throbber
i\ 1~I'A CHJ\rlEN.T F
`
`TO REQUEST FOR EX PA RTE REEXAMJ NATION OF
`U.S. PATENT NO. 7,868,912
`
`AVIGILON EX. 2005
`IPR2019-00314
`Page 1 of 18
`
`

`

`~foving Object Detection and Event .Recognition Algorithms for Smart Cameras
`
`Thoma~ J. Olson
`Frank Z. Brill
`Texas Instruments
`Re~earch & Development
`P.O. Box 655303, MS 8374, Dallas, TX 75265
`E-mail: olson@csc.ti.com, brill@ti.com
`http://www.ti.com/research/docs/iuba/index.html
`
`Abstract
`Smart vide-0 cameras analyze the video stream and
`translate it into a description of the scene in tenns
`of objects, object motions, and events. '111is paper
`describes. a set of algorithms for the core computa(cid:173)
`tions needed to build smart <.-.ameras. Together
`these algorithms make up the Antonomous Video
`Surveillance (AVS) system, a general-pu.rpose.
`fram.ework for moving object detection and event
`recognition. Mo\'ing objects are detected using
`change detection, and are tracked using first-order
`prediction and ne.arest neighbor matching. Events
`are recognized by applying predicates to the graph
`formed by linking corresponding obje-et~ in succes(cid:173)
`sive frames.The AVS algorithms have bt-cn used to
`create seve.ni'! novel v.ideo surveillance applica(cid:173)
`tions. "Dlese include a video surveillance shell that
`allows a human to monitor the outputs of multiple
`ca.meras, a system that takes a single high-quality
`snaps.hot of ev~ry person who enters its field of
`view, and a system that learns the structure of the
`monitored environment by watching humans move
`around in the scene.
`
`1 Introduction
`
`ages and video clips, but these- will be carefully
`selected to maximize their n~·eful infom1ation con(cid:173)
`tent. The symbolic information and images from
`smart cameras will be filtered by programs that ex(cid:173)
`tra.ct data relevant to particular tasks. This filtering
`process will enable a single human to monitor hun(cid:173)
`dreds or thm1saods of video streams.
`
`In pursuit of our research objectives [Flinchbaugh,
`1997}, we are developing the technology nee.ded to
`make :.mart cameras a reality. 1\vo fundamental ca(cid:173)
`pabilities are n<.>eded. The firs t is t11e ability to
`describe scenes in terms of object motions and in(cid:173)
`teractions. The second is the ability to recognize
`important events that occur in the scene, and to
`pick out those th,u are: relevant to the current task.
`These capabilities make it possible to develop a. va(cid:173)
`riety of novel and useful video surveiUam~e
`applications.
`
`1.1 Video Surveillance and M:onitoring
`Scenarios
`
`Our work is motivated by a several types of video
`surve.iJlancc and monitoring scenarios,
`
`Video cameras today produce images, which must
`he examined by humans in order to be uscfuL Fu(cid:173)
`tore 'smart' video cameras will produce infor(cid:173)
`mation, including descriptions of the environment
`they are monitoring and the events taking place in
`it. The information they pmducc may incJude im-
`
`1be re-11eatch describe<! in this report wns sponsored in part by
`the DARPA Image Understanding Program.
`
`Indoor Surveillance: Indoor urveiUance provides
`infom1ation about areas such as building lobbies.
`hallways, and office..~. Monitoring tasks in lobbie.s
`and ha!Iways include detection of people deposit(cid:173)
`ing things (e.g., unattended luggage in an airport
`lounge), removing things (e.g .• theft}, or loitering.
`Office monitoring tasks typically require informa(cid:173)
`tion about people's identities: in an office. for
`example, the office owner may do anything at any
`
`159
`
`AVIGILON EX. 2005
`IPR2019-00314
`Page 2 of 18
`
`

`

`time. but other people should not open desk draw(cid:173)
`ers or operate the computer unless the owner is
`present, Cleaning staff may come in at night to vac(cid:173)
`uum and empty trash cans, but should not handle
`objects on the desk.
`
`Outdoor Surveillance: Outdoor surveillance in(cid:173)
`cludes tasks such as monitoring a site perimeter for
`intrusion or threats from vehicles (e.g .• car bombs).
`In military applications, video surveiUance can
`function as a sentry or forward observer, e.g. by
`notifying commanders when enemy
`.soldiers
`emerge from a wooded area or cross a road.
`
`In order for smart cameras to be practical for real(cid:173)
`world tasks, the. algorithms they use must be ro(cid:173)
`bust Current commercial video surveillance
`systems have a high false alarm rate {Ringler and
`Hoover, 1995], which renders them useless for
`most applications. For this reason, our research
`stresses robustness and quantification of detection
`and false alarm rates. Smart camera algorithms
`must also run effectively on low-cost platforms, so
`that they can be implemented io small. low-power
`packages and can be used in large numbers. Study(cid:173)
`ing algorithms that can run in near real time makes
`it practical to conduct extensive evaluation and
`testing of systems. and may enable worthwhile
`near-tem1 applications .as well as contributing to
`long-term research goals.
`
`1.2 Approach
`
`The first step in processing a video stream for sur(cid:173)
`veillance purposes is to identify the important
`c,bjects in the scene. In this paper it is assumed that
`the important objects are those that move indepen(cid:173)
`dently. Camera parameters are assumed to be fixed.
`This allows the use of simple change detection to
`identify moving objects. Where use of moving
`cameras is necessary, stabilization hardware and
`stabilized mtwing object detection algorithms can
`be used (e.g. [Burt et al, 1989. Nelson, l991J. The
`use of criteria other than motion (e.g,, salience
`based on shape or color, or more general object
`recognition) is ~ompatible with our approach, but
`these criteria are not used
`in our current
`applications.
`
`Our event recognition algorithms arc based on
`graph matchil1g. ·Moving objects in the image are
`
`tracked over time. Obsc.rvations of an object in suc(cid:173)
`cessive video frames are Jinked to fonn a directed
`graph (the motinn graph), Events are defined in
`tenns of predicates on the motion graph. For in(cid:173)
`stance, the beginning of a chain of successive
`observations of an o~ject is defined to be an EN(cid:173)
`TER event. Event dete-ction is described in more
`detail below.
`
`Our approach to video surveillance stresses 2D.
`image-based algorithms and simple. low-level ob(cid:173)
`ject representations that can be extracted reliably
`from the video sequence. This emphasis yields a
`high level of robustness and low computational
`cost. Object recognition and other detailed analy(cid:173)
`ses are used only after the system ha.') detennined
`that the objects in question are interesting and mer(cid:173)
`it further investigation.
`
`1.3 Research Strategy
`
`The primary technical goal of this research is to de(cid:173)
`velop genernlypurpose algorithms for moving
`object dett~tion and event recognition. These algo(cid:173)
`ritl1ms
`comprise
`the Autonomous Video
`Surveillance (AVS) system, a modular framework
`for building video surveillance applications. AVS
`is designed to be updated to incorporate better core
`algorithms or to tune the processing to specific do(cid:173)
`mains as our rese.arch progresses.
`
`In order to evaluate the AVS core algorithms and
`event recognition and tracking frnmework. we use
`them to develop applications motivated by the sur(cid:173)
`veillance
`scenarios described
`above. The
`applications arc small-scale implementations of fu(cid:173)
`ture smart camera systems. They are designed for
`long-tenn operation, and are evaluated by allowing
`them to run for tong periods (hours or days} and
`analyzing their output.
`
`The remainder of this paper is organized as foJY
`tows. The next section discusses related work.
`Section 3 presents the core moving object detection
`and event recognition algorithms, and the mecha(cid:173)
`nism used to establish the 3D positions of objects.
`Section 4 presents applications that have been built
`using the AVS framework. The final section dis(cid:173)
`cusses the current state of the system and our
`futnre plans.
`
`160
`
`AVIGILON EX. 2005
`IPR2019-00314
`Page 3 of 18
`
`

`

`2 Related Work
`
`'
`
`y
`
`Onr overall approach to video surveillance has
`been influenced by intere,c;t in selective attention
`and task-oriented proce.ssing fSwain and Stricker,
`1991 Rimev and Brown, 1993, Camus et aL,
`1993]. The fundamental problem with current vid-
`eo surveillance techn-01ogy
`is
`that the useful
`infonnation density of the images delivered to a
`hum,m is very low; the vast majority of surveil(cid:173)
`lance. video frames contain no tisefu! infr1rmation
`at alt The fundamental role of the smart camera
`described above is to reduce the volume of data
`produced by the camera. and increase the value of
`that data. It does this by discarding irrelevant
`frames, and by expressing the information in the
`relevant frames primarily in symbolic form.
`
`2.1 l\tf.ol·ing Object Detection
`
`Most algorithms for moving object detection using
`fixed cameras work by comparing incoming video
`frames to a reference image, and attributing signifi(cid:173)
`cant differences e.ither to motion or to noise. The
`algorithms differ in the form of the comparison op(cid:173)
`erator they use, an<l in the way in which the
`reference image is maintained. Simple intensity
`differencing followed by thresholding is widely
`used [Jain et al., 1979, Yalamanchi!i et al., 1982,
`Kelly et al.. I 995, Bobick and Davis, J 996, Court(cid:173)
`ii
`ney: 1997} ~.ause
`is c-0mpUtationaHy
`inexpensive and works quite well in many indoor
`environments. Some algorithms provide a means of
`adapting the reforence image over time, in order to
`track slow changes in lighting conditions and/or
`changes in the environment {Karmann and von
`Brandt, 1990. Makarov, 1996aJ. Some also filter
`the image to reduce or remove low spatial frequen~
`cy content, which again makes the detect-Or less
`sensitive to lighting changes lMakarov et aL,
`1996b, Koller et al., 1994].
`
`Recent work [Pentland, 19%. Kahn et aL, l996j
`has extended the basic change detection paradigm
`by replacing the reference image with a statistical
`model of the background. The comparison operator
`becomes a statistical tesl that estimates the proba~
`bihty that the observed pixel value belongs to the
`background.
`
`Our baseline change detection algorithm use,c;
`thresholded absofute differencing, since this works
`well for our indo-0r surveillance scenarios. For ap(cid:173)
`plications where lighting change is a problem, we
`use the adaptive reference frame algorithm of Kar(cid:173)
`mann and von Brandt fl 990]. We are also
`experimenting with a probabilistic change detector
`similar to Pfinde,r {Pentland, l.996.
`
`Our \vork assumes fixed cameras. When the cam(cid:173)
`era is not fixed, simple change detection cannot be
`used because of background motion. One approach
`to this problem is to treat the s-cenc as a collection
`of independently moving objects, and to detect and
`ignore the visual motion due to camera motion
`!.e.g. Burt et aL, 19891 Other researchers have pro(cid:173)
`posed ways of detecting features of the optical flow
`that are inconsiste.nt with a hypothesis of self mo(cid:173)
`tion (Nelson, 1991].
`
`In many of our applications movjng object detec(cid:173)
`tion is a prelude to person detection. There. has
`been significant recent progress in the development
`of algorithms to locate and track humans, Pfinder
`(cited above) uses a coarse statistical model of hu(cid:173)
`man body geometry and motion to estimate the
`likelihood that a given pixel is part of a human.
`Seveml re-searchers have described methods of
`tracking human body and limb movements [Gavd(cid:173)
`la and Davis, 1996, Kakadiaris and Metaxas, 1996.l
`and locating faces in images [Sung and Poggio,
`1994, Rowley et al.. 1996]. Intille and Bobick
`1.1995] describe methods of tracking humans
`through episodes of mutual occlusion in a highly
`structured environment. We do not currently make
`m,e of the:se techniques in live experiments because
`of their computational cost. However, we expect
`that this type of analysis will eventually be an im(cid:173)
`portant part of sma:i1 came:ra processing.
`
`2.2 E\·ent Recognition
`
`Most work on event recognition has focussed on
`events that consist. of a welJ.defined sequence of
`primitive motions. This class of events can be con(cid:173)
`verted into spatiotemporal patterns and recognized
`using ~tatistical pattern matching techniques. A
`numher of researchers have demonstrated al.go(cid:173)
`rithms for recognizing gestures and sign language
`[e.g .• Starner and Pentland. .l 995). Bobick and
`Davis [ 1996] describe a method of recogniz.ing ste-
`
`161.
`
`AVIGILON EX. 2005
`IPR2019-00314
`Page 4 of 18
`
`

`

`*\ ~
`.... ~I~~r
`
`i~otyi,tc~l
`rn<.)tinr, pautm~ corre.sp1"Jndfog.
`tn
`ac·!i1)n$ )litt:h a~ siti'in.g ,kiwn, w11lking~ M waving.
`
`Our apJ}l't)tK:h w. e,,em rtC~)gnitfon i~ h<1sed on the
`v:ideJ) d,ttaha~e. 'ind:exing work ,,.)f C'.<mrtney n 9971,
`w.hk:h intn)dated Uw us.0 (if pr~dkates l~n lh~ JlK}·
`ritm graph tl'> rer.1res~M1t ¢Vt~nts, f\.-t~)thm graph~ are
`wtU $Hited tn t~pr~s,~.ndng abstrnd, g~netk events
`si1~h ~11 \i~ttt.iJitin.g ar\ ,':>bJ~cl' ix '<~1,i11ing tl:J te.$(,
`wfoch an.~ diftkuh h.s caimwt using th~ pitttem,
`~a~e<l approadws teforred t,, ~bl)Vt. On th{, l)tbtr
`h,:lmi, pattirn--h1~~d .1p_t1t1::>-iiches c.~1n represtnt· ~otn(cid:173)
`p.b: tn(1tkms .~uch ·as 'thrnwing an t1~ject' n:r
`··wuvi'ti;g\ whkh ·w<Jutd be. dinkult tQ express t1~ing
`m<)tkm :graphs. n it~ Hkdy thal f)()th pattcm-ba<;~J
`and ~b$tl1l~ z~vt~n1 re~:t,gnhimi tt.~hniques wHl be
`nceedt~i:I' w h:md.!e the {u.ll :mnge ,:if evt.~nt% fhaf ,ire (lf
`interest in surveHttmc1.:.1 ,ipp'ik.~th;in~,
`
`3 AVS l"r.acklng and l}n,•nt Rt~vgnition
`AtgurUbm~
`
`This se~tfon de~~nhe~ th~. q:ire. t{!(ehn9logie1> that
`ptQVide the vkk.•(1 t<ttln-e.Hla:n(,e l:\iid n:Klnit(:iring 1,~:1 ..
`pabiliti~"ts s:if th~ AV$ sy~{1:,'.m. 'llterc tH·e tlm.!{': k#.Y
`k<:ehnolt;g.i:c-!>: rnoving
`(~hjt.>.-et dett~«:1.ion, vfauid
`tnN.:kfog,, Mtd event re('1Jgnitkm. Thi~ nmving ($~k~.t
`dett~tikm rnntin~s (fot~rmim~ when <)n(i zw m(Jt~- <)b·-·
`j~d~ ~-tlt{tr ,l monit<)~d ~~ene, d~dd~ \\ihkh pi~l§!s
`in a gh·i:n videu ft~me ~urre,;pnnd w th1..~ muving
`objecur '\'et'$US whi¢h pb:d~ CQffei<pt)ntl to the hack-·
`grotmd, ,uid form ~l slmpfo r~prfscnlmiun d . lhe,
`,,bJect'.~ im~g¢ .in the vitfot) fra.1t1¢. Thi~ re:pwsenttt·
`tkrn is rel~ned to ~~ a moti<:m .t~.g.fo>). :md h eXlitts
`in ii single· vidt~{1 fr~1me, fl$ dl1.ting·1fr~htd frmn: the
`wodd ol-:}ects which ~~J~t in the W()dd i'llkl give ti~e
`to tfa~ mi-:it:i~,ii r¢git,n.1t
`
`Visual tn't<.:kinft c(nt~fats t)f deterrnining, CQrrt'!spon~
`de.,wes hetween
`ill~
`i'n<Jtkm ~.gi()fl~
`(}V~r a
`5~(~U(~nNt>fVst.k'I) fr~tn1C$, Md tnl\intaining :l ~.ingk
`r-erit-e,1ei!h1ti<.m, l}f trad, .. fot th~, wt)rld <;,'hkct whkh
`gmvc th,~ t,) the· ~cquttH.:t~ of motfon. i'ttgioHt ll'l tfm
`~equem:,e of framei-, Fi.miUy, evenl K~4)gnitkm :is a
`mean~ 11f ttnalyzii)Kthe coll~titm of tmch ll) nrd~r
`to id~Jttify (~\'~.flt~ nf .i'nt~re~f ln1c'Olvfog th~. w,}rld
`uhje,'.I~ r~iir.es~nwd l,ly the v,,t~ks..
`
`'Ille iw:wiog ol>Jt.-Ot .i.kh:!~tl<)n l~hn0l1Jgy wzt ~m.,
`l}foy is.a: 2D chmtge: Je,tection tedmique :similar tn
`th~1t describtd in lain ef rtl. p 9791 ~Hld Y~l;m1an-(cid:173)
`ch1H et ai f 'l:982J. Prior fO adivatinn of the
`1}J()Hilo1fog syst~m, ~H image d. the t;~wkgt\)i.mlr
`Le,. ~n image of the sce:ne w'hich contasm: tw niiJv y
`tng \,r <)tberw·ls~ hnen."tsUng i)bj~ct~$ i:$ c~pll!!'~tf tl1
`:,er~<e-as the r~rP·n~,r<-:~ imast.\ Whsm th~-~yskm ls in
`tiper~tkm. tiK~ abs·()J!lt~ <lifferefice ·Of tbc cvm~nt
`viduo fom)e .frmn the reft.,ren.:;e hmige is iXu:n})uted
`l\) }'H'OdtK!e a d€{{tmrm.~e J.mag~. 'fht dfffbt~m:¢ imv
`.uge t~ then tfo:eihoh:ted at: an appr1;,iprj~le v,1luc tu
`t,ht~in ll bfriary hwii~e tti w'hfol) the "<.lil" p~xds rep(cid:173)
`re1-em. bm:kgmu.nd ptxdg, .and the ''nn''· .pixel!>
`ropr\.>.S~:m~ "nK~vfag ~)l)_tl:-ct" pixz~is, The. fotir-·con,
`neckd i:..-:o.1np(meufa ~f moving 1:!hji~ct pixel~ in the
`thrt~Ut()ld~d jm~~-Itrt th~ n·t.-:1fo;i11 r.cgfom, f~>.t: flg--
`11re: l).
`
`Simpfo ~pplic~tfon <.'lf the nbjett. det(~t'timi proc~~
`dure oulfoie-d ·a.hove rel:tulrn hi a numoor ~Jf en·or~.
`hlrgdy due W the Hmit.a.h1}nt- -i:~f lhre~holding, ff i.h(t
`thre,,;hoid tised is too. fmv~ ~am.em nl)l.$e and ~h.ad-(cid:173)
`{):Wt wHI ptod1:it{~ ~t~tukm,\ ()bJ~~!lt: wl~"-l~a1. if the
`tlm~~ho.lcl h WI"> high, i.oll~!- pmtiuns M the ~lbjech·
`in the ~cent:. ·wlH 6H tt) be 5,;epa.rnted fmm th!! b.ick,-
`
`AVIGILON EX. 2005
`IPR2019-00314
`Page 5 of 18
`
`

`

`gfOMd, fe$llhing ill imsa:.~itp~ 10 ~vbich a s,nglt~
`'-Vorfd tibject ·givet rh;~,· tf1 ~everai m<)titm regi{ins
`wid1in ~1 single fram.e, Our gen~tra1 appn):t¢h i$ t<>
`.,i}low hr~:1ku~ h1:1t u~~ g.muping °tlt!-urisd~% t1;>
`rherge multiple cnJme,red C\~nq;Me1ns bto a sin.gle
`mtJfaw m!~i<.)n an<l maititain i <mt--t~H:.me ,om:.~-·
`tx.~tw~en -rnot.km re,gl()ni and W1)f.ld.
`Sf~)',i\de-m~~
`ohjecl!~ whhi-r-1 each frarne.
`
`One grt)upil'ig 1echt)iqut. \\'~·tmplqy is 20 rrti)tpb()..
`fogical difatitin 0f the motion ixt.gion~. Thi~ enahk~s
`the syl::t:t!m t,J merge ~~mne.cted c,impolie:m~ ~ -t)a"
`rated by a few pixels,. but ·using thi~ 1t~i;-hn:t(llfe t~'.i
`&pan hlrge- gapt results in ~ ~eve.re pcrfonn~nt.::e
`d~gs',~laH11i1. Mo:re~i\--e.r:, dibrion in t.he ima,tt.~ $pac:e
`nilly r~~iih in lrHX),r~~tly mugi11g disUnl: {ibj1:.:tt~
`whi~:h are . .n¢~1rby in thzt in:mge (.:J. few· r.ri~el~). but
`a~ iu t'wit .separ.Med hy i¥ large <.fo,t4tK':e. ·iJ1 the
`W<)fkl (;, fow fe~,t).
`
`tr 3D i1il\1tmatil)tt 1s :wailahle. the .,:fmrit!cted C{~m~
`pt)t1el1t gn)nping ,il'gorifhm ma.kcs 1t~i~ 12f Mi
`fStim11te -qf the s_i1.e {In w<.trfd co~;mfi.mttei) <.~f the
`()~jett:s i:n. the hn~~~-, :n~ bNmdirtg b{,x~,; t)f the
`.<.xn111\~tM t1Jmp:om~nts i\lrt-~ exp,iuded v~rt-~~aHy and
`hmit(mtally by a distimct me.-asum.1 tn l't!el (rather
`th11n pi~:ets) .• :md.~<.IT.ine(:te~l <..:mnpormnts wWt over-(cid:173)
`JaJ>phig bouiid~ng b<.">~~:~ :1rn merg~<l int(? a $higk
`rno.ticm r~gion, The technique fi;r e~timatiHg the
`site ()f the <Jb}~tl'$ fa Ute im~1ge ii de~cti~d in ~c~
`tkm JA below:
`
`Tt~~ fo.t)ctkm (!f th~ ls.VS tracking mt1tin~ fa u-1 (~s ...
`fabHsh. cz)rre~:pnndences ~tween
`il:H.~ motlnn
`reg-i~)n~ in tht~ ct.irrent fran:tt.-and t.h1)M~ in th~: pr~.vi~
`i.·ms fran:ie. \"./c u:'!e th~ {edmi<1m~ ·t)f Courtney
`[1~)97:1, \vhkb proceed!!> a~ fuHuv•·~- Fir%t a:~sume
`tn.,t \n-<: have <.:-mn_pmed 2n. ·1,c-etodty ¢~timtite~· for
`th~ nKttfon n·gfom~ fo· the pnwimt:S- frame, These ve·
`fodty e~tima!i}s,, tf}ge.tlw.r "'\''hh the.1oc.~11kms iif i:he
`c-entn)ids in the i,re.vh>us frame, tire used tl) pt{)Ject
`t_he· h.).(:·atkm& N' th1:~ ~~ntroh:J& (Jf th~>:: 1rn'.1tkm reg:i(m~
`·intf> the cut1~.!i11t fhune. Th~~i. a tmitui.i! 1illi-tf..'St·
`fa;
`criter.fot\
`used
`tl1ti.ghlmr
`c,~ta.hlish
`tt:t
`i;urr~~r,mn<ll!m::t~K-.
`
`Let P be th<~ ,;et rsf motion rngkm ttintr.rikl k1ca(cid:173)
`lion~ in the prtwfoiis .frnm~, with pi <.me. ~ucl1
`1o<.,afom, Let p'; be the pn·*~·ded Jocatin-n of p; in
`
`th<~ ~m~nt f reme. sH1d kt
`bt-: the· ·s~t. (tf lH such
`pr<:~j~recl l<.'l,:~1ti(m$. in the ~ummt frame, Let C be
`the. stt ~f iriotis:it, rngk~n <.:tutttikl k~~tkms iti th~(cid:173)
`currenr frame.. If Hm distance berw~ttl p' . .u1d
`. ..
`.
`.
`.
`.
`' 1:
`.
`c; e C is tht smllHt'.::\i foi an. demems- -t~f C, 1.uul
`this ·distaii<:~ is al$<.) the sman~t tlf the dii,t:aru.-.:e~·
`t~tW!'.!e:n· ct, and all e~ment~ M :P' (Le., tl - :w:i c,
`are rm.1tual nea.ts.!-St ndghb<m,1, then e~t:ib.iish ~ {'.t)r·
`1'¢.sp,~nd~1w9 hftw~-<:f!. pi. ·imd c i ~Y cret1.ting a
`oidirectiumil <'ifmn,g Hn.k tx~lWCt~n thtm, {J$~! tfm dlf,,
`fer.em:~ in time :1nd spact~ bl°.~1w-een P; ,md <~; w
`dete:nniiie- a vtk;titj e.stiitiiitt. f()f t\, expr<.~ssed ~n
`tti~~k p~r ;;ec~lmL H there is nn ~xisting track t()n-,
`taining: J\·· idd J\ t1) k Olherwfae:, e:nabhi;h a n~w
`trm~k, and ad<l b1Jth pi and'\ to h.
`
`I.
`
`'
`
`The strong link~' form the ru151j <11' fh~ tt,\cks \\!ith ~
`foglH:<.mild~inct or their GWT~Ctne~$, Video ubiect5>
`'Whkh <.i<.Y '{l~)t 1-Wtt· tiltltt1al nc!B'<.$! !k~ighb(;tS :!!~ the-·
`adj,:1cenl frame· nmy ··fa.il to .fonn C()rr.espN~dt·'m()t:.:~
`b~aui<e tM tmd.erlyi1\g W<.):rkl objet.:t i5' in\t~Jlved fo
`.an eve~t (t!,g., ente.r~ e~it,. dtpt~51t,. ~m,w~}, In t)r•
`de.r tn ~ssi§t. iit tht., idetidfk~tilm tl these ewnts.
`,,o,iet.t~ without .~tn:.)ng fo11<:s· kre givl'.!i1 mitdifcdk~i'l(cid:173)
`al ~vt•dk Utiks. n~ the thdr (mm-mutual) nearest
`nt~ig:hhi:m,, The: -,,.,,~t'k links repr~$ent _f)()tenfoll ~\ll·
`"bi.guity in the trndtirig_ ~tm.~e5>~:.Th~ motfon regions
`m a.H nf tl)<!-frames. togdhe.r \Vith their ~tn:mg t1nd
`weM links~ form -~ mmft)n gmph.
`
`Hgu.m 2 depict~ a ~ample mi:~Hon graph. ln th~ Hg-(cid:173)
`i~
`·on~-dim~msi<.)m}l.
`um, each. fr~u~(: b
`itnq
`:retlre:;ente.{I by a ve:rtitaf .line (r'tl -- Fl H,). Ci:rd:e\
`fepr-e~e:m <.)bjitt~ h1 tbt~ SC.i~nt\ 'th~-das-t ~mttws rep-·
`resent t,tmng. litlk5. am.! the gray tirr,,ws repre~enr
`w~'.-li.kl1nk$: Al'~ o.ttfei~t enters Ult Stl~llt~ fo frame Fl,
`~t'!ld then moves thJX)Hgh tht~ sctmc w,tH .trnl1i~ F4,
`wber~ it i:fu.pt1,,;it~-,l S~iXmd ~l~}ect. The fk~t objl~C!(cid:173)
`Ct)ntinut$ t() ·m1Wt! thm~gh t!m ~em:,. nncJ t:!:\il"~ ill
`fr.atr.l.e {~"6. T.hc dcp1Jsit~d ~~je-e.t remHltli> stadomtry,
`At frM1\e P~ -~n()ther. 1)!:tjt~t- ~n.krs tht--: .t.cl::~1et t~!'n-·
`t5Qradly (x.':~ludts the ~:atk~t1-1l.ry ()bj,~t ~~t frati1e
`f'W {or is oedudt><l by lt), imd then pmcted5 t<)
`ll);()Vt: pai>t the SMiom.u:y <Jbfed:. Thh. ~{~<.m<l mvv,(cid:173)
`ing oq_l~ct n:.:vi~t'.st~ dimcti<.)nt an.)1ind fr~mt~$ FL~
`anrl Ff 4, rerums w rer.imve the· statkmaiy- 1~,b.ktt in
`fmm(~fl6; and thi,~lly exit:;; ,n fotm<-,.fl1, An addi·
`·ti1:1-m1l (il~ject enkrs ii.1 fr;,1m:e. ·rs. amt exits ~n.·frame
`1'8 With(1\lt intr.m,ting with·at}Y <.)ther ()l~ic~t
`
`As ltidkated by the strif'X!d fiU pattern$ in Figure 2,
`the ct1rrect ~orrespondence~ for the lm·d<~ nre ~m·
`
`AVIGILON EX. 2005
`IPR2019-00314
`Page 6 of 18
`
`

`

`ENTER
`
`I
`
`F2
`
`F;l F4
`
`FO
`
`F1
`
`bigunus after object :intcr~~tt.ions such as
`the
`occlusion ih frame FlO. The AVS system resofves
`fht~ arnbigii.ity when~ poss1hJ~. by preforring to
`rrn~tch n1nvtng o\.)je:Ct~ with mQ\c'ing obje,:is, and
`stmkmru~''i" nhjects. with J>tation(iry o~je~~t.:. Th~ xfo(cid:173)
`t:in,!lli)n bet\W.•e:n 11.K;ving and ~tl'Ui()tult)' 1r11:eks i~
`~omput<.xl using thre.sholds 1.-\n the v~-t(X:tty es1.i~
`:maws., and hystere~is fbr .st:.i.biliiing 1:ransitkms
`hetwe(~.n mt>vh1g ,n<l stationa._iy,
`n .. %.iwing ,m ot·i:.:.!u~ion. {whith 1.nay la.st ihr 1everal
`frames) tfl.\~ fr;;im~-s in:1rnedfottily hdhre :md a.t.tt.'-r
`"the ot.~~!w;ion m-e compar~ re,g,, frames P9 mid
`Fl J .in Fl:gttrtt 2). Th~ AVS syste:n, exa:11:unt~~ e\~t.:h
`st.i.ti.otiary obj~,1 in the p:nH: .. <iedus.ion franw,. an<l
`se.udi.es for hs cotrespt>n<fon.1 in the poi;t,oc~.luskm
`frarr.ie (whi<.:h sb:.HJ!d b{~ e.~.-a~li)' \vber~ it was be(cid:173)
`for(i,. since th~~ obje,ct is ~t~it:iormry), ·n1i" pro~ed.tirf:
`rest1h'es a forge .port.i<.lit <.lf the, tracbns; ambigui.6e~A
`Gen.{~r~! re.~oltttfon of a:mbtgulli.e:s rn~uhing from
`multiple mo,dng tlb;jecb :in th.e, si;.e,1ie is a lopk for
`t'tlrth(~r n.~sl\latch. 'rhe AV$ :-yMr:Itl may ~n,~tit.
`from ind11si.on t)f a '\:fosed wottd tntckini'' faciHtv
`s.u1ch .as that described h.y
`lnti!k and Hohk~
`t41>'-'l .,
`1 1 .'>':;?,. a,
`.. ~ ,.n)_i ,
`l ! (<.t\'\'.<'
`
`'
`
`.
`
`' ~-
`
`y
`
`~i .. ne~ir· tn time ,ts poS!iiblf to the actual occurr~m .. ·e
`o:f the ztvent. The pn.~v·ious sy,,;tem whi,h ust~d rn.o(cid:173)
`tion graphs for event detedlon fCt:;unney, .. 1997}
`opernicd in a batch mode~ 1md .required mulhpl~
`passes o,,er the mmk10 graph;. pn~d11ding ordirie
`optrnti.t)r1. The: AVS systetl} d~tecis M¢nts in,, sin-(cid:173)
`gfo pa:~~ <.rv~r th(~ .u~ol:ion grnph • . as tht'- graph is
`crca(etl. Hnwe'i<'tX~ in orde!' to reduce ,~r_mrs due h'>
`rmisc the. AVS ~yste:m introd~i~es l* ~ligh1 ,t.~tay t)f
`n frame tfrnes (n~:3 itt the current .imptemenl,llt(m)
`beJzm:: .rep,:irting certain evimts. F<)r ~x;;impk. "in
`Figur~ 2, ~o enter ~v~nt occi:u-~ <m frn.m.e Fl. 'rhe
`,AVS t.ys.tem n~quires the track fo ht~ nminia.ined for
`n fran)\15 bdhre repmting the enter event. tr the
`lrnck nt.1t mttirna.ined for the required number ()f
`frame!l., it ts ignor~di at~fl .th~ enter t~w:mi i~ m~t re-·
`ported., t!,g" if n > 4, th~ r}hj~d iti Figure 2 whkh
`i::ntcn, in fnm1t~ F5 and c~ih, in fmm~ F8 will not
`ge11erme, .u-iy twei1t~.
`
`A .track that spHts i11Jo two tnidrn, ,m,e of \\'hicb l~
`movi11g, .:i.m:l tht~ other of which i:s st.itifmary. t~t)H~'·
`~ptmds to a DHPOS lT event. lf ,1 n!oving rrnok
`int,~rsc(:ts a sJattt)11<1ry track, tmd 1hcn OOtUiniWi to
`flllW{\ hut tht \lci(lOOary (fi\Ck OOdS ,tl the interse,<;v
`tion, this torre.sp(mds. t.-:i ~1 RE~·iOVE event. The
`remov~ event cJn be gtiti.mned a!I soot1 ;\i; fh{~ l\.."'(cid:173)
`n,cM:r dis&dudt-~s 1hc. loc~tl¢n nf the stllfh)JltJry
`Q~joot which Wl'i!:, ·mmm,ed. and the i:.yskm t-.an ,fo •
`term.ine that .the s.t.it1m1ary nl:iect is tKl h)J1g1;.:r at
`th a( loc:,ttorL
`
`Ce.rtain fraton:.~~ t>f trn ... ks iti).d pairs d ' nw;k s c-0~(cid:173)
`~t~n<l t{) events, For exampfo, the beginnin~ of a
`.track i:.:ar.respi:l!'lds tc:i ~m HN1.1:'.R ~v~nt, Md the end
`t~orre.Sp<.lnd~ t(> atl EXlT ewnL 1n ,ill onvline event
`detection s ystcn:1, .it h pn!forabk t~:> .detect· t ht! t:vent
`
`164
`
`AVIGILON EX. 2005
`IPR2019-00314
`Page 7 of 18
`
`

`

`'""'""(11"1
`,r.x··m·:,-
`t:..r
`
`~
`
`fa. a !":ti~ttm.er s.imi!.ar ti:> the {JC('hl\klil sfo.tat.ion de(cid:173)
`scribe<l iilx.w~ in section 3.2., 111e dep~1sit lW'tilt afao
`!{t\'~~s tiSt) t~) ambigu.tty n~ to whk:h t:ll\it!Ct is !'ht de-·
`vm,tt{lr, an<l whkh is. th~ depo-sitee. Fnr exam~lk, it
`may have been Hutt th(~-l)bject which e1H~1'(::d nt
`fi~tne F1 of Plgiire 2 -~MAf.~ed at frame F4 and de:(cid:173)
`pt)Shtd -~ mv,,frtg i:ll.1jr¢i; and it l.~ the dtpo:sltc~d
`{lbjec::t whkh then pri;.~t!etfod to exjt t:h~ seent! at
`F6. /\gait¥, th~ AVB. ~y~tem 1-elie~ (n1 ·a moving \'S.
`.~t~hnI1My disti.m~tion to re:mlve. tht! arnbiguity. and
`in:-.fats that th~ dept,sitee Nrn~-iin $~tkina.ry ~ftt~.r it(cid:173)
`depo$it event:. The AVS sp,tem n_!quire$ both lhe.
`,h.!1:io~ttQf and the detx:~sik"t': tmcks t\'.1 i~xtetJd frir n
`fnrmes pa~t. tht~ point at whk:h the. trn~.:ks ~epa.rate
`{e.g,, pm,t frnme P5 ii) Mgi1r.e 2), and thnt !ht· d<.>;···
`p~,!iit~~i of:,lje~i- remain statfonary: tHh~rwi~e nu
`de~)~tt (t\>\~nt hi gt"-:tK~r.tlti<L
`
`Al~i) defocted {but not-Hh..t~fraied iu Figtm~ 2), .h'e
`REST ~vents { when ii. m<.)Vii1g obJect ~<)tne~ t() ·a·
`S1<:)p). :md M.OVE ~weim, {when ~l RESting. t~bJict
`begin~ t<J mtw~ %\~.ih). Pi.naHy, rn-ic fmtber f ,Vt~nt
`tMt ij, dete~ted is th~ UGHTSOUT ~vent. whkh
`occHn. whenever a forl~e 1::hange pcturs ~Vr)r tht!- en-·
`tfre ht)age. The motion giaph n~ed m.,t be (Xmsulted
`tZ) rkl~:i--:t this evenL
`
`surfact!-S vi~ihfo in an 1m:ag~1 and th~ tqrreitfJ~)nding
`qu.!ldrllatentls f.ni a ni11p,. as shown tn Figt,ftt-3. A
`warp ti::~n!-lforrna,1i1>.n frnm im,lge t,~ m~p S::t}t)tth-(cid:173)
`nates
`is c,.~m.tri..ttted 11sing Hif quadr:ifauernl
`C()t)r.-i:.lirmte:h
`
`Om;:e the. transfrirmaH<:im, are,, estitblhhed, the SJ:\."
`tein ~an <.~s§i1ri.i1t ihe h)cmkm -i:W an t)bJtci (a.~ in
`.Plindlh:mgh tmd .Bammn f r994]J l)y ai<.~uming that
`all ubjetts rest t:itt a b()rtt,i>mal ~hrfo(;e, Wfam. m1
`tihject i!> <le.tected in t.he !.cene. the-midpdnt of the
`fowcH &id<.l-_,)f the b1)ondi1~g b1:~x: is used }lS thi;.!· im:(cid:173)
`Hge p1)int. h) prnJect int() ~he m:~p winduw using rhe
`quitddbtt:t,il. warp tt~o~forma.tion JW,)lhe.rg, 19'.~)l.
`
`The- AV.S (;Ore- alguri1hm~ ~hs,t~ribe-d in wction 3
`fowt~ bet-:n used" af-th~ b.!lsts f1;r ~even1l vfrkx~ sur(cid:173)
`vdll~m;.e applitiiiiun~. S~;x~ti<m .. 4 de~crihe~ Hn~e
`,tppHc~th'..ms that w~ tw:vt ·impkmt'JUtkt situatl\mM
`itwarenc~s1 best-view sdectfou for ~t:ti\>ity loggfog,
`-mKl envh,i:.mmi:nt foaming.
`
`fo orde.Y- to h~ite. t?bjeGt~ ~een in the image wiHi re--(cid:173)
`if i~ 11(.~°'X~:\.MHJ
`tt1 a m,i.p.
`tt.) est~lblhh ~1
`:KJ're{f
`mapping between fo.wge .. md ms.ti' tom:dimtte:t This
`mapping i~ t~stubHshed in the /;.VS ~ystem by httv(cid:173)
`iug- ii t1se:i: dni.w quadri-late:rafs <.m ihe h<n12-,mtaJ
`
`The goijl (,f the simatiomd. awaren.t:s~ appHs:'.~1titm i~
`H) iw<x!m~{"· a re~lH'itne map-~,sed display {)f th~ h) ..
`"in a
`-cations
`fJf pt~~)pk, objt1(:ts and events
`rn()Hik~n!d rn.gkm. ~mi to all(}\',:' a user· 1i:.; spt-ctfy
`;.d~mtt 1;s>1HtithM1s ihle.ractive!.y, Ahm11 c1)nditi<ml>
`may be ba$e<l <:10 the hx:afalns of i~oi,te ::i.mt ol},(cid:173)
`jects \tl the ~(:em.:, th!! t}l'X!-~ of ,lbjt>ct~ h~ the si:.:~m!,
`the evtnis in \>1hkh ihe people ~ind (}ljocl~ ~ire 'ltl··
`
`AVIGILON EX. 2005
`IPR2019-00314
`Page 8 of 18
`
`

`

`~I!:: 1: l!~:!:!!:l~:!'?~:!!~~:::!4~1#: .. :~l'.:::::::::\:'.:' _,-: .
`
`.
`
`.
`
`.·.
`
`..
`
`..,.,.· ..
`
`,:::::::::t•;::}} .. ··.,
`
`,,.,.,
`
`m~1;:~~~1:•~1:;rnf::::t:w
`· :::;;:;:r:::::::::::s:::::{::::.,.: ::rn::::=rn:::::.
`!!:~~lt• •::::i ::a :!Iiill\\lC•:_,ij;IIiilli :_:,,:,_ •. :,_i.p,,· :_;:_:_.,.:_:_ ::_·.:,.:_:'·1,.:,,:, .•. :,,: :.A: ::_::,.::,_•_:,:,:,,:;_:
`•i+•:::::::::,:, i iliiiliiili;iliililjl!; llJ! :\mt:::m@tntnt:rn::
`- ~'!''"'"~ 1 ~-
`
`,_~:.•-·.i.·.:r.:_·.:,'_1.'_._ ..•. ,.~,·-·::::···::::··~:.:_:_:_,~,:":F_:_:.•_·_;,:_:_•~_:_•.~.:_•_·.:,. _•·.1 .. : ::•.:_' . t:~. ,: :,:;:·· :·f f::,._i .• ,:,·_:,:1_1 .·.I.'_,::_·.}o:_::_t
`
`.•. i,_ .. i,_ .. i,:l,·.,,:_:.i.: .•. : .. i,_:.:,·_,_.:·.:···:_•.:_,_:_•::.:.:_·.:_ •. :_'._:_• .. :_,_ •. l_· .. :_,·· ••.•. •.::i.•
`_:;._r_·_; _:·:,:_._ •• :,.•_;:_::•.::•.·.:_•.:,_i_i,_f.•,:,_l:.:,.::r
`
`- · .
`
`.. :::.•._:,._,,'._•_.,._',:_._:,!_:.•_:.·_:,'._:,_:,_·_!,•_:._1.1_;
`
`-
`
`volve<l, and the tirnes lit which the. e·vems o,:ctu.
`F~r.tht~ru.roi:e, th~ user t'.:m specify the. acth)n to· take
`wh<~n u-n ~llum1 is triggered, e.g,, w. ge11ernte an m,t~
`,fa, Jdarm {lr wrile a hsg fik, Fer e-:•rnmp.k, tfa.~ user
`shotsld be 1tb-le to ::specify t.lrnt .m audio aLim1
`~hotdd he tr.i.ggcred if n 1}1.~rso.n dep~)sit$ :J hriefe.ase-(cid:173)
`,Jn a glveri Htbk bct\.\.'e~n 5:00pm and 7:fK) ~m ,;m. ~
`weektiig:ht
`
`The archltt-cture, {)f the AVS situaiit)nal. awareness
`i,ystcm is dt!:pided in Figure 4, The systt~m <..:orisisls
`of one or mt,re smart ca~ne:r:is (i:11mnur1k:ati11g with
`11. VjJeo Sun,eilhtm::<.i Shell {VSS). Ead1 ,:amtm;1 hiV:.
`aSSt':ICiated with it ~H1 in<k~pt<.ndt11t AVS ,,)R~ <.~r.1gine
`tk::it per.forms the. pnx.-:essirtg ckscrlbed in section 3.
`That is, the engine tfods-Md m.1cks movitig ohjed;<,.
`in the sce.11e, map~ their inmge- tO<.\ilions to W<)rld
`c<Jordhta.tes,. ,11)<.i W<\;ignit.cs ev~11ts h'tvi:.~king !ht"c
`ol>jtcts. Each <..:o~ engine emits .:1 stream 1.Jf hx:a(cid:173)
`tkin ii.nd ~v¢n~ r<.~pt1rts U) dk VSS. which fi!tenr the
`incOn'ling ~:ven~ stre~m$ fot uwr~-::sp(!{;:Hloo ~i!tttm
`t'.1Jnditk)rl&-and takes the apprtipdak cidion!"i,
`
`(},.,hje<:I f&.\~mfk-m
`Hgm\~ 4< The $itu3.!it)M! 1i\v.aretwss !iysh~m
`
`166
`
`Jo Mlkt to d.et<~rn1h1t~ the ideniltit~s nf Z)bjeds (t,g ,,
`h.riefoa..~e. riolem:K~k}. the sim:ulonat awatt~i~ss &:}'"£··
`lcrn cotnmi.mica.te-s
`\1/itb m1e or more ()lui~ct
`analy~is-mui-hd1:1s (QA.Ms). 'flte core e"'-~ines cap(cid:173)
`tu.re Silap~hois of it:rt.crt.~hng <)bje,:ts in the scenes,
`and forward the snapsh1">t<; to thi:i. OAM,. i1long with
`the IDs ,,f the tr~ch containing the d.tjecfs .. The
`OAM the•l pro~esscs the snap$hOt in ur<ler Ul de,ter(cid:173)
`m.ine the type of ol)jeet , The OAM p,xK~~sitig and.
`the /\VS core engine C{ll'iipurntitms M~ asynctm.'>-
`1tou~. so the rnre t~nginc may hiwe pmcessc::d
`severul more fnimes by Hine f!}e OAM .:_:ompkt~s.
`its analysis, Orn.ce tht~ analysis ·is c1)mpkte, the.
`OAM. ~'erKls the· ~s11hs (at1 ol*ct iype h,t~l) and
`the trnt.k m hack to thi~ z:,,re: engine. '.fbe t{)~ e11-
`gitle uses the ti.ad;, Il) IIJ ,)KSt)Ciate the .lahet with
`the , .on-:1:x:t object in the ~orrcnt fn~mt~ (as!>uming
`th~ <1bject h.ns remained in the :ia::,em.: anct t~~cn sue·
`,iess!\1Uy tr~cktd) .
`
`The VSS pnwitle,\ a map dispfay of the monitored
`il.t'¢a. with the locations ·,if the ()l~ject~ in the ~cene
`reported as icons-0:11 th(: map. Th~ VSS ~list) a.Hows
`the use.:r t{) spt~ify alarm ·regions ;:i.od conditions ,
`Alarul r.~gkms are si~-iiied hy Jrnwing tht)n1 on
`!he map usitlg a ffii)tis(! 5 :ind na.rning th(m1 a~ de-(cid:173)
`~in.!d, TIH.~ tt~-er cau then spt.~ify the ~onditfotis and
`a.::tj<inS: fr...lr alarms by cremh,g zme u

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket