throbber
JEDEC
`STANDARD
`
`GRAPHICS DOUBLE DATA RATE
`(GDDR5) SGRAM STANDARD
`
`Des m arais LLP
`
`JESD212C
`(Revision of JESD212B.01, December 2013)
`
`FEBRUARY 2016
`
`JEDEC SOLID STATE TECHNOLOGY ASSOCIATION
`
`Downloaded by Jamell Watson (JWatson@desmaraisllp.com) on Oct 19, 2020, 1:20 pm PDT
`
`Patent Owner Monterey Research, LLC
`Exhibit 2016, 0001
`
`

`

`NOTICE
`
`JEDEC standards and publications contain material that has been prepared, reviewed, and
`approved through the JEDEC Board of Directors level and subsequently reviewed and approved
`by the JEDEC legal counsel.
`
`JEDEC standards and publications are designed to serve the public interest through eliminating
`misunderstandings between manufacturers and purchasers, facilitating interchangeability and
`improvement of products, and assisting the purchaser in selecting and obtaining with minimum
`delay the proper product for use by those other than JEDEC members, whether the standard is to
`be used either domestically or internationally.
`
`JEDEC standards and publications are adopted without regard to whether or not their adoption
`may involve patents or articles, materials, or processes. By such action JEDEC does not assume
`any liability to any patent owner, nor does it assume any obligation whatever to parties adopting
`the JEDEC standards or publications.
`
`The information included in JEDEC standards and publications represents a sound approach to
`product specification and application, principally from the solid state device manufacturer
`viewpoint. Within the JEDEC organization there are procedures whereby a JEDEC standard or
`publication may be further processed and ultimately become an ANSI standard.
`
`No claims to be in conformance with this standard may be made unless all requirements stated
`in the standard are met.
`
`Des m arais LLP
`
`Inquiries, comments, and suggestions relative to the content of this JEDEC standard or
`publication should be addressed to JEDEC at the address below, or call (703) 907-7559 or
`www.jedec.org
`
`Published by
`©JEDEC Solid State Technology Association 2016
`3103 North 10th Street
`Suite 240 South
`Arlington, VA 22201-2107
`
`This document may be downloaded free of charge; however JEDEC retains the
`copyright on this material. By downloading this file the individual agrees not to
`charge for or resell the resulting material.
`
`PRICE: Please refer to www.jedec.org
`
`Printed in the U.S.A.
`All rights reserved
`
`Downloaded by Jamell Watson (JWatson@desmaraisllp.com) on Oct 19, 2020, 1:20 pm PDT
`
`Patent Owner Monterey Research, LLC
`Exhibit 2016, 0002
`
`

`

`PLEASE!
`
`DON'T VIOLATE
`THE
`LAW!
`
`This document is copyrighted by the JEDEC Solid State Technology Association
`and may not be reproduced without permission.
`
`Organizations may obtain permission to reproduce a limited number of copies
`through entering into a license agreement. For information, contact:
`
`Des m arais LLP
`
`JEDEC Solid State Technology Association
`3103 North 10th Street, Suite 240S
`Arlington, Virginia 22201
`or call (703) 907-7559
`
`Downloaded by Jamell Watson (JWatson@desmaraisllp.com) on Oct 19, 2020, 1:20 pm PDT
`
`Patent Owner Monterey Research, LLC
`Exhibit 2016, 0003
`
`

`

`Des m arais LLP
`
`Downloaded by Jamell Watson (JWatson@desmaraisllp.com) on Oct 19, 2020, 1:20 pm PDT
`
`Patent Owner Monterey Research, LLC
`Exhibit 2016, 0004
`
`

