`a2) Patent Application Publication 10) Pub. No.: US 2009/0219257 Al
` FREYet al. (43) Pub. Date: Sep. 3, 2009
`
`
`
`US 20090219257A1
`
`(54) TOUCH SCREEN SENSOR
`
`(75)
`
`Inventors:
`
`Matthew H. FREY, Cottage Grove,
`MN (US); Lijun Zu, Minneapolis,
`MN (US); Edward S. Hagermoser,
`Lancaster, MA (US)
`
`Correspondence Address:
`3M INNOVATIVE PROPERTIES COMPANY
`PO BOX 33427
`ST. PAUL, MN 55133-3427 (US)
`
`filed on Feb. 28, 2008, provisional application No.
`61/085,496, filed on Aug. 1, 2008, provisional appli-
`cation No. 61/085,764, filed on Aug. 1, 2008.
`
`Publication Classification
`
`(51)
`
`Int. Cl.
`(2006.01)
`G06F 3/041
`(52) US. CD. eeccssececcccssstescesssteeseessteeeeen 345/173; 977/811
`
`(57)
`
`ABSTRACT
`
`(73) Assignee:
`
`3M Innovative Properties
`Company
`
`
`
`12/393,185
`
`A touch screen sensor includes a visible light transparent
`substrate and an electrically conductive micropattern dis-
`posed on or in the visible light transparent substrate. The
`micropattern includes a first region micropattern within a
`(21) Appl. No.:
`touch sensing area and a second region micropattern. Thefirst
`.
`
`(22) region micropattern hasa first sheet resistance valueinafirstFiled: Feb. 26, 2009
`
`Related U.S. Application Data
`direction, is visible light transparent, and hasat least 90%
`open area. The second region micropattern has a second sheet
`(60) Provisional application No. 61/032,269,filed on Feb.
`resistance valuein thefirst direction. Thefirst sheet resistance
`value is different from the second sheet resistance value.
`28, 2008, provisional application No. 61/032,273,
`
`
`
`PETITIONERS
`
`Exhibit 1012, Page 1
`
`PETITIONERS
`Exhibit 1012, Page 1
`
`
`
`Patent Application Publication
`
`Sep. 3, 2009
`
`Sheet 1 of 16
`
`US 2009/0219257 Al
`
`
`
`PETITIONERS
`
`Exhibit 1012, Page 2
`
`PETITIONERS
`Exhibit 1012, Page 2
`
`
`
`Patent Application Publication
`
`Sep. 3, 2009 Sheet 2 of 16
`
`US 2009/0219257 Al
`
`65
`
`66
`
`67
`
`68
`
`67
`
`Fig. 3a
`
`Fig. 3b
`
`
`
`Fig. 4
`
`
`
`PETITIONERS
`
`Exhibit 1012, Page 3
`
`PETITIONERS
`Exhibit 1012, Page 3
`
`
`
`Patent Application Publication
`
`Sep. 3, 2009 Sheet 3 of 16
`
`US 2009/0219257 Al
`
`
`
`PETITIONERS
`Exhibit 1012, Page 4
`
`
`
`Patent Application Publication
`
`Sep. 3, 2009 Sheet 4 of 16
`
`US 2009/0219257 Al
`
`95
`
`96
`
`97
`
`
`
`PETITIONERS
`
`Exhibit 1012, Page 5
`
`PETITIONERS
`Exhibit 1012, Page 5
`
`
`
`Patent Application Publication
`
`Sep. 3, 2009 Sheet 5 of 16
`
`US 2009/0219257 Al
`
`260
`6mm
`
`|YitT||aE
`
`
`
`
`
`PETITIONERS
`
`Exhibit 1012, Page 6
`
`PETITIONERS
`Exhibit 1012, Page 6
`
`
`
`Patent Application Publication
`
`Sep. 3, 2009 Sheet 6 of 16
`
`US 2009/0219257 Al
`
`
`
`
`
`Resistanceperunitlengthalongbar
`(ohm/mm)
`
`70
`
`60
`
`50
`
`40
`
`30
`
`20
`
`10
`
`10
`
`20
`
`30
`
`40
`
`Position along bar (mm)
`Fig. 13
`
`ombeet *
`
`---->
`
`PETITIONERS
`
`Exhibit 1012, Page 7
`
`PETITIONERS
`Exhibit 1012, Page 7
`
`
`
`Patent Application Publication
`
`Sep. 3, 2009 Sheet 7 of 16
`
`US 2009/0219257 Al
`
`“a
`
`340
`
`344
`
`340
`
`xo
`
`aaaeee
`
`342 errHE 342
`
`
`
`
`
`
`340
`
`x
`
`
`
`
`
`350
`
`Fig. 15a
`
`Fig. 15b
`
`Neo
`
`PETITIONERS
`
`Exhibit 1012, Page 8
`
`PETITIONERS
`Exhibit 1012, Page 8
`
`
`
`Patent Application Publication
`
`Sep. 3, 2009 Sheet 8 of 16
`
`US 2009/0219257 Al
`
`344
`
`yo 340
`
`342
`
`SHEE©PERE
`
`Fig. 15d
`
`Fig. 15e
`
`Mesh with regions
`
`7a and 7b in wedge we -
`
` .
`Continuous ITO
`er
`.
`coating in wedge
`(same overall shape)
`
`et
`
` 0
`
`40
`
`10
`20
`30
`Position along bar (mm)
`Fig. 16
`
`
`
`
`
`Resistanceperunitlengthalongwedge
`
`|
`
`PETITIONERS
`
`Exhibit 1012, Page 9
`
`PETITIONERS
`Exhibit 1012, Page 9
`
`
`
`Patent Application Publication
`
`Sep. 3, 2009 Sheet 9 of 16
`
`US 2009/0219257 Al
`
`PETITIONERS
`
`Exhibit 1012, Page 10
`
`PETITIONERS
`Exhibit 1012, Page 10
`
`
`
`Patent Application Publication
`
`Sep. 3, 2009 Sheet 10 of 16
`
`US 2009/0219257 Al
`
`PETITIONERS
`
`Exhibit 1012, Page 11
`
`PETITIONERS
`Exhibit 1012, Page 11
`
`
`
`Patent Application Publication
`
`Sep. 3, 2009 Sheet 11 of 16
`
`US 2009/0219257 Al
`
`540
`
`
`
`Fig. 22
`
`PETITIONERS
`
`Exhibit 1012, Page 12
`
`PETITIONERS
`Exhibit 1012, Page 12
`
`
`
`Patent Application Publication
`
`Sep. 3, 2009 Sheet 12 of 16
`
`US 2009/0219257 Al
`
` IL /
`
`7 [“~\\]
`342
`SOAAN LEX
`HRS/ re
`Pm SST SNSDSA
`FEASOANSARUNT/!
`
`PercentageofOpenArea(%)
`
`Region 3
`
`05 115 2 253 35 4 45 5 55 6
`Conductor Trace Width (um)
`Fig. 24
`
`PETITIONERS
`
`Exhibit 1012, Page 13
`
`PETITIONERS
`Exhibit 1012, Page 13
`
`
`
`Patent Application Publication
`
`Sep. 3, 2009 Sheet 13 of 16
`
`US 2009/0219257 Al
`
`
`
`
`igF
`
`. 29
`
`
`
`Fig. 26
`
`PETITIONERS
`
`Exhibit 1012, Page 14
`
`PETITIONERS
`Exhibit 1012, Page 14
`
`
`
`Patent Application Publication
`
`Sep. 3, 2009 Sheet 14 of 16
`
`US 2009/0219257 Al
`
`706
`
`ELLEELLEEEL
`
`702
`
`NX
`
`704
`
`NX
`
`Fig. 27a
`
`Fig. 27b
`
`PETITIONERS
`
`Exhibit 1012, Page 15
`
`PETITIONERS
`Exhibit 1012, Page 15
`
`
`
`Patent Application Publication
`
`Sep. 3, 2009 Sheet 15 of 16
`
`US 2009/0219257 Al
`
`
`
`724
`
`28b
`
`722 \
`
`Fig. 28a
`
`Fig. 28b
`
`PETITIONERS
`
`Exhibit 1012, Page 16
`
`PETITIONERS
`Exhibit 1012, Page 16
`
`
`
`Patent Application Publication
`
`Sep. 3, 2009 Sheet 16 of 16
`
`US 2009/0219257 Al
`
`706
`
`726
`
`740
`
`betes
`
`L
`
`134
`
`702
`
`132
`
`4URUPXV)TRU.Y/)ASRW)
`730|;aN|we‘|
`MyAyUY4UR)
` UY)Vv)RV)ayxX)IRV)Y/URRY)
`
`UB)
`URSU4x]ViV/sOY
`7S;Y)
`U;Yi
`NYAYiS
`UY)
`N/%VBSVANY)
`/YYVS)VAS)
`L;YongMYDT//KX)BYR]
` BRAYRSPES/)YiYY1/OXURW)Bi
`
`RRRV/Y/NAweIVDIRDRE)
`LAXLEV)
`Gey;URXXURE)
`XXY/)RVR)
`
`KYPSY)M
`DRE
`RV)oeTREV/
`aXXxX)YYYiAY)
`BY)neRY)
`BY)UU
`OYXX?DRS}
`KN]YLROY,NYxDRY/)ree
`BY)
`AYDA
`hdUSKAfi
`O/eyyyUe}V)1}
`LA}V/RYbYML,
`RY1S)L}
`RV)myRS
`IXXVYi
`PANYBV)RY)
`PA)
`WY)Y/)y)
`
`
`p4/7XX)BYRXMANRaAASX) fiMXAH RYY/eeR/))AYRNKXVY)dAUR)RY)iXA)aReyDi
`
`OYYX}BYR
`7‘AAIKYUXXNmdAS
`DOV,Ys{YK]RSS
`
`LBMNY)Ukk‘iHLANKXYY
`
`vy)
`
`AA/BYLy
`
`OXY
`ny
`
`LAY
`
`Oy
`
`Fig. 29
`
`PETITIONERS
`
`Exhibit 1012, Page 17
`
`PETITIONERS
`Exhibit 1012, Page 17
`
`
`
`US 2009/0219257 Al
`
`Sep. 3, 2009
`
`TOUCH SCREEN SENSOR
`
`CROSS-REFERENCE TO RELATED
`APPLICATIONS
`
`[0001] This application claims the benefit of U.S. Provi-
`sional Application Nos. 61/032,269, filed Feb. 28, 2008, the
`disclosure of which is incorporated by reference hereinin its
`entirety; 61/032,273, filed Feb. 28, 2008, the disclosure of
`which is incorporated by reference herein in its entirety;
`61/085,496, filed Aug. 1, 2008, the disclosure of which is
`incorporated by reference herein in its entirety; and 61/085,
`764, filed Aug. 1, 2008, the disclosure of which is incorpo-
`rated by reference hereinin its entirety.
`
`BACKGROUND
`
`[0002] Touch screen sensors detect the location ofan object
`(e.g. a finger or a stylus) applied to the surface of a touch
`screen display or the location of an object positioned near the
`surface of a touch screen display. These sensors detect the
`location of the object along the surface of the display, e.g. in
`the plane of a flat rectangular display. Examples of touch
`screen sensors include capacitive sensors, resistive sensors,
`and projected capacitive sensors. Such sensors include trans-
`parent conductive elements that overlay the display. Theele-
`ments are combined with electronic components that use
`electrical signals to probe the elements in order to determine
`the location of an object near or in contact with the display.
`[0003]
`Inthefield oftouch screen sensors, there is a need to
`have improved control over the electrical properties of the
`transparent
`touch screen sensors, without compromising
`optical quality or properties of the display. A transparent
`conductive region of a typical touch screen sensor includes a
`continuouscoating of a transparent conducting oxide (TCO)
`such as indium tin oxide (ITO), the coating exhibiting elec-
`trical potential gradients based on the location or locations of
`contactto a voltage source and the overall shapeofthe region.
`This fact leads to a constraint on possible touch sensor
`designs and sensor performance, and necessitates such mea-
`sures as expensive signal processing electronics or placement
`of additional electrodes to modify the electrical potential
`gradients. Thus, there is a need for transparent conductive
`elementsthat offer control over electrical potential gradients
`that is independentof the aforementionedfactors.
`[0004] There is an additional need in the field of touch
`screen sensors thatrelates to flexibility in the design of elec-
`trically conductive elements. The fabrication of touch screen
`sensors using patterned transparent conducting oxides (TCO)
`such as indium tin oxide (ITO) often places limitations on
`conductor design. The limitationsrelate to a constraint caused
`by patterning all of the conductive elements from a transpar-
`ent sheet conductorthat has a single value of isotropic sheet
`resistance.
`
`BRIEF SUMMARY
`
`In one aspect, the present disclosure relates to touch
`[0005]
`screen sensors having a transparent substrate and a micropat-
`terned conductor(typically metal) of specified pattern geom-
`etry to achieve high optical quality. In general, optical quality
`can be expressed in termsofvisible light transmittance, haze,
`and conductorvisibility, as determined observing the conduc-
`tor as it assembled in the touch screen sensor with unaided
`eyes. The geometry of the micropatterned conductor can be
`defined with parameters such as, but not limitedto, the width
`
`of the conductor traces (sometimes referred to as “lines’’)
`used for the micropattern, the density of the lines, and the
`uniformity of the density ofthe lines.
`[0006]
`In a first embodiment for a touch screen sensor
`having good optical quality, the touch screen sensor, com-
`prises a visible light transparent substrate; and an electrically
`conductive micropattern disposed on or in the visible light
`transparent substrate. The micropattern has a conductortrace
`width of about [X+0.5] in units of micrometers; and an open
`area fraction between about [95-X]% and 99.5%, where
`0=X=4.5. In another embodiment, the touch screen sensor
`of has an open area fraction between about [98.5-(2.5X+3.
`5)]% and [99.5-(X-3.5)]% wherein 0=X3.5. In another
`embodiment, the touch screen sensor has a haze value of less
`than 10%,preferably less than 5%, andvisible light transmit-
`tance greater than 75%, preferably greater than 85%. In
`another embodiment, the conductor trace width of the touch
`screen sensoris less than about 6 micrometer and having a
`pitch of less than about 300 micrometer. In another embodi-
`ment, the conductor trace of the touch screen sensor has a
`thickness of less than about 500 nanometers. In another
`
`embodiment, the pitch is about 1 mm to 4 mm, with a con-
`ductor width less between 3 and 10 microns.
`
`Inanother aspect, present disclosure relates to touch
`[0007]
`screen sensors having varying sheet resistance.
`[0008]
`In a first embodiment for a touch screen sensors
`having varying sheet resistance, the sensor includes a visible
`light transparent substrate and an electrically conductive
`micropattern disposed on or in the visible light transparent
`substrate. The micropattern includesa first region micropat-
`tern within a touch sensing area and a second region micro-
`pattern. The first region micropattern hasa first sheet resis-
`tance valuein a first direction, is visible light transparent, and
`has at least 90% open area. The second region micropattern
`has a secondsheetresistance value in the first direction. The
`first sheet resistance value is different from the second sheet
`resistance value.
`
`In another embodiment for a touch screen sensors
`[0009]
`having varying sheet resistance, the sensor includes a visible
`light transparent substrate and an electrically conductive
`micropattern disposed on or in the visible light transparent
`substrate. The micropattern includesa first region micropat-
`tern within a touch sensing area, the first region micropattern
`having an anisotropicfirst sheet resistance, being visible light
`transparent, and having at least 90% open area.
`[0010]
`In another embodiment for a touch screen sensors
`having varying sheet resistance, the sensor includes a visible
`light transparent substrate and an electrically conductive
`micropattern disposed on or in the visible light transparent
`substrate. The micropattern includesa first region micropat-
`tern within a touch sensing area and a second region micro-
`pattern. The electrically conductive micropattern has metallic
`linear electrically conductive features with a thickness of less
`than 500 nanometers and a width between 0.5 and 5 microme-
`ters. Thefirst region micropattern hasa first sheet resistance
`value in a first direction between 5 and 500 ohm persquare, is
`visible light transparent, and has between 95% and 99.5%
`open area (or in another embodiment even 99.9% open area,
`or even 99.95% open area). The second region micropattern
`has a secondsheetresistance value in the first direction. The
`first sheet resistance value is different from the second sheet
`resistance value.
`
`Ina further embodimentfor a touch screen sensors
`[0011]
`having varying sheet resistance, the sensor includes a visible
`PETITIONERS
`
`Exhibit 1012, Page 18
`
`PETITIONERS
`Exhibit 1012, Page 18
`
`
`
`US 2009/0219257 Al
`
`Sep. 3, 2009
`
`light transparent substrate and an electrically conductive
`micropattern disposed on or in the visible light transparent
`substrate. The micropattern includesa first region micropat-
`tern within a touch sensing area. The electrically conductive
`micropattern includes metallic linearelectrically conductive
`features having a thickness of less than 500 nanometers and a
`width between 0.5 and 5 micrometers. The first region micro-
`pattern has an anisotropicfirst sheet resistance with a differ-
`ence in sheet resistance values for orthogonal directions of a
`factor of at least 1.5,
`is visible light transparent, and has
`between 95% and 99.5% open area.
`[0012]
`Ina further embodiment, a touch screen sensoris
`described, the touch screen sensor comprising a visible light
`transparent substrate; and a touch-sensitive electrically con-
`ductive micropattern disposed on orin the visible light trans-
`parent substrate; wherein the micropattern includes conduc-
`tive traces with width between about 1 and 10 micrometers.
`
`tance created in part by selective breaks in the electrically
`conductive micropattern mesh;
`[0029]
`FIGS. 15a-15e each illustrate a portion of the vary-
`ing conductor micropatternillustrated in FIG. 15;
`[0030]
`FIG. 16 illustrates the distribution of resistance per
`unit length along the long axis of the wedge-shapedtranspar-
`ent conductive region having regions 15a and 15therein, as
`compared with the resistance per unit length for a similarly
`shaped region comprising only a uniform transparent con-
`ducting oxide, ITO;
`[0031]
`FIG. 17 illustrates the arrangementoflayers that are
`laminated together to form one embodiment of the touch
`screen sensor, an X-Y grid type projected capacitive touch
`screen sensor;
`
`BRIEF DESCRIPTION OF THE DRAWINGS
`
`FIG. 18 illustrates the conductor micropattern for
`[0032]
`the X-layer or the Y-layer of an embodiment of the touch
`screen sensor according to FIG. 17;
`[0033]
`FIG. 19 illustrates a portion of the conductor micro-
`pattern illustrated in FIG. 10, the portion including a visible
`light transparent conductive mesh contacting a larger feature
`[0013] The invention may be more completely understood
`in the form of a contact pad, as well as electrically isolated
`in consideration ofthe following detailed description of vari-
`ous embodiments of the invention in connection with the
`conductor deposits in the space between the mesh regions;
`[0034]
`FIG. 20 illustrates the conductor micropattern for
`accompanying drawings, in which:
`the X-layeror the Y-layer of another embodimentofthe touch
`[0014]
`FIG. 1 illustrates a schematic diagram of a touch
`screen sensor according to FIG.9;
`screen sensor 100;
`[0035]
`FIG. 21 illustratesa portion of the conductor micro-
`[0015]
`FIG.2 illustrates a perspective view of a conductive
`pattern given in FIG. 12,the portion including a visible light
`visible light transparent region lying within a touch screen
`transparent conductive mesh contacting a larger feature in the
`sensing area;
`form of a contact pad, as well as electrically isolated conduc-
`[0016]
`FIG. 3 illustrates a process for creating microcon-
`tor deposits in the space between the mesh regions;
`ductors using UV laser curing of a conductive ink;
`[0036]
`FIG. 22 illustrates the conductor micropattern for
`[0017]
`FIG. 4 illustrates a gravure printing process for cre-
`the X-layeror the Y-layer of another embodimentofthe touch
`ating microconductors;
`screen sensor according to FIG. 17; and
`[0018]
`FIG. 5 illustrates a cross section view of microrep-
`licated channels filled with conductive material;
`[0037]
`FIG. 23illustrates a portion of the conductor micro-
`pattern given in FIG. 22, the portion including a visible light
`[0019]
`FIG.6 illustrates a finger capacitively coupling with
`transparent conductive mesh contacting a larger feature in the
`microreplicated channels filled with conductive material;
`form of a contact pad, as well as electrically isolated conduc-
`[0020]
`FIG.7 illustrates patterns of microconductors pro-
`tor deposits in the space between the mesh regions.
`duced on a flexible substrate, useful for producing touch
`sensors;
`[0038]
`FIG. 24 illustrates a graphto reflect optical quality
`ofthe touch screen sensor, the graph being a plot ofPercent of
`FIG.8 illustrates parallel microconductors printed
`[0021]
`Open Area vs. conductor trace width (in micrometers), with
`on a flexible web material in the downwebdirection;
`Region 3 being good optical quality that can be used for a
`
`[0022] FIG.9illustrates a section of the flexible material
`touch screen sensor, Region 2 being better in optical quality
`from FIG. 8 having additional interconnecting conductors
`as compared to Region 2, and Region 1 havingthe bestoptical
`added;
`quality of the three regions. Percent of Open Area is used
`FIG. 10 illustrates a cross section of an example of a
`[0023]
`interchangeably with open area fraction herein.
`matrix touch sensor constructed from twolayers of the mate-
`[0039]
`FIG. 25 and FIG. 26 illustrate scanning electron
`rials from FIG.9;
`photomicrographs of the geometry for the hexagonal mesh
`[0024]
`FIG. 11 illustrates the conductor micropattem for
`(sometimes referred to as “hex” mesh) and square mesh that
`one embodimentof the touch screen sensor;
`are characteristic of Examples 6 through 40. The light shade
`[0025]
`FIG.12 illustrates a portion of the conductor micro-
`lines in each imagerepresent the pattern of the metal conduc-
`pattern illustrated in FIG.3, the portion including a conduc-
`tor and the dark area represents the substrate used in the
`tive mesh with selective breaks for modulating the local sheet
`Examples.
`resistance as well as a larger feature in the form of a contact
`[0040]
`FIGS. 27, 27a, and 276 illustrate various portions of
`pad;
`a first patterned substrate;
`FIG.13 illustrates a modulation in resistance along
`[0026]
`[0041]
`FIGS. 28, 28a, and 28d illustrate various portions of
`the horizontal mesh bars given in FIG.3, created by selective
`a second patterned substrate;
`breaks in the contiguous mesh;
`[0042]
`FIG. 29 illustrates a projected capacitive touch
`[0027]
`FIG. 14 is a circuit diagram that approximates the
`screen transparent sensor element constructed from thefirst
`properties of the conductor micropattern illustrated in FIG.3,
`and secondpatterned substrates of FIGS. 27 and 28.
`where capacitive plates are separated by resistive elements;
`[0028]
`FIG. 15 illustrates the conductor micropattern for
`[0043] The figures are not necessarily to scale. Like num-
`one embodimentof the touch screen sensor, the micropattern
`bers used in thefigures refer to like components. However,it
`will be understood that the use of a number to refer to a
`including regions labeled 15a-15e¢ with different sheet resis-
`
`PETITIONERS
`
`Exhibit 1012, Page 19
`
`PETITIONERS
`Exhibit 1012, Page 19
`
`
`
`US 2009/0219257 Al
`
`Sep. 3, 2009
`
`componentin a given figure is not intended to limit the com-
`ponentin anotherfigure labeled with the same number.
`
`DETAILED DESCRIPTION
`
`In the following description, reference is made to
`[0044]
`the accompanyingset of drawingsthat form a part hereof and
`in which are shown by wayofillustration several specific
`embodiments. It is to be understood that other embodiments
`
`are contemplated and may be made without departing from
`the scope or spirit of the present invention. The following
`detailed description, therefore, is not to be taken in a limiting
`sense.
`
`[0045] All scientific and technical terms used herein have
`meanings commonly used in the art unless otherwise speci-
`fied. The definitions provided herein are to facilitate under-
`standing of certain terms used frequently herein and are not
`meant to limit the scope of the present disclosure.
`[0046] Unless otherwise indicated, all numbers expressing
`feature sizes, amounts, and physical properties used in the
`specification and claimsare to be understood as being modi-
`fied in all instances by the term “about.” Accordingly, unless
`indicated to the contrary, the numerical parameters set forthin
`the foregoing specification and attached claims are approxi-
`mations that can vary depending uponthe desired properties
`sought to be obtained by those skilled in theart utilizing the
`teachings disclosed herein.
`[0047] The recitation of numerical ranges by endpoints
`includesall numbers within that range (e.g. 1 to 5 includes 1,
`1.5, 2, 2.75, 3, 3.80, 4, and 5) and any range within that range.
`[0048] As used in this specification and the appended
`claims, the singular forms “a”, “an” and “the” encompass
`embodiments having plural referents, unless the context
`clearly dictates otherwise. As used in this specification and
`the appendedclaims, the term “or”is generally employed in
`its sense including “and/or”unless the contextclearly dictates
`otherwise.
`
`[0049] As used herein, “visible light transparent”refers to
`the level of transmission being at least 60 percent transmis-
`sive to at least one polarization state ofvisible light, where the
`percent transmission is normalized to the intensity of the
`incident, optionally polarized light. It is within the meaning
`ofvisible light transparent for an article that transmits atleast
`60 percent of incident light to include microscopic features
`(e.g., dots, squares, or lines with minimum dimension,e.g.
`width, between 0.5 and 10 micrometers, or between 1 and 5
`micrometers) that block light locally to less than 80 percent
`transmission(e.g., 0 percent); however, in such cases, for an
`approximately equiaxed area including the microscopic fea-
`ture and measuring 1000 times the minimum dimension of
`the microscopic feature in width, the average transmittanceis
`greater than 60 percent.
`[0050] The present disclosure relates to touch screen sen-
`sors with electrical and optical properties that are engineered
`through design of conductor micropatterns comprised
`therein. There are several advantages that are created for
`touch screen sensors by the incorporation of the conductor
`micropatterns described herein. In some embodiments, the
`transparent conductive properties within a transparent con-
`ductive region are engineeredto controlthe electrical poten-
`tial gradient within the touch sensing region during use. This
`leads to simplicity of signal processing electronics and, for
`sometouch screen sensor types simplicity in the design of (or
`elimination ofthe need for) additional conductorpatterns that
`would otherwise be needed for electrical potential gradient
`
`the
`(electrical field) linearization. In some embodiments,
`electrical properties of the touch screen sensors described
`herein are designed to generate a controlled electrical poten-
`tial gradient along a transparent sensor element. E.g., the
`electrical properties are designed to create a linear electrical
`potential gradient along a particulardirection within a trans-
`parent conductive region, the overall shape of which would
`ordinarily lead to a non-linear gradient if a standard transpar-
`ent conductor material was used (e.g., continuous ITO coat-
`ing). In some embodiments,
`the electrical properties are
`designedto create a level of non-linearity of electrical poten-
`tial gradientfor a transparent conductive region that is greater
`than that which would be present within a transparent con-
`ductive region of the same shape but comprised of a standard
`transparent conductor material (e.g., continuous ITO coat-
`ing). In more detail, for a rectangular capacitive touch screen
`comprising a contiguous transparent sheet conductor in the
`form of a micropatterned conductor with electrical connec-
`tions madeto the corners of the sensing area,the linearity of
`electrical potential gradient (and uniformity ofelectric field)
`across the sensing area in the vertical and horizontal direc-
`tions can be improved by engineering the area distribution of
`sheet resistance values and anisotropy in such a way as to
`distribute the field more uniformly. In other embodiments, the
`sensor includes conductor elements comprised of the same
`conductor material at the same thickness (i.e., height), but
`with different effective sheet resistance by virtue of micro-
`patterning. E.g., in some embodiments, the same conductor
`material at the samethickness(i.e., height) is used to generate
`conductive traces that define a first micropattern geometry,
`leading to a first level of sheet resistance in a transparent
`conductive region, and conductive traces that define a second
`micropattern geometry, leading to a second level of sheet
`resistance in a second transparent conductive region. This
`disclosure also allows for improvedefficiency and resource
`utilization in the manufacture of transparent display sensors,
`e.g. through the avoidanceofrare elements such as indium for
`some embodiments, e.g. embodiments based on micropat-
`terned metal conductors.
`
`[0051] The disclosure further relates to contact or proxim-
`ity sensors for touch input of information or instructions into
`electronic devices (e.g., computers, cellular telephones, etc.)
`These sensorsare visible light transparent and usefulin direct
`combination witha display, overlaying a display element, and
`interfaced with a device that drives the display (as a “touch
`screen” sensor). The sensor elementhasa sheet like form and
`includesat least oneelectrically insulating visible light trans-
`parent substrate layer that supports one or more ofthe fol-
`lowing: 1) conductive material (e.g., metal) that is mesh pat-
`terned onto twodifferentregionsofthe substrate surface with
`twodifferent mesh designsso as to generate two regions with
`different effective sheet resistance values, where at least one
`of the regions is a transparent conductive region that lies
`within the touch-sensing area of the sensor; 11) conductive
`material (e.g., metal) that is patterned onto the surface of the
`substrate in a mesh geometry so as to generate a transparent
`conductive regionthatlies within the touch sensing area ofthe
`sensor and that exhibits anisotropic effective sheet resistance;
`and/or 111) conductive material (e.g., metal) that is patterned
`onto the surface ofthe substrate ina mesh geometry within an
`effectively electrically continuous transparent conductive
`region, the geometry varying within the region so as to gen-
`erate different values of local effective sheet resistance in at
`
`least one direction (e.g., continuously varying sheet resis-
`PETITIONERS
`
`Exhibit 1012, Page 20
`
`PETITIONERS
`Exhibit 1012, Page 20
`
`
`
`US 2009/0219257 Al
`
`Sep. 3, 2009
`
`tance for the transparent conductive region), where the region
`lies within the sensing area of the touch sensor.
`[0052] The sensing area of a touch sensoris that region of
`the sensor that is intended to overlay, or that overlays, a
`viewable portion ofan information display andis visible light
`transparent in order to allow viewability of the information
`display. Viewable portion of the information display refers to
`that portion of an information display that has changeable
`information content, e.g. the portion of a display “screen”that
`is occupied by pixels, e.g. the pixels ofa liquid crystal display.
`[0053] This disclosure further relates to touch screen sen-
`sors that are ofthe resistive, capacitive, and projected capaci-
`tive types. The visible light transparent conductor micropat-
`terns are particularly useful for projected capacitive touch
`screen sensorsthat are integrated with electronic displays. As
`acomponentofprojected capacitive touch screen sensors, the
`visible light transparent conductive micropattern are useful
`for enabling high touchsensitivity, multi-touch detection, and
`stylus input.
`[0054] The two or more different levels of sheet resistance,
`the anisotropy of the sheet resistance, or the varying level of
`sheet resistance within a transparent conductive region can be
`controlled by the geometries oftwo-dimensional meshesthat
`make up the transparent micropatterned conductors, as
`described below.
`
`[0055] While the present invention is not so limited, an
`appreciation ofvarious aspects ofthe invention will be gained
`through a discussion of the examples provided below.
`[0056]
`FIG. 1 illustrates a schematic diagram of a touch
`screen sensor 100. The touch screen sensor 100 includes a
`touch screen panel 110 having a touch sensing area 105. The
`touch sensing area 105 is electrically coupled to a touch
`sensor drive device 120. The touch screen panel 110 is incor-
`porated into a display device.
`[0057]
`FIG.2 illustrates a perspective view of a conductive
`visible light transparent region 101 that would lie within a
`touch sensing area of a touch screen panel, e.g., touch sensing
`area 105 in FIG. 1. The conductive visible light transparent
`region 101 includes a visible light transparent substrate 130
`and an electrically conductive micropattern 140 disposed on
`or in the visible light transparent substrate 130. The visible
`light transparent substrate 130 includes a major surface 132
`and is electrically insulating. The visible light transparent
`substrate 130 can be formed of any useful electrically insu-
`lating material such as, e.g., glass or polymer. Examples of
`useful polymers for light transparent substrate 130 include
`polyethylene terephthalate (PET) and polyethylene naphtha-
`late (PEN). The electrically conductive micropattern 140 can
`be formed ofa plurality of linear metallic features.
`[0058]
`FIG. 2 also illustrates an axis system for use in
`describing the conductive visible light transparent region 101
`that would lie within a touch sensing area of a touch screen
`panel. Generally, for display devices, the x and y axes corre-
`spond to the width and length of the display andthe z axis is
`typically along the thickness(1.e., height) direction ofa dis-
`play. This convention will be used throughout, unless other-
`wisestated. In the axis system of FIG.2, the x axis and y axis
`are defined to be parallel to a major surface 132 of the visible
`light transparent substrate 130 and may correspondto width
`and length directions of a square or rectangular surface. The
`Z axis is perpendicular to that major surface and1s typically
`along the thickness direction of the visible light transparent
`substrate 130. A width of the plurality of linear metallic
`features that form the electrically conductive micropattern
`
`140 correspond to an x-direction distance for the parallel
`linear metallic features that extend linearly along the y axis
`and a y-direction distance for the orthogonal linear metallic
`features correspondto a width ofthe orthogonallinear metal-
`lic features. A thickness or height of the linear metallic fea-
`tures correspondsto a z-direction distance.
`[0059]
`In some embodiments, the conductive visible light
`transparent region 101 that would lie within a touch sensing
`area of a touch screen panel includes two or morelayers of
`visible light transparent substrate 130 each having a conduc-
`tive micropattern 140.
`[0060] Theconductive micropattern 140 is deposited on the
`major surface 132. Because the sensoris to be interfaced with
`a display to form a touch screen display, or touch panel
`display, the substrate 130 is visible light transparent and sub-
`stantially planar. The substrate and the sensor may be sub-
`stantially planar and flexible. By visible light transparent,
`whatis meantis that information (e.g., text, images, or fig-
`ures) that is rendered by the display can be viewed through the
`touch sensor. The viewability and transparency can be
`achieved for touch sensors including conductors in the form
`of a deposited metal, even metal that is deposited with thick-
`ness great enoughto blocklight, ifthe metal is deposited in an
`appropriate micropattern.
`[0061] The conductive micropattern 140 includesat least
`one visible light transparent conductive region overlaying a
`viewable portion of the display that renders information. By
`visible light transparent conductive, what is meantis that the
`portion of the display can be viewed through the region of
`conductive micropattern andthatthe region ofmicropattern is
`el