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Abstract

Smart videa cameras analyze the video stream and
translate it into a description of the scene in terms
of objeets, object motions, and events. This paper
describes a set of algorithms for the core computa-
tions needed to build smart cameras. Together
these algorithms make up the Autonomous Video
Surveitlance (AVS) systern, a general-purpose
framework for moving object detection and event
recognition. Moving objects are detected using
change detection, and are tracked using first-order
prediction and pearest neighbor matching. Events
are recognized by applying predicates to the graph
formed by linking corresponding objects in succes-
sive frames. The AVS algorithms have becn used to
create several novel video surveillance applica-
tions. These inchude a video surveillance shell that
allows a human to monitor the outputs of multiple
cameras, a system that takes a single high-quality
snapshot of every person who enters its field of
view, and a system that learns the structure of the
monitored environment by watching humans move
around in the sceng.

1 Introduction

Video cameras today produce images, which must
be examined by hurans in order to be useful, Fu-
ture ‘smart’ video cameras will produce infor-
mation, including descriptions of the environment
they are monitoring and the events taking place in
it. The information they produce may inchide im-

The research described in this report was sponsored in pant by
the DARPA Image Understanding Program,
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ages and video clips, but these will be carefully
selected to maximize their useful information con-
tent. The symbolic information and images from
smart cameras will be filtered by programs that ex-
tract data relevant to particular tasks. This filtering
process will enable a single human to monitor hun-
dreds or thousands of video streams.

in pursuit of our research objectives [Flinchbaugh,
1997}, we are developing the technology needed to
make smart cameras a reality. Two fundamental ca-
pabilities are peeded. The first is the ability to
describe scenes in terms of object motions and in-
teractions. The second is the ability to recognize
important events that occur in the scene, and to
pick out those that are relevant to the current task.
These capabilitics make it possible to develop a va-
siety of novel and useful video surveillance
applications.

1.1 Video Surveillance and Monitoring
Scenarios

Qur work is motivated by a several types of video
survetllance and monitoring scenarios,

Indoor Surveillance: Indoor surveillance provides
information about arcas such as building lobbies,
hallways, and offices. Monitoring tasks in lobbies
and hallways include detection of people deposit-
ing things (e.g., unattended luggage in an atrport
founge), removing things {e.g., theft), or loitering.
Office monitoring tasks typically require informa-
tion about people’s identities: in an office, for
example, the office owner may do anything at any
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time, but other people should not open desk draw-
ers or operate the computer unless the owner is
present, Cleaning staff may come in at mght to vac-
uvum amd empty trash cans, but should not handie
objects on the desk,

Outdoor Surveillance: Outdoor surveitlance in-
cludes tasks such as monitoring a site perimeter for
intrusion or threats from vehicles (e.g., car bombs).
In military applications, video surveillance can
function as a sentry or forward observer, eg. by
notifving commanders when enemy soldiers
emerge from 4 wooded area or cross a road.

In order for smart cameras to be practical for real-
world tasks, the algorithms they use must be ro-
bust. Current commercial video surveillance
systems have a high false alarm rate {[Ringler and
Hoover, 1995], which renders them useless for
most applications, For this reason, owr research
stresses robustness and quantification of detection
and false alarm rates. Smart camera algorithms
must also mun effectively on fow-cost platforms, so
that they can be implemented in small, low-power
packages and can be used in large numbers. Study-
ing algorithms that can run in near real time makes
it practical to conduct extensive evaluation and
testing of systems, and may enable worthwhile
near-term applications as well as contributing to
long-term research goals.

1.2 Approach

The first step in processing a video stream for sur-
veillance purposes is to identify the important
objects in the scens. In this paper it is assumed that
the important objects are those that move indepen-
dently, Camera parameters are assumed to be fixed.
This allows the use of simple change detection to
identify moving objects. Where use of moving
cameras is necessary, stabilization hardware and
stabilized moving object detection algorithms can
be used (e.g. {Burt et al, 1989, Nelson, 1991, The
use of criteria other than motion {e.g., salisnce
based on shape or color, or more general object
recognition) 1s compatible with our approach, but
these criteria are not used in our current
applications,

Our event recognition algorithms are based on
graph matching. Moving objects in the image are
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tracked over time. Obscrvations of an object in suc~
cessive video frames are linked to form a directed
graph (the motion graph). Events ave defined in
terms of predicates on the motion graph. For in-
stanice, the beginning of a chain of successive
observations of an object is defined to be an EN-
TER event. Event detection is described in more
detail below.

Our approach to video surveillance stresses 2D,
image-hased algorithms and simple, fow-level ob-
ject representations that can be extracted relinbly
from the video seguence. This emphasis yields a
high fevel of robustness and low computational
cost. Object recognition and other detailed analy-
ses are used only after the systern has determined
that the objects in question are interesting and mer-
it further investigation,

1.3 Research Strategy

The primary technical goal of this research is to de-
velop general-purpose algorithms for moving
object detection and event recognition. These algo-
rithms  comprise  the Astonomous  Video
Surveillance (AVS) system, 2 modular framework
for burlding video surveillance applications. AVS
is designed to be updated to incorporate better core
algorithms or to tune the processing to speeific do-
mains as our research progresses.

In order to evaluate the AVS core algorithms and
event recognition and tracking framework, we use
then to develop applications motivated by the sur-
veillance  scenarios  described  above.  The
applications are small-scale implementations of fu-
ture smart camera systems. They are designed for
long-term operation, and are evaluated by allowing
thent to run for long periods (hours or days) and
analyzing their output.

The remuinder of this paper is organized as fol
lows. The next section discusses related work.
Section 3 presents the core moving object detection
and svent recognition algorithms, and the mecha-
nism used to establish the 3D positions of objects.
Section 4 presents applications that have been built
using the AVS framework. The final section dis-
cusses the current state of the system and our
future plans.
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2 Related Work

Our overall approach to video surveiliance has
been influcnced by interest in selective attention
and task-ariented processing {Swain and Stricker,
1991, Rimey and Brown, 1993, Camus et al.,
1993}, The fundamental problem with current vid-
en surveillance techmology is that the useful
information density of the images delivered to a
human is very low; the vast majority of surveil-
lance video frames contain no useful information
at all, The fundamental role of the smart camera
deseribed above is to reduce the volume of data
produced by the camera, and increase the value of
that data. It does this by discarding irrelevant
frames, and by expressing the information in the
relevant frames primarily in symbolic form,

2.1 Moving Object Detection

Most algorithms for moving object detection using
fixed cameras work by comparing incoming video
frames to a reference image, and attributing signifi-
cant differences either to motion or to noise. The
algorithms differ in the form of the comparison op-
erator they use, and in the way in which the
reference image is maintained. Simple intensity
differencing followed by thresholding is widely
used {Jain et al., 1979, Yalamanchilt et al., 1952,
Kelly et al., 1995, Bobick and Davis, 1996, Court-
ney, 19971 becasse i3 computationally
inexpensive and works quite well in many indoor
environments. Some algorithms provide a means of
adapting the reference image over time, in order to
track slow changes in lighting conditions andfor
changes in the environment [Karmann and von
Brandt, 1990, Makarov, 1996a). Some also filter
the tmage 1o reduce or remove low spatial frequen-
cy contend, which again makes the detector less
sensitive to lighting changes [Makarov et al,
1996b, Koller et al., 15941

Recent work [Pentland, 1996, Kahn et al., 1996}
has extended the basic change detection paradigm
by replacing the reference image with a statistical
model of the background. The comparison operator
becomes a statistical test that estimates the proba-
bility that the observed pixel value belongs to the
background.

161

Our baseline change detection algorithm uses
thresholded absohste differencing, since this works
well for our indoor surveillance scenarios. For ap-
plications where lighting change is a problem, we
use the adaptive reference frame algorithm of Kar-
mann and von Brandt {1990]. We are also
expenmenting with a probabilistic change detector
stmatlar to Phinder [Pentland, 1996.

Qur work assumes fixed cameras. When the cam-
era is not fixed, simple change detection cannot be
used because of background motion. One approach
to this problem: is to treat the scene as a collection
of independently moving objects, and to detect and
ignore the visual motion due to camera motion
je.g. Burt et al., 1989] Other researchers have pro-
posed ways of detecting features of the optical flow
that are inconsistent with a hypuothesis of seif mo-
tion [Nelson, 1991},

In many of our applications moving object dewse-
tion is a prelude to person detection. There has
been significant recent progress in the development
of algorithms to locate and track humans. Pfinder
{cited above) uses a coarse statistical model of hu-
man body geometry and motion to estimate the
likelihood that a given pixel is part of a human.
Several researchers have descnibed methods of
tracking human body and limb movements {Gavri-
1a and Davis, 1996, Kakadiaris and Metaxas, 1996]
and locating faces in images [Sung and Poggio,
1984, Rowley et al, [996]. Imtille and Bobick
{1995] describe methods of tracking humans
through episodes of mutual occlusion in a highly
structured environment. We do not currently muke
uge of these techniques in live experiments because
of their computational cost. However, we expect
that this type of analysis will eventually be an im-
portant part of smart camera processing.

2.2 Event Recognition

Most work on event recognition has focussed on
avents that consist of a well-defined sequence of
primitive motions. This class of events can be con-
verted into spatioteraporal patterns and recognized
using statistical pattern matching technigues. A
number of researchers have demonstrated algo-
rithms for recognizing gestures and sign language
{e.g., Stamer and Peuntland, 1995]. Bobick and
Davis {1996] describe a method of recognizing ste-
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Videw Frame
Figue 1 bndee procsssmg steps for moving object detection,

Referenne image

eotypical  motion  patiere cormesponding o
actions suh as siting dows, walking, or waving,

Oy approach i event recognition s based on the
video database tnsdoxing work of Courtaey {18974,
which introduced the use of pradivates oo the moe
tiay graph o represent events, Motion geaphs ase
wall suited to mepressating absirael, gonerniv svaniy
such a3 ‘depositing an olfear” or “Comnng Bt
which are difficolt o caplusy asing the pattom-
hased approaches wferred t sbove. On the other
g, patiern-hased approaches can represent com-
pleg antions such ay C“throwing an object or
waving’, which would be difficelt to exprass using
motton praphs, It i likely that both pattern-based
angd abstnact event recognition techmiques will be

sevded W handle the full range of svents that arg of

wtarest in survaillancs applicatinng,

3 AVS Tracking and Bvent Recognition
Algorithms

This section deserthes the core technologies that
provide the viden surveillante and monitoring o
pabifitics of the AVS svsrn, There are thees ey
wehnologies:  movisg  ohject  detschon, vivual
tracking, and ovenf recognition, The moving ohjeat
detection routines daterminge when ong Qr more ob-
iy enter & monitored sesne, dacide which pikel
i gven video frame correspond 1o the moving
obivets versas which pixeds corrsspond 1o the back-
grourd, and form a simpls sopressntation of the
objsot's imsge in the video frame. This representa
o s referred 10 &8 @ motion reglon, angd i eXists
o aingle video frone, s distinguished from the
waorkd obigore which sxist in the world and give siss
i the mnthon regions,

i

&

Difference mage Theesholded fmage

Visua! tracking vonsists of ditermining correspon-
dences between  the molion  mony oww R
seguense of video frames, and maintaining 8 single
representation, or frack, for the world objeet which
gave rise ty e seguence of moton regions i Uw
sequenes of frames. Fioally, oyt recogniiion s &
means of snalvemg the collectinn of tracks m order
1o identify cvents of Intorest wwolving the workl
abjects represented by the tracks.

3.3 Moving Object Detection

The moving objsot dotection wehnsdogy we eme
ployv iy a 21 change detection technigue sinalar o
that described in Jain ot wl, {19701 and Yalamane
chilt of s {19821 Prior to aciivation of the
monitoning systom, an image of the background,

dae, an imise of the scens which conding s s

ing or otherwise infereating objscis, it ouptwrad W

serve a8 the reference fmage. When the system s i

nperativn, the absolute diffenmer of the cwrent

video frane from the reference waags s compated
e produce 4 dfference fmage, The differsnce v
age is ten Uwesholded at se sppropriate value o
sistan @ binory bnage i which the “off"” pixsls rep-
resont hackgrsund paixels, and e Yon” pixels
represgnl Vmoviag objret” pixels, The fourons
nected componants of moving objsdl pikels jo the
thrasholiled image are the matinn reghoas (e Fig-
el

Simple spplicstisn of the object detection prooss
dure outhned ahove vesults I g number of derory
fargely due fo the hmitations of teesholding. i ihe
threshold used s too fow, camera none and shad-
ows will prosduce spuzious ohjests: whereas o the
thrashokd 18 too high, some porttons of i objects
in the seene will fail to be separated fron the backs

3
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ground, manlling o breadup, i which s ungke
workd objsct gives rise to soveral motion teglons
within a single frame. Cur general approach is o
alleww breskap, but ase grouping hasistes o
serge multiple connested components inte i singk:
sotion tegion and AL @ oRS-O-NR Lore-
spondence bebween mution regions and world
abjects within each frame,

{ne grouping technigue we omploy i 20 avarphe-
fogieal dilation of the miotion regions. This enabies
the systom s merge oonnecind corponsnts sepas
sated By a fow pinels, bt using this lechakpe
span Targe gaps results in o8 severe performance
degradation. Moveover, dilation 10 the iniage space
may resull i incorreotly merging shistant sdyeoty

which are nearby in the fmage (o fow pixels), but

are o faot seperated by a large divance it
workd {a fow foet).

IF 3 information v available, the connestad com-
ponant grouping algoritlun mwkes wse of an
estiroate of the stze Gn world coordinates) of the
objects in the tmage. The bounding boxes of the
commested compoends are expanded vortically and
horizontally by a distanes measured in feet (rather
than pixels), and connected componenty with over

lapping bounding boxes ave wmierged oty a single

metion region, The technigue for sstimating e
stee of the objests i the mage i desenbed 1 soe-
tion 3.4 belonw

A3 Tracking

The function of the AVS tracking routing i oo
fablish comupondences hetwesn  the  motion
repions in the curvent frame and those it the pravis
sus frame. We ase the techmgue of Countney
{19097, ahich proceeds as follows. Fiest assume
that wa have cornputed 21 welocity extimies for
the motion segions oy the pravious frame. Theae ve-
founy estimaties, together with the leesttoms of the
serdronds i the provioos frame, are vsad to prageet
the locations of the controbls of the swithan regiung
iate the current franw. Thon, o wonea! wearests
agighbor  oiflerion v osed o establish
sorrespondences,

Lot B obe the sei of motion region cantrond oea-
tons in the provieus Trame, with p, one swch
location, Lat p' be the projected location of p; o

1A%

the sureat frame, and I8t be the set o all such
prajected locmsions in the cursest frame, Lat £ he
e st of mwotsn region contund hweations m the
carent fravw I the distance betwsen g anid
o€ O s the stmallest for all wlements of €, ad
this distance is abe the amallest of the distanves
batween ¢, and sl slements of F e, ¢, and ¢,
are weta] nearest naighborsy, then establish g core
respomdence betwesn p,ownd £ by creating 8
bidirectonal sirong fak bebween them, Use the difs
fergnos In tine and space between By oand ¢
defernnne @ velaiity estinat for ¢, sapressed i
pivels per second. 1Y there fx a existing track son-
Wining ppoadd o wet Otherwise, exablish a new
track, and add bath p, and ¢ o

The strong Haky form the basis of the tracks with a
high-confidence of their coractuess. Vides objects
which do not hase sasteal neavest neighbors i the
adjacent frame mway 8 R form comsspondencrs
taxcause the anderiying world objedt 15 twvolved in
st event (9.8, enter, exit, doposit, sensove). I o
der fo assist in the dentification of these eventy,
sbincts without strong Iinks are gheen anidisectinn-
al weak findy o the el (nonemutual) pearest
neighbors. The weak finks represent poterstial sun-
biguity i the tracking procass The motion regions
m all of the frames, together with their strng and
wiak Haks, form a motion graph,

Frgure 2 depiets 3 sumple motion griph. In the g
gre, cavh  frame b onedimensional, and &
reprosented by o senival Hne {0 - FHDL Cicles
reprosent objedis in the scens, the dask armsws rep-
resery atrong finks, and the gray arrows reprosent
weak linke. A objent enters the scen i frame F,
and then moves through the scene wtll foene P4
when i depusny 2 seeomd objeet. The fing object
continues [ move through the oo and sxig &8
frame P& The depositad object remany slationmy.
At frame FY another ohject saters the soeve, o
ponily occhudes ey stationary ohicct wt frame
FHY {or iv occhudad by 1), and then proceeds 1o
movs past the stationary object. This sevond mov-
ing oblech reassey dirvetony around frames F13
aodd FIAL rouivns to remove the gationary ohiset in
Traroe Fig, and foalfy exits i feane BT An adds
tinnal object sniers in frame TS and et i frane
8 without interacting with any other obisgt,

As mdivated by the stnped il patterns tn Figure 24
the vorrest somespondences for the tracks are an-
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ENTER

DEFQORIY

BRER:

F& FY F3 F5 FB

EXIT

~y

@ "

biguous  after ohjest interactions such as de
occhusion i frame F1O. Thy AVS system resolves
this ambaguity where possible by prefering
match moving objects with moving objects, and
stationary abjects with stationiry objests, The dis
tinction baiwsen moving and stsdonary wacks &
cumputed using thresholds on the welogity esti-
mates, and hyseresis for stdnliang feansitions
Between moving sad stationary.

Following an vcchesion (which may lust i severad
frames) the Foumes iowoedintely before and after
the ooclusion are compared {e.g, framex FY and
F11 o Figars 23, The AVS system examines sach
stationary ohjeet o the pre-vclusion frne, and
searches for its correspondeat in the post-acclusion
frane {which shoudd be axactly shere 3t was bee
fore, since the object is stationary ), This procedurs
resodves g large portion of the tracking ambigudties.
Ciapreral resolution of ambiguities resulting from
muliiple moviny oljects iy the scens & 3 lopic for
further wesearch, The AVR systan may bensiit
from mchision of & “closed world tracking™ facility
such o that described by Ionte and Bobwrk
{19954, 1998,

A3 Event Recopnition

Certain foatures of wacks and pairs of trscks comg-
spowrd 1o events, For examply, the beginming of »
track corresponds tan ENTER svant, and the end
curresponds to an EXIT svent. In an oaedine gvent
detection system, s preferably jo detect the event

§"

F8§ Fg& Fi0 P11 P12 F13 Fid A8 Fis P17 Fig

y

m

4

YEMOVE

ﬁ;{}"

- o
RN

ENTER
Figure 3 Bvent detection in the sotion graph.

164

3% Hear i tme as possible 1o the acteal voearrencs
of the event. The provious system which used mo-
flon geaphs for cvemt detection [Countney, 1987}
gperted I & barh mode, and required maltiple
passes over the motion graph, prechsling onine
opsration. The AVE system detects ovents in g uin-
gle pass over the mwdion graph, ay the graph w6
created. However, i order (0 sedace srrors due o
noise, the AV system itroduces a xHght defay of
a frame times (p=d in the current nplementation}
befory reposting centain events. For sxample, in
Figare 2, an onter svant ogcany on fane Fl The
AVS systom requires the rack 1o be maintained for
a frames belime reporting the enter event. I the

rack not mintated for the required manber of

frames, # B ignonnd, and the enter event & i -
ported, e, i a2 > 4, the ahict in Pigure 3 which
eaters i fonee FS and sxits in fneng FR will ao
panerale any events.

A track 1 sphits fnto vwo tracks, one of which i
moving, snd the other of whivh s Sationary, cors
sponds e a DEPOSIT ovent. If 2 moving track
iiterseals a stationary frack, sud then continues ©
o, Bt the statonary frack endy @t the mtsrses-
fiony, this corresponds o 1 REMOVE event. The
remove event can be ganerated ay soon ag the o
mover disscciudis the locstion of the ustionary
ofent which was rernoved, and the sysiem can dee
tennine that the Mationary objset iv no longer &
that location.
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Figure 3 Establishing the troage to map coordinate ransformation

In @ manner similar o the oeclasion situation de-
seribed sbove v secton 3.2, the deposit svent alse
givies rise to sobiguity as o which objeet is the de-
pesitor, and which s the deposites. For sxample, it
may Bave beon that the objsct which sntered &t
fraime F1 of Rigure 2 ssopped af frame B and de-
posited 8 moving sbject, and it ig the deposiied
aiyest which then proceeded to exit the scene @
o, Agan, the AVE sesism relies ou a moviag vs.
stationary distnolion fo resolve the sunbiguiy, and
insiats that the depiites remain stathmary after &
depasit event. The AVS systent reqaires both the
depositor and the depontter tracks o extend for
fomnes past the point #t which 1be eacks separate
{e.g., past frame FS in Figure 23, and that the de-
poarted object remabn stationary; otbersdsg no
depostt vert s goneratad,

Alse detected (hat st iustrated i Blgure 2), are
REST events (when a moving objed cones 1o a
stopy, and MOVE svarts {when a RESThag object
beging fo mave againg Finally, sme fonher event
that 13 detected 315 the LIGHTSOUT svent, which
ouedrs whenever 8 large clangs oocurs over the en-
gire tnage. The muios graph need nest be comuliad
o detect this event,

3.4 Image to World Mapping

I onder 10 svate obects acen in the oage with ree
Speat W oa map. i i pesessary o edablbh a
mapping bobwaen image and e coonhinates. This
mapping iy vatablished o the AVE systom By haws
g owouser draw guadetiaterals on the honzontal

sarfaces vinible in an inage, and the corresponding

Guadriiatorale s @ map, ac shown @ Figuw 30 &
warp fowssformation from ipage o map soondt

nates 18 constecied wsing  the  guadnilateral

sooniimaies.

(e the transioemations are sxtabiizhed, the ays-
e can extimate the locatmy of an obipet (& In
Fianohbuugh and Banwon {19981 by assuming that
all obots peet oo 3 hortzonial surfacn. When an
phiect iy detectad 1o the scene, the midpom of the
fowent side of the bounding bax i ased as the bn-
sge point 1o project nto the sap window ssing the
quadrilateral warp tmnsformation { Wolberg, 19901

4 Applications

The AVE core aleurithon desonbed iy sestion 3
Hawse beoh used ay the basis for sevord viden sar-
veithace applications. Sectien 4 dexcribes thme
apphcations that we ke implomented) situationsd
awareness, beg-vew selection for olivity logemg,
and envivonmant aming,

4.1 Niuational Awareness

The goal of the sruations! awareness applivation &5

@ produce g seal-time map-hasest display of the fo-
cations of poopls, objects and events w3
wmonstord rogion, and o allow @ per o speeily
alarmn condittons interastively, Alanm conditions
tay be based on the locstims of people and ob-
Jeets n the scene, the types of objects i the sesne,
the svants in which the prople and objects are -
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J revove Jweve J rest J ﬁghimi .3 ﬁghmon
: k ..s mni&w ok ohject J nnmw

Friday 2 ktmy s | Smeiay

Figure §: User interface for specifying a monitor in AVS

volved, and tae thnes at which the events oceur
Purthermore, the aser oo speciy the action to take
when an alarm is tnggered, ©.g., 10 generate an au-
dio alarm or write & fog il Por example, the user
should e able o specify that an awdio alarm
should be triggered i a person deposis 3 brefoase
on & given tublg botwesn S:00pm and 7.00 am on a
weeknight,

The architecture of the AVS situationa] awareness
syster is depicted in Figene 4. The system consisiy
of one or more smart cameras communivating with
a Video Sarveittance Shall {VS8) Each camernt has
associated with i an independent AVS vore enging
that performs the processing described in section 3.
That &, the engine finds and tracks moving objecis
i the scens, maps thelr image locations o world
convdingae, and recngnizes svents bhuaolving the
objscts. Fach core engine emuits a stream of foca-
tion and event reports 1o the V&S, which filtars the
inconing event stresns for userspreifind alann
crsnditions and takes the apprapriate setions,

LB

Beart G

Video
Surweiftanoe
Shall Resmsecn
V58 S
o e i

mmf“ saclie sulput
svent Bilsrng

Sevad Cameed' ¥
q;t\

g
\ Dbject
ehore | Analyais
W Wsnmm Module Y
Srar Camers {OBNY S e
atygct moagnon

Figare 40 The situational aswareness system
B
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In order to determine the slentities of objexds (1.,
briefease, notebook), the siuational awirensss sys-
tom communicatey with e or more object
anatysis swdudes (GAMs) The core engines cap-
ture snapshots of inlerasting objeciy i the scenes,
and forward the saapshots 1o the QAM, along with
the IDs of the tracks coutmning the objects. The
QAM then processes the snapshot in order to deter-
oune the type of obiect. The OAM processing and
the AVS core sngine compuiations are asynchro-
nous, 3o the core wngme may bave provessed
several more frames by fime the QAM completes
wy analysis. Onee the aoalvsis i complete, the
QAM senals the nusuits {an object type fabel} and
the track 1D bavk o the core engine. The come en-
gine ases the wack 1Dt associate the label with
the correet objeet in the curment frame {assuming
the object bas remained in the seane and been sue-
cesstully trackad}.

The V85 provides & map display of the monitored
ares, with the locations of the obiesty in the seeng
reported as fcons on the map. The VS8 also allows
the user w0 gpevify alarm egiony sod conditions.
Alanmn regions ars specified by drowing theot on
the map using & mouse, and naming them ag de-
siread. The user can then speeify the conditions and
setions fr alarms by ereating one of moge meni-
tory. Figure 3 depiets the momtor creation dialog
bosn. The user names the monitor and uses the
mouse t select cheek boxes assoptated with the
conditions that will trigger the moniter. The user
selects the type of svent, the type of objsel i
volvedd i the event, the day of wesk and time of
duy of the event, where the event aeears, sid what
to do when the alarm condition oeours. The mont-
tor speciiied in Figune 3 specthies that a voice alarm
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Figure & Tracking an object in the soere i the map

will he sounded when a beicfoass is deposited on
Table A between 3:00pm and Z{lanm on a week-
pight. The voive alarms are customized to the svant
and objeet type, so that when this alarms & g
gernd, the system will announee “deposit box™ via
ity mudio sutput, Figure 6 shows o person about 1o
rigyer thas alarm,

5§ Best-View Selection for Activity Logging

In many video surveillance applivations the goad of
survetilance is aot w detect avents in resl time and
generste slarms, bot rather to construgt 8 log or s
dit trail of all of the activity that tkes place in the
cament's field of view, This log is examained by fn-
vestigators sfter 2 securty fncident {e.g. a thefi or
terrorist attack), and is wesd to identify possible
SRAPECES OF WHDSESS,

I ordor to gatn experence with ths type of applis
ostion, we have ased the trackisp snd event
detotion capabilities described in seetion 3 to con-
struet @ program that monitors and records the
movaanenms of humans & its Sehd of view. For ev-
ery perstar that it sees, I oreates a fog file tha
sununacizes mpontant information aboast the per
sy, mscluding 2 smipshiot taken whan the peeson
wag close 1o the camera and (f possibly) facing it
The fog files are made avaslable o autiieized users
via the Workl- Wide Web,

5.1 Architecture

The appheation makes use of the AVS wore dge-
siths o detest and track people. Upen detection
of & track cormasponding to 3 person in the input,
the wracker associnies & duta recond with the waek,
The data record contains & sunumary of mfonmation
shout the person, including a suapshot sxtructed
from the current video toage. As the povson 8
tracked through the svene, the wacker sxammes
ench tmage of hat person that 2t reosives, I the
dew image is 3 better view of the person than the
previousty saved snapshot, the snapshot &8 replaced
with the rew view. Whan the person lsaves the
seeny, the data redord is soved 1o a file

Each log entry fils revords the time when the pers
son eatered the scene wnd 1 st of coordinate pairs
showing their position i sach video frame. Bach
fog entry Ble alse contiing the snapshor that was
stred in the rack recond for the porson whan they
exited the scone. Because of the way suapehots are
maintained, the foal saapshot 3s the bast view of
the person that the system had during tecking. Foo
nally, the log antry file contamys & pointy o the
raference hmage that was in effect when the saape
shol was taken. This information fooms an
extremely  coneiss deseription of the parson’s
moverients and sppearance while they weors s e
sTene.

Selecting the best view: The swstem ases simpls
henristios to sdecide when the current viow of 8 pore
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Figure 7: Floor plan of area wsed for hallway monitotiag experiments, Cament is lovated af night and
monitors the ballway and printer sleave.

son is beaer than the previousty saved view, Finsy,
the new view is considered bater 3F the subieet is
moviag weward the camer in the cunent frame,
amd was moving away in the previonsly sgved
visaw, This vauses the svetem o favor views wm
which the subject’s face is visible, I thix rule does
mot apply, the new view i considerad beter i the
subject appears o be larger (subrends a lagos vises
al angle). This vauses the systent to prifer visws in
which the subipct s close w the camera, Dther pos-
sible view selection heuristios are discusssd
Kelly et al, [1993)

Handling background cthange: The test environ-
ment experiences  signtficant Hghting wanation
during the day dus to window fighting, opening
and clowing deors owetera, In additon, durdag the
day people freguently deposit, ramove, oF repasi-
non objects in the scene. This orestes permanent
sebms of ditfrence betweern the sveny and the
refersnes fmage. Without songe wmschanisos for up-
dating the rafersnce nnage, the system would
comtinue 10 ek thess difference regions ag ob
jects. Therefive, the tracker way instucted W
discard the corrent tracks and grab a vew reference
naee whenever # dewrnddngd that sl olyests
the scens were Qationsry, and that e objert had
oved for seveeal seconds,

User Interface

Lavg flles are saved o & dissctory e associated
with the comiera tha producsd the data. Along with
the fog files, the monitering wpplication Craates
HTML docaments that allow o web browser 1o
nivigate the duvctory tree and access the log ene

tries. Log entries swe displaysd by 8 Javs applet that

displays the beat snapshot of the person o the con

text of the seforcace image. and overlays the
person’s path throagh the scene on the tmage. The
applet muns ay an indepeadent thread that checks
peniadically fo see i any new log endries have hoen
created, Thus if the waer §s browsing the entnies for
the cumreat day, now ontries begome avalable io
the browser as suon ax they voour

5.2 Exporiments

The system described above e tosted i o kel
way of our Wbortory. Figure 7 shows the hallway
Hoor plan. The camera & mooniad o the ballesy
veiling ami fooks west toward 2 window I corri-
dor that rums around the perimster of the baililing.
The halbway expeniences heavy teaffic, beosuse #
comtaing @ sy printen 8 coplet, and the offive s
e conler. The hallway passes sader the camra
arud continues (o the vt sast of the Beld of wlew.

The systemy was allowsd to run for 8 totsl of 1S
Bours over 4 panind of a waek, Most laboarstory par
sonrel wers unawsre that 2 W5t Wiis 1 progress, so
1he svstom was exposed & nonnal daily activity
During the lost the systern reconded & total of 888
fog sntries. Figure B shows the browser displiny for
#ypical g entry. I ihis sequence the sulyect en-
feredd the seene from the orosg comidor st rear and
came down the halbway on g way o the vopier,
out o visw at bewer right. His path iy shown asa
fine on the floor, which appears red when viewsd
with a cofor hrowser.
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Figure & Log eniry browser interface. The line dovwn on the floor in the ap
laoted at foft w the Gme at o

Joct’s path froot eutry to exit, The list eatry s

Figure 9 donwastates thy affect of the system’s
preforenee for frontal views, In tus sequence the
subiuet enterad at the bottom of e soppe and
watked sway from the camera. B tumed arosd

PSL Hallway U

i

raflie o

N

N\
.
por rnage shows the sube
b the fmage was taken.

and wok 3 few stops buek wward the Campea, then

nraed away again and contnued down the balls
way, eventually exiting vis the fiat dowwr o the it
Althagh the sahject’s baek was towand the camera

»
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st of the time, the view preference henristios se-
fected & viow taken while he war faving the
CHmeTs.

Performance Evaluation

In vrder to assexs the performance of the monitor
my spphication, all of the log enrles for the
experiment penod weee examined und seored by
sne of the authors. Priries were classified as
follows:

Face/Nonface: Entries contimning a view of s sab-
jeet’s hwad were classified as FAUES o the
subject’s face {specifically, subjoct’s nose) was vis
ible,  otherwise  they  were  classified &
MNONFACES,

False Alarm: Images which contained no hman
amd appeared o be cawsed by noise were classified
as FALSE ALARMS,

Bad Path: Bntries tn which the floor trave i clear
e cormupt in some way were classified as BAD
PATHa,

Bad Choleey In some cases i is ohear Hrom the
floor trace that the system madk & poor choive of
which image of a porson G sawe in the log oniry,
These entries were classified as BAD CHOICE.

False Negative: I some cases 8 15 olear that the
systmmn Boled o take @ usable pivrurs of 2 porson
who was in the scere. These were classified as
FALSE NEGATIVES, Atout half of the fulke neg-
atives ovcnrred shin the system sedecied 3 vidw in
which the subject’s head is not vistble, typicafly
because they ware 1 the aot of passing through a
doorway. The others eceurred when the system be-
carpe confused by occlusion, and  incorvatly
grouped two people i & single fog entry. Note
that we do not have ground truth for the wheerva-
ton purksd, 30 thers may have been other detection
fartures that were st datected. However, monitor-
ing by the authors doring the daytime novealed no
fatlures of thiy type. Wi bobeve that the FALSE
NEGATIVE comnt is a good extimate of the man-
ber of detection fadures.

Table 1 shows the classification counts for the test
period, Assuming that the fadse negative count is

PSL Hallway Traffic for 2/20/97

G

b
i

Figure 9 Log entry showing the effect of the view selection heuristiv prefrence for fromal views, The
subjeet was walking away from the camers for most of this sequencs, but the systom was able o osp-
fure @ view while he was facing the camera,
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Table 1: Long-term monitoring system

performance
fog eniry type N’umb:;r o
entriss
FACE 493
NONFACE 380
FALSE ALARM 62
FALSE NEGATIVE a4
BALY PATH 12
BAD CHOICE 29

wafid, the systew achieved a detection rate of
O8.3% with a false alarm mte of 6.4%. The record-
ed path of the sebject was corect {or at feast
plagsible) w 88.4% of emries, and the system
made conspicisnssly bad chotces of what lmage to
saves in ondy 3% of entries.

OF the valid bumges of humans, S6.5% showsd the
subjoct’s face, ve. 43.4% that did wot. Now that in
mest cases where the ivage doss not show the
face, the subject entered the seene fromm balow the
carmers and walked sway from #, so there was ney-
gr an opportunity for g frontad view, Bacher
experiments without the frontal view baunstic ¢ap-
tured FACE and NONTACE fmages with roughly
squal frequency, o the §t i elear that the heuristiv
hadps,

At the end of the experiment, the camerns dirsatory
veupied 345 megabytes, o abail saven megse
bytes per day of monitoring, Almost all of the
storage consists of paage files, so presimably come
pression with an tmage-speetfic algoriton wondd
produce substantial savings. Use of an MPEG-like
algorithm on the reference images would be ex-
tremiely affective, sinve the reference images are all
very pearly identivall and lossless compression
wothd not fe pecessary.

& Learniog Environment Straciure

The AVS tracking and event recognition softwars
wes cormapoading rectangles in tmage sad world
coordinates {0 Compate s approsinnls nnge-toe
world mapping. These motangles are created by 2
huaman whan the vamery svstim s aet up. In masy
situations 1w would be proferable to efinunate even
this minimal calibration step, v order 0 redace
sstap coat i & nunimunt,

Wi have developed a system that loarns the image-
wewendd sapping By warching humany swve
around n the seepe, Chaoges tn the apparent size
and position of unans i te nage provide tofor-
mation about the uxistence and depth of world
surfsces. Appewance and disappearsscs of ha-
mans  provides  fforamtios ghowt avclusion
bourslacies and loowtians whore mans can enler
or exit the soene,

6.1 Methaod

The computation assurmes wosk prespective pro-

ection, b, that objects in e scenms are finyt

projected  onthographically ty o plow passing
through a referance point on the object and paratiel
1o the image plane, and then prajected o the tmage
plavs waing trae perspective, it is alse assuond that
humans are asoafly i oontaet with o world surfacs
that supports thern, that the camera 1¢ 1 an upnght
position (has rolf sugle 2evo), and that the internal
calthratgon pargrnetens of the camura dre known,

More preciidy, assume famt proeciivn with the
camera focal point at the ongin and fooking dirwn
the & axis of a ft-hasded coordinate system, Sup-
pose the camera observes a penow in the waorld
with hoad st world polmt ¥ = (X, ¥y 25 dnd fest
at world point F. Let & be the reference pamn for
wesk perspeotive projaetion. Then the apparent
herght of the person i the fmage b given by

;o . S :
Yoo ¥ e ¥y o ¥ pd o ol - Bl
F Paat S S

where 8 i the camera il angle relative 1o e fo-
cul vertival direction. Selving for depth gives
i - ET

Foom Seadl N
! } A \\4}\'.“_...‘"{-}?

The person’s height 3¢~ ¥ has 2 known probabifi
ty shistribution, and the ult angle toom cd tan be

AVIGILON EX. 2005
[PR2019-00314
Page 14 of 18



Figure HE Apparent hight data collected in the

experiment. Call intensity s the soedian of the

enage haighes of observed hurang when thedr

feet were wsaged 1o the cell. Dark grey reglow
sontain no data,

estimated from the sppearanice of the person, i

simnply igaored for the shalfow il angles typieal of

security camerd nstallations, Given enough obser
vations, the squathm can by wsed o estimate the
distance from the camary 10 poiats i the worid
whare peaple commonty walk,

The idea of seeovesmg stractoe from ohearved s
ex of humans i conceptually solated o shape-
frony-lexture sk i which the testare 15 made up
of diserate sloments that are unifons in Siee and
shape [Aloimonos and Swain, 1988, Blostein and
Ahuia, 1989, 1o this case the resels (peaple) do not
e in the mmaged surface, and their size i the
warld i3 keown, This makes depth recovery sabe
stantiaity casier than U by in generdd shape-froms
foxture work.

6.2 Mapping the Eavironment

‘The espuation dervixd above has been used in a pro

gran that ams te struotire of #a envisosuneat by
watchung hunues move arovand L The pragrany

makes use of the AVS core algorithens to detect and
rack posple, Over time, i bailds upr an image W
which pisel value reprasents depth o thy searest
workd surfacs in the correspranding divrection.

The comers boage 2 paritioned s @ grd of
o bo-pixel squares, zach of which b associand
with g Bistogram. Whenever the program detests a
paeson i the scons, o fovatey the histogran asadet-

13

sted with the place where they are standing, ie,,
the one masociuted with the square contiining the
botton center of the motion region for the persa.
The spparsnt height of the person 8 recorded in
that histogram, Over Gme, the histogram for sach
fovation n the boage bukds up 8 sunple disisibe
son for the apparent (mage) baight of humans a
that focstion. This can be wsed with the squation
derived proviowsly o estimate the depth &t thay
POt

The progran sas allowad o operate for teanty-
four hours doaning a typieal working day. Input was
provided by the hallway camers usad o section &,
Figure 10 shows the taw output of she progoam. In
the figurs posel Intensaty vorrespunnds to the median
shsorved height for the comesponding oot

Dark grey pinels are those for whieh we odhservas

tions were recorded. The program was tnstrucied to
discand observations in which the motion region
for the porson touchod the uppae o fower image
border, sinee the apparent beight is invalid & that
sondition. For this reason, there are ne counts for
the end of the haldeay.

The heaght date of Figore 10 were comvened
depts psing the squation derved above, Vesticat
pixed pitch was tden from the camera chrsesd
smaneal, and the nimminal leas focal lagth wassad
B apprasinam the e focal longth. Histogram
celly for which fewer thay fon (ol olservatims
wire resonded were discarded.

Figure 11 shows the final depth map superimpossd
on the aaps, The rapge eslimates Cover unags m-
gras  gorrespastding fo the Hoor, and vy
sieeothly over moxt of the image. Anonwiousdy
farge values ovowr i sever] focationy st night cens
tor hadow the small privter and workstation., These
aprars gecur becanse the office char B froquenly
moved arownd i this romoen, and the evstom sane
times mistakes 8 for o porsen, Stwe &
stanthoantly soaller tan o sal person, s system
iterprets #as evidence that the Hoor supporting it
is fuvther anay than # astually Ia. A shimilar probe
femn produces the snomatbisly high wlue of 88
meters 81 left conten, st the base of the doorway, B
frequently happens that a5 a porson exats the haft
vin the doorway, ther head goes vt of aight while
their body and femt are sl vidhle, The sysiem
regondk 1he height of the vidhle postion of the per-
sont i1t the el at the bass of the donrway. Sinve this
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Figure 11 Depth map recovered from the height data of figure 10, Depths are in moters.

\\

.

Figore 12: Ground trath range values for conpavison with figure 11

vahue 1s smutler than the true beight of the person,  shusn suparimposed on the Boags i flgere 12, T
that celt appears 1o be forther away than it really s, ble 2 shows the estimsted and avtaal ranges to the
test points, as well ag the evror in meters. The aver-

I order to assess the scearacy of the recovered
depth pap, we measured the distance from the
camers 0 seven poinds on the Hoor The seven
points and their distances from the camers ame

which i Jess than 3% of the averags distance.

age absoluty eeeor for the seven test points is 28em,
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Table 2: Estimated vs. Actual Range
{meters) to ground truth points

. estimate actual error
POMUL (meters)y | (meters) | (meters)

A 4.70 480 -0.10
5.00 5.40 -0.40

C 5.90 589 0.01
D 6.10 6.45 -0.35
E 6.80 7.26 -0.46

F 7.70 8.18 -0.48
G 9.80 9.85 -0.05

7 Conclusion

The goal of our research is to develop algorithms
and systems that can be used to describe a video
sequence in terms of moving objects and events.
These algorithms will enable a generation of smart
cameras that deliver information about scenes rath-
er than raw images. We have created a set of core
algorithms comprising the Autonomous Video Sur-
veillance (AVS) system, including routines for
moving object detection, tracking, and abstract
event recognition. The AVS system has been used
to create several surveillance applications, includ-
ing a video surveillance shell, a program that
creates concise logs of activity in the field of view,
and a program that learns scene structure by watch-
ing humans moving around in the environment.

Qur future work on AVS will address weaknesses
in the carrent system, and will add new capabilities
that support mere complex applications. Work is
planned in three main areas:

Robust Change Detection and Tracking: Experi-
ments have shown that errors in the moving object
detection computation are the most common cause
of errors in our apphcations. This is particularly a
problem in outdoor environments. We plan to de-
velop new change detection algorithms based on
dynamic hackground models that capture the way
the background changes over time. We will also
exploit contextual information to predict the ex-

pected size and appearance of moving objects in
the scene.

Improved Event Recogunition: We will extend our
motion-graph-based event recognition algorithms
to a broader range of events, and will develop
methods of specifying and recognizing compound
events and event sequences.

Applications: We will extend the existing video
surveillance shell to make use of authentication
sensors, and to distinguish between authorized and
unauthorized individuals. We will continue to use
AVS technology to develop applications that ad-
dress military and other govemment video
surveillance needs.
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