`

`JEDEC Standard No. 212C
`
`Contents
`
`1 SCOPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
`
`2 GDDR5 SGRAM SPECIFICATION OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
`2.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
`2.2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
`2.3 Definition of Signal State Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
`2.4 Clocking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
`
`3 INITIALIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
`3.1 Power-up Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
`3.2 Initialization with Stable Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
`3.3 Vendor ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
`
`4 ADDRESS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
`4.1 Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
`4.2 Address Bus Inversion (ABI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
`4.3 Bank Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
`
`5 TRAINING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
`5.1 Interface Training Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
`5.2 Address Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
`5.3 WCK2CK Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
`5.4 READ Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
`5.5 WRITE Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
`
`6 MODE REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
`6.1 Mode Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
`6.2 Mode Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
`6.3 Mode Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
`6.4 Mode Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
`6.5 Mode Register 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
`6.6 Mode Register 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
`6.7 Mode Register 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
`6.8 Mode Register 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
`6.9 Mode Register 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
`6.10 Mode Register 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
`6.11 Mode Register 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
`
`Des m arais LLP
`
`7 OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
`7.1 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
`7.2 Deselect (NOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
`7.3 No Operation (NOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
`7.4 Mode Register Set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
`7.5 Activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
`7.6 Bank Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
`7.7 Write (WOM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
`7.8 Write Data Mask (DM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
`7.9 Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
`7.10 DQ Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
`7.11 Read and Write Data Bus Inversion (DBI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
`7.12 Error Detection Code (EDC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
`7.13 Precharge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
`7.14 Auto Precharge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
`7.15 Refresh and Per-Bank Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
`7.16 Self Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
`7.17 Partial Array Self Refresh (PASR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
`7.18 Power-Down. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
`7.19 Command Truth Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
`7.20 Low Frequency Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
`7.21 RDQS Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
`
`-i-
`Downloaded by Jamell Watson (JWatson@desmaraisllp.com) on Oct 19, 2020, 1:20 pm PDT
`
`Patent Owner Monterey Research, LLC
`Exhibit 2016, 0005
`
`

`

`JEDEC Standard No. 212C
`
`7.22 Clock Frequency Change Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
`7.23 Dynamic Voltage Switching (DVS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
`7.24 Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
`7.25 Duty Cycle Connector (DCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
`
`8 OPERATING CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
`8.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
`8.2 AC & DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
`8.3 Clock-To-Data Timing Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
`8.4 1.5V I/O Driver Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
`8.5 1.35V I/O Driver Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
`8.6 POD I/O System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
`
`9 PACKAGE SPECIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
`9.1 Ball-out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
`9.2 Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
`9.3 On Die Termination (ODT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
`9.4 Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
`9.5 Mirror Function (MF) Enable and x16 Mode Enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
`
`10 BOUNDARY SCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
`
`Annex A (informative) Differences between JESD212C and JESD212B.01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
`
`Des m arais LLP
`
`-ii-
`Downloaded by Jamell Watson (JWatson@desmaraisllp.com) on Oct 19, 2020, 1:20 pm PDT
`
`Patent Owner Monterey Research, LLC
`Exhibit 2016, 0006
`
`

`

`JEDEC Standard No. 212C
`Page 1
`
`GRAPHICS DOUBLE DATA RATE (GDDR5) SGRAM STANDARD
`
`(From JEDEC Board Ballot JCB-16-53, formulated under the cognizance of the JC-42.3 Subcommittee on
`DRAM Memories.)
`
`1
`
`SCOPE
`
`This document defines the Graphics Double Data Rate 5 (GDDR5) Synchronous Graphics Random Access
`Memory (SGRAM) standard, including features, functionality, package, and pin assignments. This scope
`may be expanded in future to also include other higher density devices.
`The purpose of this Standard is to define the minimum set of requirements for JEDEC standard compatible
`512 Mb through 8 Gb x32 GDDR5 SGRAM devices. System designs based on the required aspects of this
`standard will be supported by all GDDR5 SGRAM vendors providing JEDEC standard compatible devices.
`Some aspects of the GDDR5 standard such as AC timings and capacitance values were not standardized.
`Some features are optional and therefore may vary among vendors. In all cases, vendor data sheets should
`be consulted for specifics.
`This standard was created based on the DDR Standard (JESD79) and some aspects of the GDDR4 Standard
`(JESD21C - 3.11.5.8). Each aspect of the changes for high speed operation were considered and balloted. The
`accumulation of these ballots were then incorporated to prepare this GDDR5 SGRAM document, replacing
`whole sections and incorporating the changes into Functional Description and Operation.
`
`Des m arais LLP
`
`Downloaded by Jamell Watson (JWatson@desmaraisllp.com) on Oct 19, 2020, 1:20 pm PDT
`
`Patent Owner Monterey Research, LLC
`Exhibit 2016, 0007
`
`

`

`JEDEC Standard No. 212C
`Page 2
`
`2
`
`GDDR5 SGRAM STANDARD OVERVIEW
`
`512 Mb = 16 Mb x 32
`1 Gb
`= 32 Mb x 32
`2 Gb
`= 64 Mb x 32
`4 Gb
`= 128 Mb x 32
`8 Gb
`= 256 Mb x 32
`
`(2 Mb x 32 x 8 banks)
`(2 Mb x 32 x 16 banks)
`(4 Mb x 32 x 16 banks)
`(8 Mb x 32 x 16 banks)
`(16 Mb x 32 x 16 banks)
`
`/ 32 Mb x 16
`/ 64 Mb x 16
`/ 128 Mb x 16
`/ 256 Mb x 16
`/ 512 Mb x 16
`
`(4 Mb x 16 x 8 banks)
`(4 Mb x 16 x 16 banks)
`(8 Mb x 16 x 16 banks)
`(16 Mb x 16 x 16 banks)
`(32 Mb x 16 x 16 banks)
`
`Des m arais LLP
`
` FEATURES
`2.1
`• Single ended interface for data, address and command
`• Quarter data-rate differential clock inputs CK_t/CK_c for ADD/CMD
`• Two half data-rate differential clock inputs WCK_t/WCK_c, each associated with two data bytes (DQ, DBI_n, EDC)
`• Double Data Rate (DDR) data (WCK)
`• Single Data Rate (SDR) command (CK)
`• Double Data Rate (DDR) addressing (CK)
`• 8 or 16 internal banks
`• 4 bank groups for tCCDL = 3 tCK and 4 tCK
`• 8n prefetch architecture: 128/256 bit per array read or write access
`• Burst length: 8 only
`• Programmable CAS latency: 5 to 36 tCK
`• Programmable WRITE latency: 1 to 7 tCK
`• WRITE Data mask function via address bus (single/double byte mask)
`• Data bus inversion (DBI) & address bus inversion (ABI)
`• Input/output PLL/DLL on/off mode
`• Address training: address input monitoring by DQ pins
`• WCK2CK clock training with phase information by EDC pins
`• Data read and write training via READ FIFO
`• READ FIFO pattern preload by LDFF command
`• Direct write data load to READ FIFO by WRTR command
`• Consecutive read of READ FIFO by RDTR command
`• Read/Write data transmission integrity secured by cyclic redundancy check (CRC-8)
`• READ/WRITE EDC on/off mode
`• Programmable EDC hold pattern for CDR
`• Programmable CRC READ latency = 0 to 4 tCK
`• Programmable CRC WRITE latency = 7 to 14 tCK
`• Low Power modes
`• RDQS mode on EDC pin
`• Optional on-chip temperature sensor with read-out
`• Auto & self refresh modes
`• Auto precharge option for each burst access
`• 32ms, auto refresh (8k/16k cycles)
`• Temperature sensor controlled self refresh rate
`• Optional Partial Array Self Refresh (PASR)
`• Optional Per-Bank Refresh (REFPB)
`• Optional digital tRAS lockout
`• On-die termination (ODT); nominal values of 60 ohm and 120 ohm
`• Pseudo open drain (POD-15 or POD-135) compatible outputs (40 ohm pulldown, 60 ohm pullup)
`• ODT and output drive strength auto-calibration with external resistor ZQ pin (120 ohm)
`• Programmable termination and driver strength offsets
`• Selectable external or internal VREF for data inputs; programmable offsets for internal VREF
`• Separate external VREF for address / command inputs
`• Vendor ID, FIFO depth and Density info fields for identification
`• x32/x16 mode configuration set at power-up with EDC pin
`• Mirror function with MF pin
`• Boundary scan function with SEN pin
`• 1.5V +/- 0.045V or 1.35V +/- 0.0405V supply for device operation (VDD)
`• 1.5V +/- 0.045V or 1.35V +/- 0.0405V supply for I/O interface (VDDQ)
`• 170 ball BGA package
`
`Downloaded by Jamell Watson (JWatson@desmaraisllp.com) on Oct 19, 2020, 1:20 pm PDT
`
`Patent Owner Monterey Research, LLC
`Exhibit 2016, 0008
`
`

`

`JEDEC Standard No. 212C
`Page 3
`
` FUNCTIONAL DESCRIPTION
`2.2
`The GDDR5 SGRAM is a high speed dynamic random-access memory designed for applications requiring
`high bandwidth. GDDR5 devices contain the following number of bits:
`
`512 Mb has 536,870,912 bits and eight banks
`1 Gb has 1,073,741,824 bits and sixteen banks
`2 Gb has 2,147,483,648 bits and sixteen banks
`4 Gb has 4,294,967,296 bits and sixteen banks
`8 Gb has 8,589,934,592 bits and sixteen banks
`
`The GDDR5 SGRAM uses a 8n prefetch architecture and DDR interface to achieve high-speed operation. The
`device can be configured to operate in x32 mode or x16 (clamshell) mode. The mode is detected during
`device initialization. The GDDR5 interface transfers two 32 bit wide data words per WCK clock cycle to/
`from the I/O pins. Corresponding to the 8n-prefetch a single write or read access consists of a 256 bit wide,
`two CK clock cycle data transfer at the internal memory core and eight corresponding 32 bit wide one-half
`WCK clock cycle data transfers at the I/O pins.
`The device operates from a differential clock CK_t and CK_c. Commands are registered at every rising edge
`of CK_t. Addresses are registered at every rising edge of CK_t and every rising edge of CK_c.
`GDDR5 replaces the pulsed strobes (WDQS & RDQS) used in previous DRAMs such as GDDR4 with a free
`running differential forwarded clock (WCK_t/WCK_c) with both input and output data registered and
`driven respectively at both edges of the forwarded WCK.
`Read and write accesses to the device are burst oriented; an access starts at a selected location and consists of
`a total of eight data words. Accesses begin with the registration of an ACTIVE command, which is then
`followed by a READ or WRITE command. The address bits registered coincident with the ACTIVE
`command and the next rising CK_c edge are used to select the bank and the row to be accessed. The address
`bits registered coincident with the READ or WRITE command and the next rising CK_c edge are used to
`select the bank and the column location for the burst access.
`This specification includes all features and functionality required for JEDEC GDDR5 SGRAM devices. Users
`benefit from knowing that any system design based on the required aspects of the specification are
`supported by all GDDR5 SGRAM vendors; conversely users seeking to use any superset specifications bear
`the responsibility to verify support with individual vendors.
`
`Des m arais LLP
`
`Downloaded by Jamell Watson (JWatson@desmaraisllp.com) on Oct 19, 2020, 1:20 pm PDT
`
`Patent Owner Monterey Research, LLC
`Exhibit 2016, 0009
`
`

`

`JEDEC Standard No. 212C
`Page 4
`
` DEFINITION OF SIGNAL STATE TERMINOLOGY
`2.3
`The device will be operated in both ODT Enable (terminated) and ODT Disable (unterminated) modes. For
`highest data rates it is recommended to operate in the ODT Enable mode. ODT Disable mode is designed to
`reduce power and may operate at reduced data rates. There exist situations where ODT Enable mode can
`not be guaranteed for a short period of time, i.e., during power up.
`Following are four terminologies defined for the state of a device (GDDR5 SGRAM or controller) pin during
`operation. The state of the bus will be determined by the combination of the device pins connected to the
`bus in the system. For example in GDDR5 it is possible for the SGRAM pin to be tristated while the
`controller pin is High or ODT. In both cases the bus would be High if the ODT is enabled. For details on the
`GDDR5 SGRAM pins and their function see Sections 9.1 and 9.2.
`
`Device pin signal level:
`• High: A device pin is driving the Logic “1” state.
`• Low: A device pin is driving the Logic “0” state.
`• Hi-Z: A device pin is tristate.
`• ODT: A device pin terminates with ODT setting, which could be terminating or tristate depending on Mode
`Register setting.
`
`Bus signal level:
`• High: One device on bus is High and all other devices on bus are either ODT or Hi-Z. The voltage level on the bus
`would be nominally VDDQ
`• Low: One device on bus is Low and all other devices on bus are either ODT or Hi-Z. The voltage level on the bus
`would be nominally VOL(DC) if ODT was enabled, or VSSQ if Hi-Z.
`• Hi-Z: All devices on bus are Hi-Z. The voltage level on bus is undefined as the bus is floating.
`• ODT: At least one device on bus is ODT and all others are Hi-Z. The voltage level on the bus would be nominally
`VDDQ.
`
`Des m arais LLP
`
`Downloaded by Jamell Watson (JWatson@desmaraisllp.com) on Oct 19, 2020, 1:20 pm PDT
`
`Patent Owner Monterey Research, LLC
`Exhibit 2016, 0010
`
`

`

`JEDEC Standard No. 212C
`Page 5
`
` CLOCKING
`2.4
`The device operates from a differential clock CK_t and CK_c. Commands are registered at every rising edge
`of CK_t. Addresses are registered at every rising edge of CK_t and every rising edge of CK_c.
`GDDR5 uses a DDR data interface and an 8n-prefetch architecture. The data interface uses two differential
`forwarded clocks (WCK_t/WCK_c). DDR means that the data is registered at every rising edge of WCK_t
`and rising edge of WCK_c. WCK_t and WCK_c are continuously running and operate at twice the frequency
`of the command/address clock (CK_t/CK_c).
`
`CK_c
`CK_t
`
`COMMAND
`
`ADDRESS
`
`WCK_c
`WCK_t
`
`DQ*1
`
`Figure 1 — GDDR5 Clocking and Interface Relationship
`NOTE Figure 1 shows the relationship between the data rate of the buses and the clocks and is not a timing diagram.
`
`Controller
`
`ADD/CMD centered with CK_t/CK_c
`
`CMD/ADD
`
`QD
`
`GDDR5 SGRAM
`
`CMD sampled by CK_t/CK_c as SDR
`ADD sampled by CK_t/CK_c as DDR
`
`CMD/ADD
`
`QD
`QB
`
`CK_t/CK_c
`(1 GHz)
`
`Des m arais LLP
`
`DRAM
`core
`
`WCK2CK
`Alignment
`
`D Q
`
`PLL optional
`
`/2
`
`To EDC pin
`
`WCKint
`(1 GHz)
`
`DQ
`
`QD
`
`DRAM
`core
`
`Oscillator
`
`PLL/DLL
`Data Tx/Rx
`
`WCK_t/
`WCK_c
`(2 GHz)
`
`DQ [0]-[7]
`(4 Gbps)
`
`early/late
`
`Clock Phase
`Controller
`
`Phase detector/
`Phase accumulator
`
`corelogic
`
`DQ
`
`Receiver
`clock
`
`early/late from
`calibration data
`
`DQ
`
`D Q
`
`Clock Phase
`Controller
`
`For 8 data bits
`Figure 2 — Block Diagram of an example clock system
`
`Downloaded by Jamell Watson (JWatson@desmaraisllp.com) on Oct 19, 2020, 1:20 pm PDT
`
`Patent Owner Monterey Research, LLC
`Exhibit 2016, 0011
`
`

`

`JEDEC Standard No. 212C
`Page 6
`
`3
`
`INITIALIZATION
`
` POWER-UP SEQUENCE
`3.1
`GDDR5 SGRAMs must be powered up and initialized in a predefined manner as shown in Figure 3.
`Operational procedures other than those specified may result in undefined operation. The Mode Registers
`do not have RESET default values, except for ABI_n, ADD/CMD termination, and the EDC hold pattern. If
`the mode registers are not set during the initialization sequence, it may lead to unspecified operation.
`
`Apply power to VDD
`
`Apply power to VDDQ at same time or after power is applied to VDD
`
`Apply VREFC and VREFD at same time or after power is applied to VDDQ
`
`After power is stable, provide stable clock signals CK_t/CK_c
`
`Assert and hold RESET_n low to ensure all drivers are in Hi-Z and all active terminations are off. Assert and hold NOP
`command.
`
`6 Wait a minimum of 200µs.
`
`If boundary scan mode is necessary, SEN can be asserted HIGH to enter boundary scan mode. Boundary scan mode must be
`entered directly after power-up while RESET_n is low. Once boundary scan is executed, power-up sequence should be
`followed.
`
`Set CKE_n for the desired ADD/CMD ODT settings, then bring RESET_n High to latch in the logic state of CKE_n, tATS and
`tATH must be met during this procedure. See Table 1 for the values and logic states for CKE_n. The rising edge of RESET_n
`will determine x32 mode or x16 mode depending on the state of EDC1(EDC2 when MF=1). In normal x32 mode, EDC1 has to
`be sustained HIGH until RESET_n is HIGH. See Table 70 for the values and logic states for EDC1(EDC2 when MF=1).
`
`Bring CKE_n Low after tATH is satisfied
`
`Step
`
`1
`
`2
`
`3
`
`4
`
`5
`
`7
`
`8
`
`9
`
`11
`
`12
`
`13
`
`Des m arais LLP
`
`10 Wait at least 200µs referenced from the beginning of tATS
`
`Issue at least 2 NOP commands
`
`Issue a PRECHARGE ALL command followed by NOP commands until tRP is satisfied
`
`Issue MRS command to MR15. Set the device into address training mode (optional)
`
`14 Complete address training (optional)
`
`15
`
`16
`
`17
`
`18
`
`19
`
`Issue MRS command to read the Vendor ID
`
`Issue MRS command to set WCK01_t/WCK01_c and WCK23_t/WCK23_c termination values
`
`Provide stable clock signals WCK01_t/WCK01_c and WCK23_t/WCK23_c
`
`Issue MRS commands to the mode registers in any order. Issue MRS commands to use PLL/DLL or not and select the position
`of a WCK/CK phase detector. The use of PLL/DLL and the position of a phase detector must be set before WCK2CK training.
`tMRD must be met during +this procedure. WLmrs, CLmrs, CRCWL and CRCRL must be programmed before WCK2CK
`training.
`
`Issue two REFRESH commands followed by NOP until tRFC is satisfied. GDDR5 SGRAMs may optionally require 500 us
`before the first REFRESH command may be issued. Vendor datasheets should be consulted for specifics.
`
`20 After any necessary GDDR5 training sequences such as WCK2CK training, READ training (LDFF, RDTR) and WRITE training
`(WRTR, RDTR), the device is ready for operation.
`
`Figure 3 — GDDR5 Power-up Sequence
`
`Downloaded by Jamell Watson (JWatson@desmaraisllp.com) on Oct 19, 2020, 1:20 pm PDT
`
`Patent Owner Monterey Research, LLC
`Exhibit 2016, 0012
`
`

`

`JEDEC Standard No. 212C
`Page 7
`
`3.1
`
`POWER-UP SEQUENCE (cont’d)
`Table 1 — Address and Command Termination
`
`CKE_n at RESET_n high transition
`
`Low
`
`High
`
`VALUE (OHMS)
`
`ZQ/2 = 60 Ohms
`
`ZQ = 120 Ohms
`
`VDD
`
`VDDQ
`
`VREFD/C
`
`RESET_n
`
`CKE_n
`
`CK_c
`CK_t
`
`CMD
`
`ADD
`
`((
`)
`)
`
`((
`)
`)
`
`((
`)
`)
`
`((
`)
`)
`
`((
`)
`)
`((
`)
`)
`((
`)
`)
`((
`)
`)
`
`NOP
`
`((
`)
`)
`
`((
`)
`)
`
`((
`)
`)
`
`((
`)
`)
`
`((
`)
`)
`tATS
`
`((
`)
`)
`tATH
`
`((
`)
`)
`
`((
`)
`)
`
`((
`((
`120 ohm
`)
`)
`)
`)
`60 ohm
`((
`((
`)
`)
`)
`)
`((
`((
`)
`)
`)
`)
`((
`((
`)
`)
`)
`)
`
`((
`((
`)
`)
`)
`)
`NOP
`((
`((
`)
`)
`)
`)
`((
`((
`)
`)
`)
`)
`((
`((
`)
`)
`)
`)
`
`((
`)
`)
`((
`)
`)
`((
`)
`)
`
`((
`)
`)
`((
`)
`)
`((
`)
`)
`((
`)
`)
`
`NOP
`
`((
`)
`)
`((
`)
`)
`
`((
`)
`)
`((
`)
`)
`
`NOP
`
`PRE
`
`NOP
`
`((
`)
`)
`((
`)
`)
`
`((
`)
`)
`((
`)
`)
`((
`)
`)
`((
`)
`)
`
`((
`)
`)
`((
`)
`)
`
`((
`)
`)
`((
`)
`)
`
`((
`)
`)
`((
`)
`)
`
`((
`)
`)
`((
`)
`)
`
`((
`)
`)
`TRAIN / MRS
`((
`)
`)
`((
`)
`)
`TRAIN / MRS
`((
`)
`)
`
`A.C.
`
`ADD
`
`A.C.
`
`((
`)
`)
`((
`)
`)
`((
`)
`)
`ADD ADD
`((
`)
`)
`
`Des m arais LLP
`
`((
`)
`)
`((
`)
`)
`((
`)
`)
`((
`)
`)
`
`((
`)
`)
`((
`)
`)
`((
`)
`)
`((
`)
`)
`
`((
`)
`)
`((
`)
`)
`((
`)
`)
`((
`)
`)
`
`((
`)
`)
`((
`)
`)
`((
`)
`)
`ADD
`((
`)
`)
`((
`)
`)
`((
`)
`)
`
`((
`)
`)
`((
`)
`)
`
`((
`)
`)
`((
`)
`)
`
`((
`)
`)
`((
`)
`)
`
`((
`)
`)
`((
`)
`)
`
`((
`)
`)
`((
`)
`)
`
`((
`)
`)
`((
`)
`)
`
`((
`)
`)
`((
`)
`)
`
`((
`)
`)
`((
`)
`)
`((
`)
`)
`
`((
`)
`)
`((
`)
`)
`
`((
`)
`)
`((
`)
`)
`
`((
`)
`)
`TRAIN / MRS
`((
`)
`)
`((
`)
`)
`TRAIN / MRS
`((
`)
`)
`
`((
`)
`)
`TRAIN / MRS
`((
`)
`)
`
`((
`)
`)
`((
`)
`)
`
`((
`)
`)
`((
`)
`)
`((
`)
`)
`((
`)
`)
`
`((
`)
`)
`((
`)
`)
`((
`)
`)
`((
`)
`)
`
`((
`)
`)
`((
`)
`)
`((
`)
`)
`((
`)
`)
`
`((
`)
`)
`((
`)
`)
`((
`)
`)
`((
`)
`)
`
`((
`)
`)
`((
`)
`)
`
`((
`)
`)
`((
`)
`)
`
`DQ<31:0>,
`DBI<3:0>_n
`
`EDC<3,0>
`
`EDC<2,1>
`
`WCK_c
`WCK_t
`
`((
`)
`)
`((
`)
`)
`((
`)
`)
`((
`)
`)
`
`((
`)
`)
`((
`)
`)
`
`((
`)
`)
`((
`)
`)
`
`x32
`x16
`
`((
`)
`)
`((
`)
`)
`((
`)
`)
`
`((
`)
`)
`((
`)
`)
`
`((
`)
`)
`((
`)
`)
`
`((
`)
`)
`((
`)
`)
`((
`)
`)
`((
`)
`)
`
`((
`)
`)
`((
`)
`)
`((
`)
`)
`
`((
`)
`)
`((
`)
`)
`
`((
`)
`)
`((
`)
`)
`
`

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket