throbber
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
`US 20060240554Al
`
`(19) United States
`(12) Patent Application Publication
`Chen et al.
`
`(10) Pub. No.: US 2006/0240554 Al
`Oct. 26, 2006
`(43) Pub. Date:
`
`(54) LIPID NANOPARTICLE BASED
`COMPOSITIONS AND METHODS FOR THE
`DELIVERY OF BIOLOGICALLY ACTIVE
`MOLECULES
`
`(75)
`
`Inventors: Tongqian Chen, Longmont, CO (US);
`Chandra Vargeese, Broomfield, CO
`(US): Kurt Vagle, Longmont, CO (US);
`Weimin Wang, Superior, CO (US); Ye
`Zhang, Broomfield, CO (US)
`
`Correspondence Address:
`MCDONNELL BOEHNEN HULBERT &
`BERGHOFF LLP
`300 S. WACKER DRIVE
`32ND FLOOR
`CHICAGO, IL 60606 (US)
`
`(73) Assignee: Sirna Therapeutics, Inc., Boulder, CO
`
`(21) Appl. No.:
`
`11/353,630
`
`(22) Filed:
`
`Feb. 14, 2006
`
`Related U.S. Application Data
`
`(60) Provisional application No. 60/652,787, filed on Feb.
`14, 2005. Provisional application No. 60/678,531,
`filed on May 6, 2005. Provisional application No.
`60/703,946, filed on Jul. 29, 2005. Provisional appli(cid:173)
`cation No. 60/737,024, filed on Nov. 15, 2005.
`
`Publication Classification
`
`(51)
`
`Int. Cl.
`C12N 5102
`C07C 229110
`
`(2006.01)
`(2006.01)
`
`(52) U.S. Cl ............................................. 435/375; 554/110
`
`(57)
`
`ABSTRACT
`
`The present invention relates to novel cationic lipids, trans(cid:173)
`fection agents, microparticles, nanoparticles, and short inter(cid:173)
`fering nucleic acid (siNA) molecules. The invention also
`features compositions, and methods of use for the study,
`diagnosis, and treatment of traits, diseases and conditions
`that respond to the modulation of gene expression and/or
`activity in a subject or organism. Specifically, the invention
`relates to novel cationic lipids, microparticles, nanoparticles
`and transfection agents that effectively transfect or deliver
`biologically active molecules, such as antibodies (e.g.,
`monoclonal, chimeric, humanized etc.), cholesterol, hor(cid:173)
`mones, antivirals, peptides, proteins, chemotherapeutics,
`small molecules, vitamins, co-factors, nucleosides, nucle(cid:173)
`otides, oligonucleotides, enzymatic nucleic acids, antisense
`nucleic acids, triplex forming oligonucleotides, 2,5-A chi(cid:173)
`meras, dsRNA, allozymes, aptamers, decoys and analogs
`thereof, and small nucleic acid molecules, such as short
`interfering nucleic acid (siNA), short interfering RNA
`(siRNA), double-stranded RNA (dsRNA), micro-RNA
`(miRNA), and short hairpin RNA (shRNA) molecules, to
`relevant cells and/or tissues, such as in a subject or organ(cid:173)
`ism. Such novel cationic lipids, microparticles, nanopar(cid:173)
`ticles and transfection agents are usefl.Jl, for example, in
`providing compositions to prevent, inhibit, or treat diseases,
`conditions, or traits in a cell, subject or organism. The
`compositions described herein are generally referred to as
`formulated molecular compositions (FMC) or lipid nano(cid:173)
`particles (LNP).
`
`Moderna Ex 1005-p. 1
`Moderna v Arbutus
`
`

`

`Patent Application Publication Oct. 26, 2006 Sheet 1 of 45
`
`US 2006/0240554 Al
`
`Figure 1
`
`A
`
`B
`
`c
`
`D
`
`k}o
`to
`~H~oy---oJ~H,
`
`~
`
`n
`
`Moderna Ex 1005-p. 2
`Moderna v Arbutus
`
`

`

`Patent Application Publication Oct. 26, 2006 Sheet 2 of 45
`
`US 2006/0240554 Al
`
`)
`
`(
`
`<
`0 <
`0~)
`\
`
`- z
`\
`
`- z
`
`u
`
`Moderna Ex 1005-p. 3
`Moderna v Arbutus
`
`

`

`Patent Application Publication Oct. 26, 2006 Sheet 3 of 45
`
`US 2006/0240554 Al
`
`Figure 3
`
`A
`
`B
`
`c
`
`D
`
`0
`
`0
`
`0
`
`J0~0
`
`'N
`/
`
`0
`
`0
`
`0
`
`0
`
`J0~0
`
`'N
`/
`
`0
`
`0 o0o
`
`0
`
`0 0
`NH~OY'o}~H3
`0
`
`Moderna Ex 1005-p. 4
`Moderna v Arbutus
`
`

`

`~
`
`""d a ("!> = -> :a -.....
`== -.....
`Q =
`a'
`e::
`== --· Q =
`.....
`
`~
`
`Figure4
`
`A
`
`B
`
`c
`
`D
`
`E
`
`Moderna Ex 1005-p. 5
`Moderna v Arbutus
`
`

`

`FIGURE 5
`Cationic Lipids
`
`~
`
`""d a ("!> = -> :a -.....
`== -.....
`Q = ""d = e::
`== --· Q =
`
`.....
`
`~
`
`Moderna Ex 1005-p. 6
`Moderna v Arbutus
`
`

`

`FIGURE 6
`
`Cationic lipid
`
`/
`
`""d
`
`"C
`
`~
`
`~ -("!> = -
`>
`"C -.....
`~ -.....
`Q = ""d = e::
`~ --· Q =
`
`.....
`
`~
`
`0
`~
`:""'"
`N
`~a-,
`N
`0
`0 a-,
`171 =-("!>
`
`("!> -a-,
`Q -""" u.
`
`d
`171
`N
`0
`0
`
`a-, -0
`""" 0 u. u.
`""" > .....
`
`N
`
`Moderna Ex 1005-p. 7
`Moderna v Arbutus
`
`

`

`FIGURE 7
`
`Lamella Structure
`
`Inverted Hexagonal Structure
`
`Lipid
`bilayer
`
`--+
`
`Nucleic--.
`acid
`
`Nucleic
`acid
`
`""d
`
`"C
`
`~
`
`~ -("!> = ->
`"C -.....
`~ -.....
`Q = ""d = e::
`~ --· Q =
`
`.....
`
`~
`
`0
`~
`:""'"
`N
`-?'
`N
`0
`0
`0'1
`
`171 =-("!>
`
`("!> --.l
`Q -""" u.
`
`d
`rJ)
`N
`0
`0
`
`0'1 -0
`""" 0 u. u.
`""" > .....
`
`N
`
`Moderna Ex 1005-p. 8
`Moderna v Arbutus
`
`

`

`~
`
`""d a ("!> = -> :a -.....
`== -.....
`Q = ""d = e::
`== --· Q =
`
`.....
`
`~
`
`FIGURE 8
`
`Lipid Composition in L051
`
`0
`
`CLinDMA
`
`DSPC
`
`Cholesterol
`
`2KPEG-DMG
`
`Moderna Ex 1005-p. 9
`Moderna v Arbutus
`
`

`

`~
`
`""d a ("!> = -> :a -.....
`== -.....
`Q = ""d = e::
`== --· Q =
`
`.....
`
`~
`
`FIGURE 9
`Lipid Structures in L073
`
`Me
`-o~o
`Me~N"+
`'p'
`Me' ........,......o .. "'o
`
`Joo
`
`0
`
`CLinDMA
`
`DMOBA.
`
`DSPC
`
`Cholesterol
`
`2KPEG-DMG
`
`Moderna Ex 1005-p. 10
`Moderna v Arbutus
`
`

`

`~
`
`""d a ("!> = -> :a -.....
`== -.....
`Q = ""d = e::
`== --· Q =
`
`.....
`
`~
`
`FIGURE 10
`Lipid Composition in L069
`
`0
`
`ClinDMA
`
`DSPC
`
`Cholesterol
`
`0
`Cholesterol-PEG M•~o---f.o)(~-../'~CJ..../'-.~Jlo
`0
`
`Moderna Ex 1005-p. 11
`Moderna v Arbutus
`
`

`

`FIGURE 11
`
`1.5
`
`~L065
`
`-o--f2
`
`--t:r-l051
`
`-<!>-l073
`
`0.0-r-----~~----~------~------~------~------~
`24
`20
`0
`4
`12
`16
`8
`
`(hours)
`
`""d
`
`"C
`
`~
`
`~ -("!> = ->
`"C -.....
`~ -.....
`Q = ""d = e::
`~ --· Q =
`
`.....
`
`~
`
`0
`~
`:""'"
`N
`-?'
`N
`0
`0
`0'1
`
`171 =-("!>
`
`("!> -1-o'
`Q -"""' u.
`
`1-o'
`
`d
`171
`N
`0
`0
`
`0'1 -0
`"""' 0 u. u.
`"""' > .....
`
`N
`
`Moderna Ex 1005-p. 12
`Moderna v Arbutus
`
`

`

`FIGURE 12
`
`pH-dependent phase transition at 30min
`
`~
`
`""d a ("!> = -> :a -.....
`== -.....
`Q = ""d = e::
`== --· Q =
`
`.....
`
`~
`
`-11- L065
`
`-Jr- L051
`_._F2
`
`-+-L073
`
`3
`
`3.5
`
`4
`
`4.5
`
`5
`
`5.5 6
`
`6.5 7
`
`7.5
`
`8
`
`8.5
`
`9
`
`9.5
`
`pH
`
`1.08
`
`1.00
`
`0.96
`
`(§)
`·-"'C'J
`~ .1.04
`:CE
`.. ..,
`... c
`::Jo
`Q)CW') > ;;
`C'G -Q,)
`
`~
`
`Moderna Ex 1005-p. 13
`Moderna v Arbutus
`
`

`

`~
`
`""d a ("!> = -> :a -.....
`== -.....
`Q = ""d = e::
`== --· Q =
`
`.....
`
`~
`
`FIGURE 13
`
`pH-dependent phase transition at 30min
`
`E
`c
`0
`U')
`(¥')
`@)
`
`:::J
`
`~ ·--c ·-.c ....
`....
`(I) > ·-....,
`C'O -(I)
`0::
`
`1.05
`
`1.02
`
`0.99
`
`0.96
`
`0.93
`
`0.90 +--r-----r--r----r----.--.-----.--.......----.--....--or-..------.-----,
`3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5
`
`pH
`
`t
`
`L069.2A
`
`Moderna Ex 1005-p. 14
`Moderna v Arbutus
`
`

`

`~
`
`""d a ("!> = -> :a -.....
`== -.....
`Q = ""d = :=:
`== --· Q =
`
`.....
`
`~
`
`FIGURE 14
`
`HBV site 263 siRNA
`5'- B G G A C U U C U C U C A A U U U U C U T T B - 3' Sense
`I I I I I I I I I I I I I I I I I I I
`3'- T5T C C U GAAGAGAG U U AAAA GA- 5'
`
`Antisense
`
`(SEQ ID NO: 6)
`
`(SEQ ID NO: 7)
`
`HBV site 1583 siRNA
`5'- B G C A C U U C G C U U C A C C U C U G T T 8 - 3' Sense
`t I I I I I I I I I I I
`t t t t
`t t
`I
`3'- TsT C G U GAAG C GAAG U GGAGA C -5'
`
`Antisense
`
`(SEQ ID NO: 8)
`
`(SEQ IDNO: 9)
`
`AGT= deoxy A, G &T
`AGCU = ribo A, G, C, U
`AG = 2 '-0-methy/ A & G
`cu = 2"-ffuoro C & U
`3 ',5' inverted deoxy abasic
`B
`= phosphorothioate
`s
`
`Moderna Ex 1005-p. 15
`Moderna v Arbutus
`
`

`

`~
`
`""d a ("!> = -> :a -.....
`== -.....
`Q = ""d = e::
`== --· Q =
`
`.....
`
`~
`
`FIGURE 15: In vitro Analysis of siNA Formulation L051
`Activity in HBV Expressing Hep G2 Cells
`
`1
`
`E 0.8
`s::
`0
`l.t)
`"'':t
`:::J 0.6
`c
`0
`
`0.4
`
`0.2
`
`0
`
`Untreated
`
`2SnM
`
`lOnM SnM
`
`lnM
`
`25nM
`
`lOnM SnM
`
`lnM
`
`Active
`
`Control
`
`Moderna Ex 1005-p. 16
`Moderna v Arbutus
`
`

`

`~
`
`""d a ("!> = -> :a -.....
`== -.....
`Q = ""d = e::
`== --· Q =
`
`.....
`
`~
`
`FIGURE 16: In vitro Analysis of siNA Formulation L053
`·and L054 activity in HBV Expressing Hep G2 Cells
`2 .5 , - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - .
`
`2
`
`Formulation L053
`
`Formulation L054
`
`a 1.s
`= 0
`...,.
`~
`0
`
`lO
`
`1
`
`0.5
`
`Active
`
`Control
`
`Active
`
`Control
`
`Moderna Ex 1005-p. 17
`Moderna v Arbutus
`
`

`

`~
`
`""d a ("!> = -> :a -.....
`== -.....
`Q = ""d = e::
`== --· Q =
`
`.....
`
`~
`
`FIGURE 17
`
`HBV/siRNA KJ#137 (E389Z) - L069 - HBsAg ELISA
`
`0.9
`
`0.6
`
`CD
`en
`
`> 0.7
`"'CC - 0.6
`• -+
`E 0.5
`r::
`0
`~ 0.4
`::i 0.3
`d
`0
`
`0.2
`
`0.1
`
`0
`
`]i g
`
`c:
`::l
`
`::::'E
`
`8 :;;
`~
`:2
`~
`
`:a:
`~
`
`::::'E
`c:
`U')
`
`:E.
`....
`c:
`
`::::'E
`c
`U')
`d
`
`::::'E
`.:=
`d
`
`FMC L069
`
`::::'E

`
`::::'E
`Ji
`
`::::'E
`.:=
`
`::::'E
`.Iii
`d
`
`::::'E
`c .,...
`d
`
`Irrelevant Control
`
`Concentration
`
`Moderna Ex 1005-p. 18
`Moderna v Arbutus
`
`

`

`~
`
`""d a ("!> = -> :a -.....
`== --· Q = ""d = e::
`== --· Q =
`
`.....
`
`~
`
`FIGURE 18: Activity. of siNA Formulation L051
`compositions in HBV Mouse Model, Serum HBV DNA
`
`G.oo,.----------------1--------------.
`
`Day3
`
`Day7
`
`4.00
`
`2.50
`
`~ w
`en
`i -...J
`E
`U;
`(L) ·c.
`0 u
`<(
`z
`c
`> m
`:I:
`E
`....
`:::J
`(L) en
`
`0 -C)
`
`.2
`
`2.00
`
`PBS
`3mg!I,g/day X 3 days
`
`Active
`
`Control
`
`PBS
`
`Active
`
`Control
`
`Moderna Ex 1005-p. 19
`Moderna v Arbutus
`
`

`

`~
`
`""d a ("!> = -> :a -.....
`== -.....
`Q = ""d = e::
`== --· Q =
`
`.....
`
`~
`
`FIGURE 19: Activity of siNA siNA Formulation L051
`compositions in HBV Mouse Model, Serum HBsAg
`
`Day3
`
`Day7
`
`~1
`(/) m
`:r:
`E
`::l
`lo...
`Q)
`(/)
`..J
`
`100.0
`
`E -C) c
`
`10.0
`
`1.0
`
`PBS
`
`Active
`
`Control
`
`PBS
`
`Active
`
`Control
`
`0.1~------------------------~--------------------------~
`
`3mglkglday X 3 days
`
`Moderna Ex 1005-p. 20
`Moderna v Arbutus
`
`

`

`~
`
`""d a ("!> = -> :a -.....
`== --· Q = ""d = e::
`== --· Q =
`
`.....
`
`~
`
`FIGURE 20: In Vitro Analysis of siNA Formulation
`L051 Activity in HCV Replicon System
`
`1.~------------------------------------------------~
`
`<(
`z
`0:
`:I:
`c
`~
`C) < z
`0:::
`> 0
`
`:I:
`
`Untreated
`
`25nM
`
`10nM
`
`5nM
`
`1nM
`
`25nM
`
`10nM
`
`5nM
`
`1 nM
`
`Moderna Ex 1005-p. 21
`Moderna v Arbutus
`
`

`

`~
`
`""d a ("!> = -> :a -.....
`== -.....
`Q = ""d = e::
`== --· Q =
`
`.....
`
`~
`
`FIGURE 21: In Vitro Analysis of siNA Formulation
`L053 and L054 Activity in HCV Replicon System
`
`1~~--------------------------------------------------~
`
`Formulation L053
`
`Formulation L054
`
`1
`
`Active
`
`Control
`
`Active
`
`Control
`
`Moderna Ex 1005-p. 22
`Moderna v Arbutus
`
`

`

`~
`
`""d a ("!> = -> :a -.....
`== -.....
`Q = ""d = e::
`== --· Q =
`
`.....
`
`~
`
`FIGURE 22
`Concentration of siRNA in the Mouse Lung after IT Administration (20 pg)
`
`• Unfomrulated
`.. Formulation 18.1A
`• Unformulated
`• &IRNA • Cholesterol
`• Formulation 19.1A
`
`T1/2- 3-4 h
`
`T1/2- 9 h
`
`0
`
`10
`
`20
`
`30
`
`40
`
`50
`
`60
`
`70
`
`80
`
`Time (h)
`
`100
`
`10
`
`1
`
`0.1
`
`Moderna Ex 1005-p. 23
`Moderna v Arbutus
`
`

`

`FIGURE 23A
`
`Toluenesulfonyl chloride
`
`Pyridine
`
`MsCI, TEA, 0 •c
`
`DCM
`
`2
`
`Mso,
`R-0
`
`Diol,£\
`
`Dioxane
`
`Ho,
`R-Q
`
`3a R- -C4H8-
`3b R- -(CH1 hO(CHzh-
`
`4a R- -C•Hs-
`4b R- ·(CH2) 20(CHz)z-
`
`~
`
`""d a ("!> = -> :a -......
`== -......
`Q = ""d = e::
`== --· Q =
`
`......
`
`~
`
`!
`fODMTr +
`/" ~OH
`5
`
`..
`
`NaH,£\
`
`Toluene
`
`NaH,a
`
`Toluene
`
`7
`
`Cia R= -c.H,-
`Cib R= -(CH 1)!0(CH 1h·
`
`,~o-R-o
`
`I
`
`l._0_......(CH2>e~c·H"
`
`8a R= -C4 He·
`8b R= ·(CH1 )tO(CH~)2·
`
`Moderna Ex 1005-p. 24
`Moderna v Arbutus
`
`

`

`~
`
`""d a ("!> = -> :a -.....
`== -.....
`Q = ""d = e::
`== --· Q =
`
`.....
`
`~
`
`Figure 23B
`
`HO~C>«> +
`HO~
`
`R-OMs
`
`CsCOJ, 100 "C
`
`diglyme
`
`1
`
`2a, R Cl8H34, oleyl
`2b, R=C18H32, linoleyl
`
`R-Ox::rCHO
`
`R-0
`
`3a, R=C18H34, oleyl
`3b, R=Cl8H32, linoleyl
`
`l) Me2NH·HCI, Ti(OFr')4, TEA,
`BtOH
`l)NaB.U., NH,.OH
`
`I
`R-Ol(YN'
`R-0~
`4a, R=Cl8H34, oleyl
`4b, R=Cl8H32, linoleyl
`
`Moderna Ex 1005-p. 25
`Moderna v Arbutus
`
`

`

`~
`
`""d a ("!> = -> :a -.....
`== --· Q = ""d = e::
`== --· Q =
`
`.....
`
`~
`
`FIGURE 24
`
`H
`Me1o/'-tOI(N~O~O~NH2
`0
`
`n-45
`
`DMAP, DIPEA
`
`THF, 6.
`
`Cholesterol-PEG
`
`DMB-Peg
`
`Moderna Ex 1005-p. 26
`Moderna v Arbutus
`
`

`

`~
`
`""d a ("!> = -> :a -.....
`== -.....
`Q = ""d = e::
`== --· Q =
`
`.....
`
`~
`
`FIGURE 25
`Lipid Composition in LNP 083
`
`pCLinDMA (48%)
`
`DSPC (40%)
`
`Cholesterol(1 0°/o)
`
`2KPEG-Chol (2%)
`
`Moderna Ex 1005-p. 27
`Moderna v Arbutus
`
`

`

`~
`
`""d a ("!> = -> :a -.....
`== -.....
`Q = ""d = e::
`== --· Q =
`
`.....
`
`~
`
`FIGURE 26
`Lipid Composition in LNP 077
`
`0
`
`eCLinDMA (48°/u)
`
`DSPC (40°/o)
`
`Cholesterol{1 Oo/o)
`
`2KPEG-Chol (2o/o)
`
`H
`0
`Me(o~O"M"N.........,...0..............,o ............. NJ.lO
`n g
`
`H
`
`Moderna Ex 1005-p. 28
`Moderna v Arbutus
`
`

`

`FIGURE 27
`Lipid Composition in LNP 080
`
`0
`
`~
`
`""d a ("!> = -> :a -.....
`== -.....
`Q = ""d = e::
`== --· Q =
`
`.....
`
`~
`
`0
`
`eCLinDMA (48°/o)
`
`DSPC (40%)
`
`Cholesterol(1 0%)
`
`2KPEG-DMG (2%)
`
`M•~o-"'t~~......-"o...._a.......---)l}a 0
`
`n O
`
`H
`
`Moderna Ex 1005-p. 29
`Moderna v Arbutus
`
`

`

`FIGURE 28
`Lipid Composition in LNP 082
`
`0
`
`~
`
`""d a ("!> = -> :a -.....
`== -.....
`Q = ""d = e::
`== --· Q =
`
`.....
`
`~
`
`0
`
`0 Jo o
`
`pCLinDMA (48°/o)
`
`DSPC (40o/o)
`
`Cholesterol(1 0%)
`
`2KPEG-DMG (2o/o)
`
`II
`H
`Mei>~O)(N~0~o..........,..-.N~O
`n O
`H
`
`0
`
`Moderna Ex 1005-p. 30
`Moderna v Arbutus
`
`

`

`~
`
`""d a ("!> = -> :a -.....
`== -.....
`Q = ""d = e::
`== --· Q =
`
`.....
`
`~
`
`FIGURE 29
`
`Serum HBV DNA in SCID mice: siRNA formulation comparison
`
`3 mg/kg/d IV x 3 days; siRNA formulated HBV site 263 7/25
`
`3 days post last treatment
`
`6.5
`
`6.0
`
`5.5
`
`5.0
`
`4.5
`
`4.0
`
`3.5
`
`3.0
`LOQ= 2.9
`2.5
`
`PBS
`Control
`
`069.2A
`
`069.1
`Control
`
`077.2A
`
`080.1A
`
`082.1A
`
`083.1A
`
`060.1A
`
`061.1A
`
`051.2A
`1 mg/kg/d
`
`Treatment
`
`~
`
`.
`+
`
`0 -g»
`
`:;J
`L.,
`
`E
`Q) en _.
`~ z
`c
`> m
`:::t:
`
`Moderna Ex 1005-p. 31
`Moderna v Arbutus
`
`

`

`FIGURE 30
`HBV/siRNA Sirna 083 and 084-Site 263 stab 7/25-
`HBsAg ELISA
`
`(
`
`1.8
`
`1.6
`
`1.4
`
`1
`
`e 1.2
`c
`0
`~ -::; 0.8
`
`c:i
`0 0.6
`
`0.4
`
`0.2
`
`~
`
`""d a ("!> = -> :a -.....
`== -.....
`Q = ""d = e::
`== --· Q =
`
`.....
`
`~
`
`0
`
`]1
`B
`
`1:
`:::>
`
`:e
`1:
`0 ......
`t.b
`~
`HepG2 45,000/well
`6.5 hour vector tranafectJon
`3 day formulation transfectlon
`
`:e c
`0 ....
`
`L082.1A
`
`L083.1A
`
`Treatment
`
`Moderna Ex 1005-p. 32
`Moderna v Arbutus
`
`

`

`~
`
`""d a ("!> = -> :a -.....
`== --· Q = ""d = e::
`== --· Q =
`
`.....
`
`~
`
`FIGURE 31
`
`HBV/siRNA Sirna Formulation 077 -HBsAg ELISA
`
`1.8
`1.6
`1.4
`
`E
`c
`0
`
`- 1.2
`!:f -
`1
`~ 0.8
`c
`0.6
`0
`0.4
`0.2
`
`0
`
`Untreated
`
`7/25-10nM
`
`10nM
`
`5nM
`
`1nM
`
`0.5nM
`
`0.1nM
`
`HepG2 45,000/well
`7 .5hr vector tfn
`3 day fonnulatlon lfn
`
`Treatment
`
`Sirna 077.2A
`HBV 263 stab 7/25
`
`Moderna Ex 1005-p. 33
`Moderna v Arbutus
`
`

`

`~
`
`""d a ("!> = -> :a -.....
`== --· Q = ""d = e::
`== --· Q =
`
`.....
`
`~
`
`FIGURE 32
`
`HBV/siRNA Sirna Formulation 080-HBsAg ELISA
`
`Untreated
`
`263 7/25-10nM
`
`10nM
`
`5nM
`
`1nM
`
`0.5nM
`
`0.1nM
`
`0.9
`0.8
`0.7
`
`1:
`0
`ll)
`
`0.5
`
`-E 0.6
`"':t -::::) 0.4
`c:i 0.3
`0
`0.2
`0.1
`0
`
`HepG2 45,000/well
`7 .5hr vector tfn
`3 day formulation tfn
`
`Treatment
`
`Sirna 080.1A
`HBV 263 stab 7/25
`
`Moderna Ex 1005-p. 34
`Moderna v Arbutus
`
`

`

`FIGURE 33
`
`The serum stability of Upld nano particles
`
`L077.2A
`
`L080.1A
`
`L082.1A
`
`L083.1A
`
`-+-
`-+-
`--D-
`
`----.----
`
`2
`
`1.5
`
`1
`
`0.5
`
`0
`
`&;-
`;;
`:a ...
`::::ll ...
`!l
`~
`Qj a:
`
`0
`
`4
`
`8
`
`12
`
`16
`
`20
`
`24
`
`Time (hrs)
`
`""d
`
`"C
`"C
`
`~
`
`Q
`
`~ -("!> = ->
`-.....
`~ -.....
`=
`""d = e::
`~ --· Q =
`.....
`
`~
`
`0
`~
`:""'"
`N
`-?'
`N
`0
`0
`0'1
`
`171
`
`("!> -w
`=-("!>
`...
`"""' ... Ul
`
`Q
`
`d
`171
`N
`0
`0
`
`0
`N
`
`0'1 -
`... 0
`Ul ...
`>
`.....
`
`Ul
`
`Moderna Ex 1005-p. 35
`Moderna v Arbutus
`
`

`

`J!'
`'5
`
`:e :::J
`
`1-
`~
`:;:J
`111 &
`
`FIGURE 34
`
`Phase transition of lipid nano particles
`
`•
`•
`'
`
`L077.2A
`
`L080.1A
`
`L082.1A
`
`L083.1A
`
`1.05
`
`1.00
`
`0.95
`
`0.90
`
`3.5
`
`4
`
`4.5
`
`5
`
`5.5
`
`6
`
`6.5
`
`7
`
`7.5
`
`8
`
`8.5
`
`9
`
`9.5
`
`pH
`
`""d
`
`"C
`.....
`
`~
`
`~ -("!> = ->
`"C -
`~ --· Q =
`--· Q =
`
`""d = e::
`.....
`
`~
`~
`
`0
`~
`:""'"
`N
`-?'
`N
`0
`0
`0'1
`
`171
`
`("!> -
`
`=-
`w
`tJI
`Q
`
`("!>
`
`....
`"""'
`
`tJI
`
`d
`171
`N
`0
`0
`
`0'1 -0
`
`0
`tJI
`tJI
`
`N ....
`....
`> .....
`
`Moderna Ex 1005-p. 36
`Moderna v Arbutus
`
`

`

`1.0
`0.9
`0.8
`0.7
`0.6
`0.5
`0.4
`0.3
`0.2
`0.1
`0.0
`
`Figure 35
`
`48h post-treatment
`
`1.1')
`
`.
`1.1')
`"'
`N
`~ T"'
`"' ~
`u.
`N
`u.
`..J
`..J
`
`1.1')
`
`"'
`
`-.::1"
`L()
`0
`..J
`
`.
`
`1.1')
`N
`"'r
`-.::1"
`L()
`0
`..J
`
`It)
`N
`CX)
`en
`0
`...J
`
`1.1') ..
`N
`T"'
`
`CX) en
`0
`..J
`
`1.1')
`N
`;::
`.....
`C.)
`c.
`z
`...J
`
`..
`I()
`N
`-
`...
`T"'
`.....
`0
`a.
`z
`...J
`
`LNP#/siNA (nM)
`
`""d
`
`"C
`
`~
`
`~ -("!> = ->
`"C -.....
`~ -.....
`Q = ""d = e::
`~ --· Q =
`
`.....
`
`~
`
`0
`~
`:""'"
`N
`-?'
`N
`0
`0
`0'1
`
`("!> -
`
`171 =-("!>
`w
`0'1
`Q
`
`....
`"""'
`
`Ul
`
`d
`171
`N
`0
`0
`
`0'1 -0
`N .... 0
`....
`> .....
`
`Ul
`Ul
`
`Moderna Ex 1005-p. 37
`Moderna v Arbutus
`
`

`

`3.0
`
`2.5
`
`2.0
`
`1.5
`
`1.0
`
`0.5
`
`0.0
`
`Figure 36
`
`48h post-treatment
`
`U')
`N
`:::.::::
`N
`LL.
`..J
`
`.
`
`U')
`N
`or-
`:::.::::
`N
`LL.
`..J
`
`1.()
`N
`CX)
`CD
`0
`..J
`
`.
`
`U')
`N
`or-
`CX)
`CD
`0
`..J
`
`LNP number/siNA {nM)
`
`U')
`-
`N
`....
`......
`(.)
`0..
`z
`..J
`
`.
`U')
`N
`-
`or-
`....
`.....
`(.)
`0..
`z
`..J
`
`""d
`
`"C
`
`~
`
`~ -("!>
`= ->
`"C -.....
`~ -.....
`Q =
`""d = :=:
`~ -
`.....
`-· Q =
`
`~
`
`0
`~
`:""'"
`N
`-?'
`N
`0
`0
`0'1
`
`171
`
`=-("!>
`
`("!> -w
`
`........
`Q
`....
`"""'
`
`Ul
`
`d
`171
`N
`0
`0
`
`0
`N
`
`0'1 -
`.... 0
`....
`> .....
`
`Ul
`Ul
`
`Moderna Ex 1005-p. 38
`Moderna v Arbutus
`
`

`

`0 .
`
`0
`0
`
`0 .
`
`Ul
`0
`
`MapK14/3684 RNA
`. .
`.
`.
`.
`.
`N w w ~
`•
`0
`0
`Ul
`Ul
`0
`0
`0
`0
`
`~ ~ N
`0
`0
`Ul
`0
`0
`0
`
`LF2K 25
`
`LF2K 12.5
`
`L054 25
`
`L05412.5
`
`L097 25
`
`L09712.5
`
`L098 25
`
`L09812.5
`
`~
`00
`':J"
`"C
`0
`.....
`UJ
`~ ..,
`CD
`.....
`DJ
`3
`CD
`.....
`::l
`
`l1 CQ'
`s:
`<a
`w
`""'
`
`r-z .,
`
`::s
`c
`3
`C"
`CD
`:t
`
`tA -· z
`)>
`..-.
`::s
`35: -
`
`LNP ctrl25
`
`LNP ctrl12.5
`
`IV t'SSOt'Z0/90oz sa
`
`St' Jo 8£ Jaaqs 9ooz '9Z ·po uonuJnqnd uo!JBJ!fddv JU<tJBd
`
`Moderna Ex 1005-p. 39
`Moderna v Arbutus
`
`

`

`Figure 38
`
`48h post-treatment
`
`0.25
`
`0.20
`
`0.15
`
`0.10
`
`0.05
`
`It)
`N
`~
`N
`LL
`....I
`
`L() ..
`N
`..:-
`:::.:::
`N
`LL
`...1
`
`It)
`N
`00
`0)
`0
`...1
`
`L() .
`N
`..::-
`00
`0)
`0
`...1
`
`LNP number/siNA (nM}
`
`It)
`
`N -....
`.... (.)
`D.. z
`
`-1
`
`.
`It)
`C"'
`..:--....
`.....
`(.)
`D..
`z
`....I
`
`""d
`
`"C
`
`~
`
`~ -("!> = ->
`"C -.....
`~ -.....
`Q = ""d = :=:
`~ --· Q =
`
`.....
`
`~
`
`0
`~
`:""'"
`N
`-?'
`N
`0
`0
`0'1
`
`171 =-("!>
`
`("!> -w
`
`~
`Q
`
`....
`"""'
`
`Ul
`
`d
`171
`N
`0
`0
`0'1
`
`-0
`N .... 0
`....
`> .....
`
`Ul
`Ul
`
`Moderna Ex 1005-p. 40
`Moderna v Arbutus
`
`

`

`~
`
`""d a ("!> = -> :a -.....
`== -.....
`Q = ""d = :=:
`== --· Q =
`
`.....
`
`~
`
`Figure 39
`
`1.2
`
`L054
`IC50 = 5.6nM
`
`L098
`IC50 = 3.5nM
`
`< 1.0
`z
`0!:
`0.8
`..q m co
`-..q
`
`("')
`
`0.6
`
`..:-
`~
`c. 0.4
`tU
`:E
`
`0.2
`
`0.0
`
`LC')
`N,
`
`. . ~ ...:-
`.
`
`LC')
`N,
`...:-
`
`LC')
`
`CD
`
`N,
`
`("')
`
`CD
`00
`0)
`~ ""': ~
`...:-
`0
`0
`
`0
`
`CD
`
`LC') .
`
`0
`
`0)
`("')
`0
`
`siNA concentration (nM)
`
`Moderna Ex 1005-p. 41
`Moderna v Arbutus
`
`

`

`2.00
`1.80
`1.60
`1.40
`1.20
`
`--=t
`al
`CD
`
`<C
`z a::
`C") - 1.00
`
`"'¢
`~
`~ 0.80
`c.
`CG
`:e
`0.60
`0.40
`0.20
`0.00
`
`~
`
`""d a ("!> = -> :a -.....
`== -.....
`Q = ""d = e::
`== --· Q =
`
`.....
`
`~
`
`Figure 40
`
`L098
`IC50 = 4.5nM
`
`II)
`N
`
`II)
`4:'i
`or-
`
`II)
`N
`u)
`
`N
`or-
`C"'i
`
`CD
`It!
`or-
`
`CIO
`I':
`c
`
`0)
`
`~ c
`
`c
`
`siNA concentration (nM)
`
`Moderna Ex 1005-p. 42
`Moderna v Arbutus
`
`

`

`~
`
`""d a ("!> = -> :a -.....
`== -.....
`Q = ""d = e::
`== --· Q =
`
`.....
`
`~
`
`CQ
`
`<( z
`0:::
`-.::t co
`M -~
`~ c.
`C'G :e
`
`~
`
`3.5
`
`3.0
`
`2.5
`
`2.0
`
`1.5
`
`1.0
`
`0.5
`
`0.0
`
`l.t)
`N
`
`Figure 41
`
`L097
`IC50 = 2.1nM
`
`L098
`IC50 = 1.8nM
`
`0')
`
`M .
`
`0
`
`0
`
`CX)
`
`I':
`0
`
`en
`M .
`
`0
`
`0
`
`siNA concentration (nM)
`
`Moderna Ex 1005-p. 43
`Moderna v Arbutus
`
`

`

`~
`
`""d a ("!> = -> :a -.....
`== -.....
`Q = ""d = e::
`== --· Q =
`
`.....
`
`~
`
`<
`z
`c:::
`"¢
`aJ
`U)
`('I')
`-...
`~
`T"'"
`~
`c.
`cu
`==
`
`0.20
`0.18
`0.16
`0.14
`0.12
`0.10
`0.08
`0.06
`0.04
`0.02
`0.00
`
`Figure 42
`
`L098
`IC50 = 3.4nM
`
`L()
`N
`
`L()
`•
`N
`T"'"
`
`.
`
`L()
`N
`U)
`
`N
`T"'"
`•
`('I')
`
`U)
`In
`•
`T"'"
`
`CIO
`.......
`•
`0
`
`en
`('I') .
`
`0
`
`0
`
`siNA concentration (nM)
`
`Moderna Ex 1005-p. 44
`Moderna v Arbutus
`
`

`

`(I)
`
`::i:'
`c
`a..
`c
`0
`;:
`0
`·;::
`C/)
`
`-
`-
`
`s:::
`0
`0
`-~
`.s::
`(.)
`s:::
`.._
`0
`ID
`
`Figure 43
`
`"'ill-1 mg/kg Formulated
`
`........ 0.1 mg/kg Formulated
`-o-o.o1 mgfkg Formulated
`
`-t-Vehlcle
`
`-.-Naive
`
`12
`
`10
`
`8
`
`6
`
`4
`
`2
`
`0
`
`0
`
`10
`Concentration of Methacholine (mg/ml)
`
`25
`
`""d
`
`"C
`
`~
`
`~ -("!> = -
`>
`"C -.....
`~ -.....
`Q =
`""d
`=
`e::
`--·
`.....
`=
`0
`~
`:""'"
`N
`-?'
`N
`0
`0
`0'1
`
`~
`~
`
`Q
`
`171 =-
`
`("!>
`("!>
`
`-
`
`.&;;...
`.&;;...
`Q
`
`"""'
`
`.&;;...
`Ul
`
`d
`171
`N
`0
`0
`
`0'1 -0
`
`N
`.&;;...
`0
`Ul
`Ul
`.&;;...
`
`> .....
`
`Moderna Ex 1005-p. 45
`Moderna v Arbutus
`
`

`

`~
`
`""d a ("!> = -> :a -.....
`== -.....
`Q = ""d = :=:
`== --· Q =
`
`.....
`
`~
`
`Figure 44: Relative expression of HD RNA with active LNP-98 and
`LNP-61 formulated active siNA compared to LNP-61 mismatch
`· control
`
`<( z
`0::::
`c
`::I:
`<P
`>
`;::
`cu e
`<P
`> <(
`
`1
`
`0.8
`
`0.6
`
`0.4
`
`0.2
`
`LNP-98
`
`LNP-61
`
`LNP61 mismatch
`
`Uninjected
`
`Treatment
`
`Moderna Ex 1005-p. 46
`Moderna v Arbutus
`
`

`

`US 2006/0240554 AI
`
`Oct. 26, 2006
`
`1
`
`LIPID NANOPARTICLE BASED COMPOSITIONS
`AND METHODS FOR THE DELIVERY OF
`BIOLOGICALLY ACTIVE MOLECULES
`
`[0001] This application claims the benefit of U.S. Provi(cid:173)
`sional patent application No. 60/652,787, filed Feb. 14,
`2005, U.S. Provisional patent application No. 60/678,531,
`filed May 6, 2005, U.S. Provisional patent application No.
`60/703,946, filed Jul. 29, 2005, and U.S. Provisional patent
`application No. 60/737,024, filed Nov. 15, 2005. These
`applications are incorporated by reference herein in their
`entirety including the drawings.
`
`FIELD OF THE INVENTION
`
`[0002] The present invention relates to novel particle
`forming delivery agents including cationic lipids, micropar(cid:173)
`ticles, and nanoparticles that are useful for delivering vari(cid:173)
`ous molecules to cells. The invention also features compo(cid:173)
`sitions, and methods of use for the study, diagnosis, and
`treatment of traits, diseases and conditions that respond to
`the modulation of gene expression and/or activity in a
`subject or organism. Specifically, the invention relates to
`novel cationic lipids, microparticles, nanoparticles and
`transfection agents that effectively transfect or deliver bio(cid:173)
`logically active molecules, such as antibodies (e.g., mono(cid:173)
`clonal, chimeric, humanized etc.), cholesterol, hormones,
`antivirals, peptides, proteins, chemotherapeutics, small mol(cid:173)
`ecules, vitamins, co-factors, nucleosides, nucleotides, oligo(cid:173)
`nucleotides, enzymatic nucleic acids, antisense nucleic
`acids, triplex forming oligonucleotides, 2,5-A chimeras,
`allozymes, aptamers, decoys and analogs thereof, and small
`nucleic acid molecules, such as short interfering nucleic acid
`(siNA), short interfering RNA (siRNA), double-stranded
`RNA (dsRNA), micro-RNA (miRNA), and short hairpin
`RNA (shRNA) molecules, to relevant cells and/or tissues,
`such as in a subject or organism. Such novel cationic lipids,
`microparticles, nanoparticles and transfection agents are
`usefbl, for example, in providing compositions to prevent,
`inhibit, or treat diseases, conditions, or traits in a cell, subject
`or organism.
`
`BACKGROUND OF THE INVENTION
`
`[0003] The present invention relates to the delivery of
`biologically active molecules to cells. Specifically, the
`invention relates to compounds, compositions and methods
`for delivering nucleic acids, polynucleotides, and oligo(cid:173)
`nucleotides such RNA, DNA and analogs thereof~ peptides,
`polypeptides, proteins, antibodies, honnones and small mol(cid:173)
`ecules, to cells by facilitating transport across cellular mem(cid:173)
`branes in, for example, epithelial tissues and endothelial
`tissues. The compounds, compositions and methods of the
`invention are useful in therapeutic, research, and diagnostic
`applications that rely upon the efficient transfer of biologi(cid:173)
`cally active molecules into cells, tissues, and organs. The
`discussion is provided only for understanding of the inven(cid:173)
`tion that follows. This sununary is not an admission that any
`of the work described below is prior art to the claimed
`invention.
`
`[0004] The cellular delivery of various therapeutic com(cid:173)
`pounds, such as antiviral and chemotherapeutic agents, is
`usually compromised by two limitations. First the selectivity
`of a number of therapeutic agents is often low, resulting in
`high toxicity to nom1al tissues. Secondly, the trafficking of
`
`many compounds into living cells is highly restricted by the
`complex membrane systems of the cell. Specific transporters
`allow the selective entry of nutrients or regulatory mol(cid:173)
`ecules, while excluding most exogenous molecules such as
`nucleic acids and proteins. Various strategies can be used to
`improve transport of compounds into cells, including the use
`of lipid carriers, biodegradable polymers, and various con(cid:173)
`jugate systems.
`
`[0005] The most well studied approaches for improving
`the transport of foreign nucleic acids into cells involve the
`use of viral vectors or cationic lipids and related cytofectins.
`Viral vectors can be used to transfer genes efficiently into
`some cell types, but they generally cal1llot be used to
`introduce chemically synthesized molecules into cells. An
`alternative approach is to use delivery fonnulations incor(cid:173)
`porating cationic lipids, which interact with nucleic acids
`through one end and lipids or membrane systems through
`another (for a review see Feigner, 1990, Advanced Drug
`Delivery Reviews, 5,162-187; Feigner 1993, J. Liposome
`Res., 3,3-16). Synthetic nucleic acids as well as plasmids can
`be delivered using the cytofectins, although the utility of
`such compounds is often limited by cell-type specificity,
`requirement for low serum during transfection, and toxicity.
`
`[0006] Another approach to delivering biologically active
`molecules involves the use of conjugates. Conjugates are
`often selected based on the ability of certain molecules to be
`selectively transported into specific cells, for example via
`receptor-mediated endocytosis. By attaching a compound of
`interest to molecules that are actively transported across the
`cellular membranes, the effective transfer of that compound
`into cells or specific cellular organelles can be realized.
`Alternately, molecules that are able to penetrate cellular
`membranes without active
`transport mechanisms, for
`example, various lipophilic molecules, can be used to
`deliver compounds of interest. Examples of molecules that
`can be utilized as conjugates include but are not limited to
`peptides, hormones, fatty acids, vitamins, fiavonoids, sug(cid:173)
`ars, reporter molecules, reporter enzymes, chelators, por(cid:173)
`phyrins, intercalcators, and other molecules that are capable
`of penetrating cellular membranes, either by active transport
`or passive transport.
`
`[0007] The delivery of compounds to specific cell types,
`for example, cancer cells or cells specific to particular
`tissues and organs, can be accomplished by utilizing recep(cid:173)
`tors associated with specific cell types. Particular receptors
`are overexpressed in certain cancerous cells, including the
`high affinity folic acid receptor. For example, the high
`affinity folate receptor is a tumor marker that is overex(cid:173)
`pressed in a variety of neoplastic tissues, including breast,
`ovarian, cervical, colorectal, renal, and nasoparyngeal
`tumors, but is expressed to a very limited extent in nornml
`tissues. The use of folic acid based conjugates to transport
`exogenous compounds across cell membranes can provide a
`targeted delivery approach to the treatment and diagnosis of
`disease and can provide a reduction in the required dose of
`therapeutic compounds. Furthern10re, therapeutic bioavail(cid:173)
`ability, pharmacodynamics, and pharmacokinetic param(cid:173)
`eters can be modulated through the use of bioconjugates,
`including folate bioconjugates. Godwin eta!., 1972, J. Bioi.
`Chem., 247, 2266-2271, report the synthesis of biologically
`active pteroyloligo-L-glutamates. Habus et a!., 1998, Rio(cid:173)
`conjugate Chem., 9, 283-291, describe a method for the
`solid phase synthesis of certain oligonucleotide-folate con-
`
`Moderna Ex 1005-p. 47
`Moderna v Arbutus
`
`

`

`US 2006/0240554 AI
`
`Oct. 26, 2006
`
`2
`
`jugates. Cook, U.S. Pat. No. 6,721,208, describes certain
`oligonucleotides modified with specific conjugate groups.
`The use of biotin and folate conjugates to enhance trans(cid:173)
`membrane transport of exogenous molecules, including spe(cid:173)
`cific oligonucleotides has been reported by Low et a!., U.S.
`Pat. Nos. 5,416,016, 5,108,921, and International PCT pub(cid:173)
`lication No. WO 90/12096. Manoharan eta!, International
`PCT publication No. WO 99/66063 describe certain folate
`conjugates, including specific nucleic acid folate conjugates
`with a phosphoramidite moiety attached to the nucleic acid
`component of the conjugate, and methods for the synthesis
`of these folate conjugates. Nomura et a!., 2000, J. Org.
`Chem., 65, 5016-5021, describe the synthesis of an inter(cid:173)
`mediate, alpha-[2-(trimethylsilyl)ethoxycarbonyl]folic acid,
`usefl.Jl in the synthesis of ceratin types of folate-nucleoside
`conjugates. Guzaev eta!., U.S. Pat. No. 6,335,434, describes
`the synthesis of certain folate oligonucleotide conjugates.
`Vargeese et a!., International PCT Publication No. WO
`02/094185 and U.S. Patent Application Publication Nos.
`20030130186 and 20040110296 describe certain nucleic
`acid conjugates.
`[0008] The delivery of compounds to other cell types can
`be accomplished by utilizing receptors associated with a
`certain type of cell, such as hepatocytes. For example, drug
`delivery systems utilizing receptor-mediated endocytosis
`have been employed to achieve drug targeting as well as
`drug-uptake enhancement. The asialoglycoprotein receptor
`(ASGPr) (see for example Wu and Wu, 1987, J. Biol. Chem.
`262, 4429-4432) is unique to hepatocytes and binds
`branched galactose-terminal glycoproteins, such as asia(cid:173)
`loorosomucoid (ASOR). Binding of such glycoproteins or
`synthetic glycoconjugates to the receptor takes place with an
`affinity that strongly depends on the degree of branching of
`the oligosaccharide chain, for exan1ple, triatennary struc(cid:173)
`tures are bmmd with greater affinity than biatenarry or
`monoatem1ary chains (Baenziger and Fiete, 1980, Cell, 22,
`611-620; Connolly eta!., 1982, J. Biol. Chem., 257, 939-
`945). Lee and Lee, 1987, Glycoconjugate J., 4, 317-328,
`obtained this high specificity through the use of N-acetyl(cid:173)
`D-galactosamine as the carbohydrate moiety, which has
`higher affinity for the receptor, compared to galactose. This
`"clustering effect" has also been described for the binding
`and uptake of mannosyl-terminating glycoproteins or gly(cid:173)
`coconjugates (Ponpipom et a!., 1981, J. Med. Chem., 24,
`1388-1395). The use of galactose and galactosamine based
`conjugates to transport exogenous compounds across cell
`membranes can provide a targeted delivery approach to the
`treatment of liver disease such as HBV and HCV infection
`or hepatocellular carcinoma. The use of bioconjugates can
`also provide a reduction in the required dose of therapeutic
`compounds required for treatment. Furthermore, therapeutic
`bioavailability, pharmacodynan1ics, and pharn1acokinetic
`parameters can be modulated through the use of bioconju(cid:173)
`gates.
`[0009] A number of peptide based cellular transporters
`have been developed by several research groups. These
`peptides are capable of crossing cellular membranes in vitro
`and in vivo with high efficiency. Examples of such fusogenic
`peptides include a 16-amino acid fragment of the home(cid:173)
`odomain of ANTENNAPEDIA, a Drosophila transcription
`factor (Wang et a!., 1995, PNAS USA., 92, 3318-3322); a
`17 -mer fragment representing the hydrophobic region of the
`signal sequence of Kaposi fibroblast growth factor with or
`without NLS domain (Antopolsky et a!., 1999, Bioconj.
`
`Chem., 10, 598-606); a 17-mer signal peptide sequence of
`caiman crocodylus Ig(S) light chain (Chaloin et a!., 1997,
`Biochem. Biophys. Res. Comm., 243, 601-608); a 17-amino
`acid fusion sequence of HIV envelope glycoprotein gp4114,
`(Morris eta!., 1997, Nucleic Acids Res., 25, 2730-2736); the
`HIV-1 Tat49-57 fragment (Schwarze et a!., 1999, Science,
`285, 1569-1572); a transportan A~achimeric 27-mer con(cid:173)
`sisting of N -terminal fragment of neuropeptide galanine and
`membrane interacting wasp venom peptide mastoporan
`(Lindgren eta!.,

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket