367)(cid:455)(cid:856)
`No unauthorized disclosure or reproduction; licensed to purchaser only.
`
`0607
`
`0607
`
`

`

`8.3 Forming Sheet
`
`591
`
`Table 8.4 Typical Extruder Capacities [8]
`
`
`
`
`Extruder size
`Barrel heater
`Average power
`Output
`
`
`(HP)
`
`(kW)
`
`
`
`(Ib/h) (kg/h)
`
`
`
`
`7.5
`23-74
`is
`10-15
`50-75
`
`21
`54-73
`24
`20-30
`120-160
`
`
`
`45
`113—181
`33
`40-75
`250-400
`
`
`
`75
`181-318
`4!
`80.125
`400-700
`140
`6
`150-225
`800-1200
`363-544
`
`8
`680-9071500-2000 225
`300-500
`
`
`
`
`
`
`Example 8.1 Extrusion Capacity
`
`Your thermoforming operation requires 40 in x 52 in x 0.060 in ABS sheet. Deter-
`niine the number af 100 sheet pallets that can be produced from a 4-in extruder.
`Compare the output with the maximum output of that extruder. Determine the
`weight of each pallet.
`
`From Table 8.6, the 45-in extruder with a sheeting die can produce 1320 to
`1430 Ib/h ABS. Thespecific gravity of ABS is 1.05 g/cm* = 65.5 lb/ft’. Thus
`the volumetric output is 20 to 22 ft?/h. The volume of each sheet is 124.8
`in? = 0.072 ft®. Therefore the extruder will produce 275 to 300 sheets per
`hour or 2.75 to 3 pallets per hour. The plastic on each pallet weighs 470 Ib.
`According to Table 8.5, a 44-in extruder can plasticate 1170 to 1430 Ib/h.
`Therefore, the extruder with a sheeting die is running at maximum capacity.
`
`Manysingle-screw extruders have venting ports or vents at some location along
`the barrel. Some polymers contain small amounts of volatiles. These are removed
`prior to the sheeting die to eliminate foaming and to minimize microbubbles,pits and
`poresin the finished sheet. Venting screws usually have a decompression or let-down
`region just ahead of the vent, as seen in Fig. 8.7 [Il]. Vented or devolatilizing
`extruders usually have L/Ds of 30:1 or more. Although vents can be plugged and the
`extruder run unvented, the screw is usually not optimum and so the polymer may be
`subjected to higher than normal shear and residence time at melt temperature. Vented
`extruders should not be used to dewater polymers. Polymers having high moisture
`level potentials should be thoroughly dried prior to being charged to the extruder.
`
`Filtering the Polymer
`
`A filter screen is usually placed between the end of the extruder and the die to catch
`contaminants, unmelted polymer and somegel particles. The generic screen is a plate
`with regularly spaced holes. Screens with different sized holes are usually grouped
`together to form a screen pack. A typical screen pack might have several 100 mesh
`
`(cid:926)(cid:3)(cid:1005)(cid:1013)(cid:1013)(cid:1010)(cid:3)(cid:18)(cid:258)(cid:396)(cid:367)(cid:3)(cid:44)(cid:258)(cid:374)(cid:400)(cid:286)(cid:396)(cid:3)(cid:115)(cid:286)(cid:396)(cid:367)(cid:258)(cid:336)(cid:856)(cid:3)(cid:4)(cid:367)(cid:367)(cid:3)(cid:396)(cid:349)(cid:336)(cid:346)(cid:410)(cid:400)(cid:3)(cid:396)(cid:286)(cid:400)(cid:286)(cid:396)(cid:448)(cid:286)(cid:282)(cid:856)(cid:3)
`© 1996 Carl Hanser Verlag. All rights reserved.
`(cid:69)(cid:381)(cid:3)(cid:437)(cid:374)(cid:258)(cid:437)(cid:410)(cid:346)(cid:381)(cid:396)(cid:349)(cid:460)(cid:286)(cid:282)(cid:3)(cid:282)(cid:349)(cid:400)(cid:272)(cid:367)(cid:381)(cid:400)(cid:437)(cid:396)(cid:286)(cid:3)(cid:381)(cid:396)(cid:3)(cid:396)(cid:286)(cid:393)(cid:396)(cid:381)(cid:282)(cid:437)(cid:272)(cid:410)(cid:349)(cid:381)(cid:374)(cid:854)(cid:3)(cid:367)(cid:349)(cid:272)(cid:286)(cid:374)(cid:400)(cid:286)(cid:282)(cid:3)(cid:410)(cid:381)(cid:3)(cid:393)(cid:437)(cid:396)(cid:272)(cid:346)(cid:258)(cid:400)(cid:286)(cid:396)(cid:3)(cid:381)(cid:374)(cid:367)(cid:455)(cid:856)
`No unauthorized disclosure or reproduction; licensed to purchaser only.
`
`0608
`
`0608
`
`

`

`592
`
`Producing Sheet and Film
`
`mdysnomyy
`
`yndysnomy
`
`(Refs. on p. 644]
`
`
`
`
`
`
`
`OLEZ-OF6IOOZS—O9ZP|OSOZT—-OBIIOOSF-ODLE|S6RI-OSSLOLIP-OOPE|SL9Z—-O0ZZ0065—-O08r
`
`
`
`
`
`
`
`O€El-O6OI-—SzzIOOEE-00LZ 099°0SSOSPI-OOZ1|S96-O6LSZIZ-OPLI|OLII-S€6=—ORSZ-O90Z]SES-S89OFBI-OISTO€6Z—-OOPT|OSII-SP6 OPSZT-OROZ|S9OT-OLE OSET-OZEI|OOST
`
`
`
`
`
`
`
`
`OO9I-SZELOOSE-006Z|OLEZT—-OFEIOOTS—O9ZP|OL8Z-O0EZOZEI-OSOS|OSOZ—OR91DOSP-OOLE
`
`
`
`
`
`
`OSL-O19OS9I-OSEIT|OS9-OESOEFI-OLII|009-06h OZEI-O801}OS8-s69 OLBI-OESI
`
`
`006-O0SL OO0Z-OS9T|OLEI-—O60IOL6Z-OOPZ|SI91-O6ZI1OSSE-OPBZ|OSTI-SP6OFSZT—-OROZ
`
`
`
`
`
`
`
`
`
`
`OfZ-061SLS-SLbOSp-OLEOOOI-SI8|O6f-OZE SOR-OOL|O9E-00E GO8-OS9|OIS-O%PSzII-szo O1S-SIe|OOZ-091OFh-O9E|Sal-OS| SztP-Ofe|O9Z-OIZ
`
`
`
`
`
`
`
`
`
`S96-06L OOLI-O6EL|OOIL-006 O0bz-SLEI OlS-O%SZi1-SZ6|OSL-O19OS9I-OSEL|0O6-S2LONOZ-OO9T}OS9-OES OFFI-OLTISZIZ-OPLI|SEB-S89OFRI-OISL|SLL-0€9
`
`
`
`
`
`
`
`
`
`
`O91O£LObr-09EOlE-OSt O89-09E|OSP-OLEOOOI-SI8|OSS-OrrO00ZI-S96|O6E-OZES9R-ODL OSE-S8Z|OLT~-O6lOIS-SIb|O8Z-Sz7ZSID06h|O@Z-091
`
`
`
`
`
`
`
`
`
`(4/84)(4/41)(4/34)(y/qi)(4/34)(4/a1)(4/34)(4/q))
`
`
`
`
`
`
`
`(4/44)(y/q])(4/34)(y/q1)(4/34)(y/qn)(4/34)(4/41)
`DAddddadqHddd
`OdVAWWdSdHsav
`
`
`
`
`
`[6]Stamidjog[esaaagJ0jsazeYyINdingsepnyxq¢'gage
`
`SS1-SZI
`OPESL
`6p
`
`OOE-OSE
`0s9-OSS
`nn:
`
`00S-00r
`O0S9-SCS
`OOFTOSTI
`OOTT006
`zissOEIfyoPTl
`
`08S1-0671
`O68-SZL
`
`OS61-0091
`SLeE—OFET
`8£09TSI
`
`(q/#¥)
`
`(4/a))
`
`
`
`(ur)(uu)
`
`dddTl
`
`JajoWeip
`
`MalIg
`
`0z1-001
`OLZ-0%E
`zZ«669
`
`OPe-S6l
`OLS-SEP
`fe68
`
`OOP-Sze
`O88-O7L
`Pll
`
`SISOct
`
`SELL-SZ6
`zisOE
`
`O1L-08S
`0951-0871
`8£0Z9ws
`
`(4/84)
`
`(4/41)
`
`
`
`(ut)(um)
`
`DAda
`
`Jayauerp
`
`MBS
`
`(cid:926)(cid:3)(cid:1005)(cid:1013)(cid:1013)(cid:1010)(cid:3)(cid:18)(cid:258)(cid:396)(cid:367)(cid:3)(cid:44)(cid:258)(cid:374)(cid:400)(cid:286)(cid:396)(cid:3)(cid:115)(cid:286)(cid:396)(cid:367)(cid:258)(cid:336)(cid:856)(cid:3)(cid:4)(cid:367)(cid:367)(cid:3)(cid:396)(cid:349)(cid:336)(cid:346)(cid:410)(cid:400)(cid:3)(cid:396)(cid:286)(cid:400)(cid:286)(cid:396)(cid:448)(cid:286)(cid:282)(cid:856)(cid:3)
`© 1996 Carl Hanser Verlag. All rights reserved.
`(cid:69)(cid:381)(cid:3)(cid:437)(cid:374)(cid:258)(cid:437)(cid:410)(cid:346)(cid:381)(cid:396)(cid:349)(cid:460)(cid:286)(cid:282)(cid:3)(cid:282)(cid:349)(cid:400)(cid:272)(cid:367)(cid:381)(cid:400)(cid:437)(cid:396)(cid:286)(cid:3)(cid:381)(cid:396)(cid:3)(cid:396)(cid:286)(cid:393)(cid:396)(cid:381)(cid:282)(cid:437)(cid:272)(cid:410)(cid:349)(cid:381)(cid:374)(cid:854)(cid:3)(cid:367)(cid:349)(cid:272)(cid:286)(cid:374)(cid:400)(cid:286)(cid:282)(cid:3)(cid:410)(cid:381)(cid:3)(cid:393)(cid:437)(cid:396)(cid:272)(cid:346)(cid:258)(cid:400)(cid:286)(cid:396)(cid:3)(cid:381)(cid:374)(cid:367)(cid:455)(cid:856)
`No unauthorized disclosure or reproduction; licensed to purchaser only.
`
`0609
`
`0609
`
`
`

`

`8.3 Forming Sheet
`
`593
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`059-009O€PL-OZETOS8-0SLOL81-0691OSS-08FOIZ1-0S01=pOFS-O8PO0zZI-0901006-0580007-OL810071-00110S9Z—00bZ0SL-0S9OS91-OEFI5O9£-0ZE06L-00L
`
`
`
`
`
`
`
`
`
`
`
`
`
`OFl-OZIOTE-0970SZ-0%ZOSS-O8FOZE-00£00L-059007-081Orr-00F
`
`
`
`
`
`
`
`
`
`O87-OFe0Z9-0ESO8P-0SP0901-0660s9-009O€PI-OZETOSt-OZEOLL-00L¢O@Z—-O8T
`
`
`
`
`
`
`
`
`
`
`
`
`
`O8b-00PO0P-09€088-06L00S-OSt0011-066067-09ZOF9-OLSfe
`
`
`
`
`
`
`
`
`
`(4/4)(4/4)(y/#y)(y/qD)(4/34)(y/q))(y/34)(4/q])(al)
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`SSOUYDY]J2ay8WUQZOF$O
`
`IddSavSdIHddda/I
`
`
`
`indysnosyM2I9g
`
`
`
`
`
`[or]saveyyndy8nosyysapnayxgyuapuadaq-semsjog9°g21981.
`
`
`
`
`
`
`
`sayaueIp
`
`MOTD
`
`(um)
`
`SL
`
`Sol
`
`0c!
`
`Ost
`
`(cid:926)(cid:3)(cid:1005)(cid:1013)(cid:1013)(cid:1010)(cid:3)(cid:18)(cid:258)(cid:396)(cid:367)(cid:3)(cid:44)(cid:258)(cid:374)(cid:400)(cid:286)(cid:396)(cid:3)(cid:115)(cid:286)(cid:396)(cid:367)(cid:258)(cid:336)(cid:856)(cid:3)(cid:4)(cid:367)(cid:367)(cid:3)(cid:396)(cid:349)(cid:336)(cid:346)(cid:410)(cid:400)(cid:3)(cid:396)(cid:286)(cid:400)(cid:286)(cid:396)(cid:448)(cid:286)(cid:282)(cid:856)(cid:3)
`© 1996 Carl Hanser Verlag. All rights reserved.
`(cid:69)(cid:381)(cid:3)(cid:437)(cid:374)(cid:258)(cid:437)(cid:410)(cid:346)(cid:381)(cid:396)(cid:349)(cid:460)(cid:286)(cid:282)(cid:3)(cid:282)(cid:349)(cid:400)(cid:272)(cid:367)(cid:381)(cid:400)(cid:437)(cid:396)(cid:286)(cid:3)(cid:381)(cid:396)(cid:3)(cid:396)(cid:286)(cid:393)(cid:396)(cid:381)(cid:282)(cid:437)(cid:272)(cid:410)(cid:349)(cid:381)(cid:374)(cid:854)(cid:3)(cid:367)(cid:349)(cid:272)(cid:286)(cid:374)(cid:400)(cid:286)(cid:282)(cid:3)(cid:410)(cid:381)(cid:3)(cid:393)(cid:437)(cid:396)(cid:272)(cid:346)(cid:258)(cid:400)(cid:286)(cid:396)(cid:3)(cid:381)(cid:374)(cid:367)(cid:455)(cid:856)
`No unauthorized disclosure or reproduction; licensed to purchaser only.
`
`0610
`
`0610
`
`
`€
`

`

`594
`
`Producing Sheet and Film
`
`[Refs. on p. 644]
`
`Constant Taper
`
`GRADHA
`
`Constant Taper Screw
`
`Fead
`
`Transition
`
`
`Metering
`
`
`
`a_iwaaaaaaaa dese
`
`be Feed TransitionwihMetering iale Decompression ot Metering |
`
`
`
`
`
`WAAAY?
`
`
`
`Two-Stage Vented or Gas Injection Screw
`
`Figure 8.7 Schematics of various screw configurations for single-screw extruders. Figure redrawn
`from [11] and used with permission of copyright owner
`
`screens placed against several 50 mesh screens. The screen packis then placed against
`a breaker plate. Screens can be plates with drilled holes, welded wire mesh, woven wire
`cloth or porous sintered metal. Filter screens are used throughout the sheet extrusion
`industry and are especially important when running large percentages of regrind,
`particularly if the polymeris an intrinsic gel former such as polyethylene terephthalate,
`polyamide,
`low-density polyethylene, polypropylene and rigid polyvinyl chloride.
`Pigmented polymers can also cause substantial filtering problems, particularly in
`regrind. Pressure drop across the filter screen must be continually monitored to
`determine when the screen has clogged and needs to be replaced. Continuous screen
`changers are expensive but useful if the polymer is heavily contaminated.
`
`Flow Improvement Devices
`
`In recent years, there has been great progress in improved plastication and homoge-
`nization of the polymer melt, primarily through improved screw design and motor
`drive and thermal feedback controls. Some typical plasticating and mixing screw
`sections are shown in Fig.8.8 [12], Surging, the bane of quality sheet production, has
`been greatly reduced. Gear pumps andstatic mixers are used to further improve melt
`quality prior to the die. Figure 8.9 is a schematic of an extruder having these
`features. Static mixers are dissipative devices that
`improve laminar mixing by
`separating the melt stream into many layers,
`reorienting the layers and then
`
`(cid:926)(cid:3)(cid:1005)(cid:1013)(cid:1013)(cid:1010)(cid:3)(cid:18)(cid:258)(cid:396)(cid:367)(cid:3)(cid:44)(cid:258)(cid:374)(cid:400)(cid:286)(cid:396)(cid:3)(cid:115)(cid:286)(cid:396)(cid:367)(cid:258)(cid:336)(cid:856)(cid:3)(cid:4)(cid:367)(cid:367)(cid:3)(cid:396)(cid:349)(cid:336)(cid:346)(cid:410)(cid:400)(cid:3)(cid:396)(cid:286)(cid:400)(cid:286)(cid:396)(cid:448)(cid:286)(cid:282)(cid:856)(cid:3)
`© 1996 Carl Hanser Verlag. All rights reserved.
`(cid:69)(cid:381)(cid:3)(cid:437)(cid:374)(cid:258)(cid:437)(cid:410)(cid:346)(cid:381)(cid:396)(cid:349)(cid:460)(cid:286)(cid:282)(cid:3)(cid:282)(cid:349)(cid:400)(cid:272)(cid:367)(cid:381)(cid:400)(cid:437)(cid:396)(cid:286)(cid:3)(cid:381)(cid:396)(cid:3)(cid:396)(cid:286)(cid:393)(cid:396)(cid:381)(cid:282)(cid:437)(cid:272)(cid:410)(cid:349)(cid:381)(cid:374)(cid:854)(cid:3)(cid:367)(cid:349)(cid:272)(cid:286)(cid:374)(cid:400)(cid:286)(cid:282)(cid:3)(cid:410)(cid:381)(cid:3)(cid:393)(cid:437)(cid:396)(cid:272)(cid:346)(cid:258)(cid:400)(cid:286)(cid:396)(cid:3)(cid:381)(cid:374)(cid:367)(cid:455)(cid:856)
`No unauthorized disclosure or reproduction; licensed to purchaser only.
`
`0611
`
`0611
`
`

`

`8.3 Forming Sheet
`
`595
`
`
`
`Double-Wave Screw
`{Vo}
`
`
`
`UC or Maddock Mixing Screw Tip
`
`
`
`sare Screw
`iSSSSss3
`
`Parallel Interrupted Flight Screw
`
`Figure 8.8 Schematics of various mixing sections forWVRVWvy
`
`single-screw extruders. Figure redrawn from [12] and
`used with permission of copyright owner
`
`Ring Barrier Screw
`
`Screw
`
`Barrel
`
`Static Mixer
`
`Gear Pump
`
`
`Reet
`
`
`Extruder
`
`Figure 8.9 Schematic of extruder/static mixer/melt pump/die configuration
`
`recombining the layers in a different order, There are more than 30 types ofstatic
`mixers {13]. The mixing section of a Kenics mixer is shown in Fig. 8.10 [14].
`Improved homogenization or mixing efficiency must be weighed against increased
`shear history and pressure loss through these devices, Today, static mixers are used
`whenthe screw design is not optimum for the polymer, when the melt pumping zone
`on the screw is too short or when the overall extruder L/D is too short. Therelative
`effectiveness of many of these devices is reviewed elsewhere [15-18].
`Gear pumps or melt pumps are characterized as “closely intermeshing counter-
`rotating twin screw extruder(s)” [19]. Details are shown in Fig. 8.11 [20]. One gearis
`driven. It drives the other. The polymer melt is engaged by the gear teeth and forced
`
`(cid:926)(cid:3)(cid:1005)(cid:1013)(cid:1013)(cid:1010)(cid:3)(cid:18)(cid:258)(cid:396)(cid:367)(cid:3)(cid:44)(cid:258)(cid:374)(cid:400)(cid:286)(cid:396)(cid:3)(cid:115)(cid:286)(cid:396)(cid:367)(cid:258)(cid:336)(cid:856)(cid:3)(cid:4)(cid:367)(cid:367)(cid:3)(cid:396)(cid:349)(cid:336)(cid:346)(cid:410)(cid:400)(cid:3)(cid:396)(cid:286)(cid:400)(cid:286)(cid:396)(cid:448)(cid:286)(cid:282)(cid:856)(cid:3)
`© 1996 Carl Hanser Verlag. All rights reserved.
`(cid:69)(cid:381)(cid:3)(cid:437)(cid:374)(cid:258)(cid:437)(cid:410)(cid:346)(cid:381)(cid:396)(cid:349)(cid:460)(cid:286)(cid:282)(cid:3)(cid:282)(cid:349)(cid:400)(cid:272)(cid:367)(cid:381)(cid:400)(cid:437)(cid:396)(cid:286)(cid:3)(cid:381)(cid:396)(cid:3)(cid:396)(cid:286)(cid:393)(cid:396)(cid:381)(cid:282)(cid:437)(cid:272)(cid:410)(cid:349)(cid:381)(cid:374)(cid:854)(cid:3)(cid:367)(cid:349)(cid:272)(cid:286)(cid:374)(cid:400)(cid:286)(cid:282)(cid:3)(cid:410)(cid:381)(cid:3)(cid:393)(cid:437)(cid:396)(cid:272)(cid:346)(cid:258)(cid:400)(cid:286)(cid:396)(cid:3)(cid:381)(cid:374)(cid:367)(cid:455)(cid:856)
`No unauthorized disclosure or reproduction; licensed to purchaser only.
`
`0612
`
`0612
`
`

`

`596
`
`Producing Sheet and Film
`
`(Refs. on p. 644]
`
`Figure 8.10. Kenics static mixer element configuration. Redrawn from [14] and used with permission
`of copyright owner
`
`
`
`Figure 8.1] Two views of gear or melt pump showing intermeshing gear rotation relative to flow
`direction [20]
`
`against the pump wall. The remeshing of the gear teeth forces the polymer from the
`pump. Gear pumps were originally employed to counteract surging and secondary
`flow effects from screw flights. Today they are used primarily to boost melt pressure
`prior to the die. Owing to leakage between the gear teeth and pump wall and
`between the edge of the gears and the pump wall,
`the pumps are not positive
`displacement pumps. Although the typical volumetric efficiency is 90% or so, low
`viscosity melts and high pressure drops can reduceefficiencies to 50% or less [20].
`Gear pumps are high shear devices. As a result,
`it
`is not unusual
`to see melt
`temperature increases of 10°C or more as the polymerpasses through the gear pump.
`These pumps are not
`recommended for
`thermally sensitive polymers such as
`polyethylene terephthalate and rigid polyvinyl chloride.
`
`Pressure and Temperature in an Extruder
`
`Thestated purpose of an extruder is to plasticate or melt the polymer and to deliver
`the conditioned, homogeneous polymer melt at a constant flow rate. The majority of
`
`(cid:926)(cid:3)(cid:1005)(cid:1013)(cid:1013)(cid:1010)(cid:3)(cid:18)(cid:258)(cid:396)(cid:367)(cid:3)(cid:44)(cid:258)(cid:374)(cid:400)(cid:286)(cid:396)(cid:3)(cid:115)(cid:286)(cid:396)(cid:367)(cid:258)(cid:336)(cid:856)(cid:3)(cid:4)(cid:367)(cid:367)(cid:3)(cid:396)(cid:349)(cid:336)(cid:3

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket