throbber
A.1~TACH:l\tlEN-T F
`
`TO REQUEST FOR EX PA.RTE REEXAMJ NATION OF
`U.S. PATENT NO. 7,868,912
`
`AVIGILON EX. 2005
`IPR2019-00311
`Page 1 of 18
`
`

`

`~foving Object Detection and Event .Recognition Algorithms for Smart Cameras
`
`Thoma~ J. Olson
`Frank Z. Brill
`Texas Instruments
`Re~earch & Development
`P.O. Box 655303, MS 8374, Dallas, TX 75265
`E-mail: olson@csc.ti.com, brill@ti.com
`http://www.ti.com/research/docs/iuba/index.html
`
`Abstract
`Smart vide-0 cameras analyze the video stream and
`translate it into a description of the scene in tenns
`of objects, object motions, and events. '111is paper
`describes. a set of algorithms for the core computa(cid:173)
`tions needed to build smart <.--.ameras. Together
`these algorithms make up the Antonomous Video
`Surveillance (AVS) system, a general-pu.rpose.
`fram.ework for moving object detection and event
`recognition. Mo\'ing objects are detected using
`change detection, and are tracked using first-order
`prediction and ne.arest neighbor matching. Events
`are recognized by applying predicates to the graph
`formed by linking corresponding obje-et~ in succes(cid:173)
`sive frames.The AVS algorithms have bt-cn used to
`create seve.ni'! novel v.ideo surveillance applica(cid:173)
`tions. 'Dlese include a video surveillance shell that
`allows a human to monitor the outputs of multiple
`ca.meras, a system that takes a single high-quality
`snaps.hot of ev~ry person who enters its field of
`view, and a system that learns the structure of the
`monitored environment by watching humans move
`around in the scene.
`
`1 Introduction
`
`ages and video clips, but these- will be carefully
`selected to maximize their n~·eful infom1ation con(cid:173)
`tent. The symbolic information and images from
`smart cameras will be filtered by programs that ex(cid:173)
`tra.ct data relevant to particular tasks. This filtering
`process will enable a single human to monitor hun(cid:173)
`dreds or thm1saods of video streams.
`
`In pursuit of our research objectives [Flinchbaugh,
`1997}, we are developing the technology nee.ded to
`make :.mart cameras a reality. 1\vo fundamental ca(cid:173)
`pabilities are n<.>eded. The firs t is t11e ability to
`describe scenes in terms of object motions and in(cid:173)
`teractions. The second is the ability to recognize
`important events that occur in the scene, and to
`pick out those th,u are: relevant to the current task,
`These capabilities make it possible to develop a. va(cid:173)
`riety of novel and useful video surveiUam~e
`applications,
`
`1.1 Video Surveillance and M:onitoring
`Scenarios
`
`Our work is motivated by a several types of video
`surve-illancc and monitoring scenarios,
`
`Video cameras today produce images, which must
`he examined by humans in order to be useful, Fu(cid:173)
`tore 'smart' video cameras will produce infor(cid:173)
`mation, including descriptions of the environment
`they are monitoring and the events taking place in
`it. The information they pmducc may incJude im-
`
`1be re-11eatch describe<! in this report wns sponsored in part by
`the DARPA Image Understanding Program.
`
`Indoor Surveillance: Indoor urveiUance provides
`infom1ation about areas such as building lobbies.
`hallways, and office..~. Monitoring tasks in lobbie.s
`and ha!Iways include detection of people deposit(cid:173)
`ing things (e.g., unattended luggage in an airport
`lounge), removing things (e.g., theft}, or loitering.
`Office monitoring tasks typically require informa(cid:173)
`tion about people's identities: in an office. for
`example, the office owner may do anything at any
`
`159
`
`AVIGILON EX. 2005
`IPR2019-00311
`Page 2 of 18
`
`

`

`time. but other people should not open desk draw•
`ers or operate the computer unless the owner is
`present, Cleaning staff may come in at night to vac(cid:173)
`uum and empty trash cans, but should not handle
`objects on the desk.
`
`Outdoor SurveiUance: Outdoor surveil.lance in•
`eludes tasks such as monitoring a site perimeter for
`intrusion or threats from vehicles (e.g .• car bombs).
`In military applications. video surveitl.ance can
`function as a sentry or forward observer, e.g. by
`notifying commanders when enemy soldiers
`emerge from a wooded area or cross a road.
`
`In order for smart cameras to be practical for real(cid:173)
`world tasks, the. algorithms they use must be ro(cid:173)
`bust. Current commercial video surveillance
`systems have a high false alarm rate {Ringler and
`Hoover, 1995], which renders them useless for
`most applications. For this reason, our research
`stresses robustness and quantification of detection
`and false alarm rates. Smart camera algorithms
`must also run effectively on low-cost platforms, so
`that they can be implemented in small, low-power
`packages and can be used in large numbers. Study(cid:173)
`ing algorithms that can run in near real time makes
`it practical to conduct extensive evaluation and
`testing of systems. and may enable. worthwhtle
`ncar-tem1 applications as well as contributing to
`long-tenn research goals.
`
`1.2 Approach
`
`The first step in processing a video stream for sur(cid:173)
`veillance purpose$ is to identify the important
`objects in the scene. In this paper it is assumed that
`the important objects are those that move indepen•
`denrly. Camera parameters are assumed to be fixed.
`This allows the use of simple change detection to
`identify moving objects. Where use of moving
`cameras is necessary, stabilization hardware and
`.stabilized moving object detection algoriduns can
`be used (e.g. [Burt et al, 1989, Nelson, 1991]. The
`use of criteria other than motion (e.g,, salience
`based on shape or color, or more general object
`recognition) is compatible with our approach. but
`these criteria are not used
`in our current
`appl kations.
`
`Our event recognition algorithms are based on
`graph matching. Moving objects in the image are
`
`tracked over time. Observations of an ob.iect in suc(cid:173)
`cessive video frames are finked to fonn a directed
`graph (the motion graph). Events are defined in
`terms of predicates on the motion graph. For in(cid:173)
`stance. the beginning of a chain of successjve
`observations of an o~ject is defined to be an EN•
`TER event. Event detection is described in more
`detail below.
`
`Our approach to video surveillance stresses 2D,
`image•b.~sed algorithms and simple, low-level ob(cid:173)
`ject representations that can be extracted reliably
`from the video sequence. This emphasis yields a
`high level of robustness and low computational
`cost. Object recognition and other detailed analy(cid:173)
`ses are used only after the system has determined
`that the objects in question are interesting and mer(cid:173)
`it further investigation.
`
`1.3 Research Strategy
`
`The primary technical goal of this research is to de•
`vclop general-purpose algorithms for moving
`object dett.~ction and event recognition. These algo(cid:173)
`rithms
`comprise
`the Autonomous Video
`Surveillance (AVS) system, a modular framework
`for building video surveillance applications. AVS
`is designed to be updated to incorporate better core
`algorithms or to tune the processing 10 spec.Hie do(cid:173)
`mains as our rese.arch progresses,
`
`In order to evaluate the AVS core algorithms and
`event recognition and tracking frnmework. we use
`them to develop applications motivated by the snr(cid:173)
`above. The
`vciHance
`i;cenarms
`described
`applications arc small-scale implementations of fu(cid:173)
`ture smart camera systems. They are designed for
`long-tenn operation, and are evahlated by al.lowing
`them to run for tong periods {hours or days} and
`analyzing their output.
`
`The remainder of this paper is organized as fol(cid:173)
`lows. The next section discusses related work.
`Section 3 presents the core moving object detection
`and event recognition algorithms, and the mecha(cid:173)
`nism used to establish the 3D positions of objects.
`Section 4 presents applications that have been built
`using the AVS framework. The final section dis(cid:173)
`cusses the current state of the system and our
`future plans.
`
`160
`
`AVIGILON EX. 2005
`IPR2019-00311
`Page 3 of 18
`
`

`

`2 Related Work
`
`v
`
`>
`
`Our overall approach to video surveillance has
`been influenced by lntere_<;t in seiective attention
`and task-oriented processing f Swain and Stricker,
`1991 Rimev and Brown, 1993, Camus et aL,
`t993j. The fundamental problem with current vid(cid:173)
`eo surveillance technology is
`that the useful
`information density of the images delivered to a
`human is verv !ow~ the vast majority of survt.~il(cid:173)
`lance. video frames contain no tiseful information
`at alt The fundamental role of the smart camera
`described above is to reduce the volume of data
`produced by the camera, and increase the value of
`that data. It does this by discarding irrelevant
`frames, and by expressing the information in the
`releva.nt frames primarily in symbolic form.
`
`2.1 1\-fo,·ing Object Detection
`
`Most algorithms for moving object detection using
`fixe.d cameras work by comparing incoming video
`frames to a reference image, and attributing signifi(cid:173)
`cant differences either to motion or to noise. The
`algorithms differ in the form of the comparison op(cid:173)
`erator they use. and in the way in which the
`reference image is maintained. Simple intensity
`differencing followed by thresholding is widely
`used {Jain et al., 1979, Yalamanchili et al., 1982,
`Kelly et al., I 995. Bohk:k and Davis, J 996, Court(cid:173)
`ney: I 997] ~ -ause
`is computationally
`it
`inexpensive and works quite well in many indoor
`environments. Some algorithms provide a means of
`adapting the reforence image over time., in order to
`track slow changes in lighting conditions and/or
`changes in the environment [Karmann and von
`Brandt, 1990, Makarov, J 996a). Some also filler
`the image to reduce or remove low spatial frequen~
`cy content, which again makes the detector less
`sensitive to lighting changes lMaka.rov et aL,
`19%b, Koller et al., 1994].
`
`Recent work [Pentland, 19%. Kahn et al., 1996.I
`has extended the basic change detection paradigm
`by replacing the reference image with a statistical
`model of the background. The comparison operator
`becomes a statistical test that estimates the proba(cid:173)
`bility that the obse.rved pixel value belongs to the
`background.
`
`Our baseline change detection algorithm use,-;
`thresholded absofute differencing, since this works
`well for our indoor surveillance scenarios. For ap(cid:173)
`plications where lighting change is a problem, we
`use the adaptive reference frame algorithm of Kar(cid:173)
`mann and von Brandt [ 1990]. We are also
`experimenting with a probabilistic change detector
`similar to Pfinde.r {Pentland, 1996.
`
`Our \vork assumes fixed cameras. When the cam(cid:173)
`era is not fixed, simple change dc-tection cannot be
`used because of background motion. One approach
`to this problem is to treat the scene as a collection
`of independently moving objects, and to detect and
`ignore the visual mot.ion due to camera motion
`!_e.g. Burt et al., J 9891 Other researchers have pro(cid:173)
`posed ways of detecting features of the optical flow
`that are inconsistent with a hypothesis of self mo(cid:173)
`lion (Nelson, 1991],
`
`In many of our applications moving object detec~
`tion is a prelude to person detect.ion. There has
`been significant recent progress in the development
`of algorithms to locate and tmck humans, Pfinder
`(cited above) uSt~s a coarse statistical mod.el of Im(cid:173)
`man body geometry and motion to estimate the
`likelihood that a gi\,·en pixel is part of a human.
`Several researche-rs have described methods of
`tracking human body and limb ,mwements fGavd(cid:173)
`la and Davis, 1996, Kakadiaris and Metaxas, 1996.l
`and locating faces in images [Sung and Poggio,
`1994. Rowley et al., 1996J. IntiHe and Bobick
`[ I 995] describe methods of tracking humans
`through episodes of mutual occlusion in a highly
`structured environment. We do not currently make
`use of the.se techniques in five experiments because
`of their computational cost. However, we expect
`that this type of analysis will eventually be an im~
`portant part of smart camera processing.
`
`2.2 E,·ent Recognition
`
`Most work on event recognition has focussed on
`events thal consist. of a well-defined sequence of
`primitive motions. This class of events can be con(cid:173)
`verted into spatiotemporal patterns and recognized
`using ~tati~tical pattern matching techniques, A
`number of researchers have demonstrated algo(cid:173)
`rithms for recog.nizing gestures and sign language
`te.g., Stamer and Pentland. 1995]. Bobick and
`Davis [ 1996.l describe a method of recognizing ste-
`
`161
`
`AVIGILON EX. 2005
`IPR2019-00311
`Page 4 of 18
`
`

`

`~~
`
`,~~
`
`'°t-
`-:-
`t\
`I
`.... J\t·
`
`:rs?.i:ityptc:t1
`rnotiori patterns corre-spt11i(fa1g.
`tn
`ac{ti)nt );ltt:h 11~ sitting d11wn, Wlllking, 1ir waving.
`
`Our 11p1x-oi.K:h tiJ e.,,e.m re,\)gnltkm is b~ised on th(.',
`\.'1det) d,ttaha~z .. -indt~ing work ,.,f Courlnt:.!y fl ~ini,
`which intnKfate-tl tlw use (if pre-dk,u~s t)n th~ .mi:J-(cid:173)
`tii:m graph to r~pn.~1~nt ~'>'t~n~s- \•lt)rhm gni:phs a~
`wtU suited tn repr-es,~nting .1hstrnd, gr.-nerk event~
`:mch ~~ 'd~p<.i~iting ,)r\ ,)bjfc( i)f '~,,1t1il1g to re~r,
`wl1icl1 ,m~ difficult hJ captnt~ i.t~ing th{l p,Ht~m(cid:173)
`ba~ed approat.~ht$ teforre<.1 ti:~ :ibovt_ On lht other
`himil, patt~rn--b-.<i~x! ,1pi:-it1)il~hes c.~1n represi:mJ c.Q\1)~
`p.!~.~ motions .such. as "thrmving an d:ijecl' nr
`-•wuvin,g', \.Vhkh wvuM he-dinku!t to ~-Xpre~s tishj_g
`m<)tfon graphs. H: it~ Hkdy that f)(}fh pattem~bast:d
`and ab$l:~i~- ttw~n1 ret:t,gnitfrm te-:hniques \,.,iJl be
`needed w h:mdle the foll r.mfw ,:if evt~nts thal are {)f
`interdt in surve&Hanc~ ,1ppiit~nti1m~-
`
`3 AVS Trucking and .E,~i•nt Rt't't)gnition
`Algurhbms
`
`-This se~ifon Jel;cribt'-$ th~-<.'.m~ t{!Ghn~k)gies that
`pi\?V.kk the vkk•ti sup;~H!ant:e and m11nitoring eti-(cid:173)
`pabililk~ f1f tht AVS syM~m. 1-liere ,1re tht~i1 k\!y
`(ibjt!:Ct det~~:lion, vfauM
`kx~hm)h:Jg.ks: m,}ving-
`trnckin~. and event r.'&1Jgnition, Tht~ moving d~kct
`dett1t1k)n n1utin($ <.fokrmine when <)ru:> or mt':it"e- <)b--·
`jcds -e-nm.r ,l mnnitor~d j,.::ene, d~~-id~- wnkh pixels
`in a giwn vide{1 name i:tim~:'>pmid w th{~ moving
`object~ ver:ms whi¢h pb:ds cmrespnnd to the back"
`gfoum;J, and form a simt:ii~ r~prfsentadon <.l lhe.
`1,bJe-<i'.,; im~g~ .in the vitkl,1 fram~- Thi,; re:p1~se:nta:(cid:173)
`t:krn is refuncd to ~s a motion .tf-g.fon. ,tnd it e,xists
`in n sh1t~k virk<.1 fr.arne~ ~is dlsting-1fr~htd frnm lhe
`wortd (Jbjtci~- which e,{JSt in the world :ind give ri~e
`to th,~ 1rwtkin. r~gifms,
`
`Visu~tl tr.~ckinit cQn,~is.1s nf &.!l~-rmining l'.Xirre.!>p@~
`dt-ns.:es
`l>et1.vt-M
`(W~r a
`llii:.~ motk1t1
`r~.giNi%
`fr~,mes, .'Ind m.:\intaining a ~ingk
`~et1sr~~nte1>fvsd~(cid:144)
`rel,1~,,efitati<m, or !rad,. fot the wi~ild {,bject whkh
`~ve rii;e h'l the-:sequcn(:t~ 0f motfon. i-t~git}1is h'l th~
`sequem:.e of frames, Fi.rrnHy, evenl n.~~1gnitkm :is j!
`means r.~f .·=malyziil~;Jhe cdlik.·til:m of tracks ll) ,1mJ~r
`to identify i:.ivent-. nf intere~f lnvoJving thi- w,Jrld
`ohj~t,::t~ rq~res!;'.'.nlt.ld by the tmd:.s.,
`
`'ll1e mo:viog obje-~t i.letec.tiNi t~dmnfogy W¢ ~:-m-
`1:1foy ,s_a 2D chang.:.-detection tedmique $1-mifar tn
`thit tksi,::nbtd in Jain tf rtL fl 97'9J and Yi!Mrmn-(cid:173)
`c-hiH et al f 'l:982J, Prior w ad.ivatimi of the
`1)1(>Hitmfog systl;\m, an image ~)f the bai::kgt\)\lf!ij.
`Le,. 1:tn im~1ge of the scene w'hich c-::mtairn; fl(t irt!Wv
`iiig. ~'ir <)tberw'isc interesting 6t~i~<'..t~, ts c~11Hw~tl t.1
`!{t!rve as the r~fn.•1-ri·it ihw8e, \Vlu.in die s.yS:k!n is in
`operarkm, tiK~ abs·oJut~i Jifferesict d HKt cvn~nt
`vidoo fnm)c frnm the refr~ron.;.:ti rrMgc is ~,irn})Ute-d
`hJ }1t'NitK!t -a dffj:&tiiti,~t• imag,1, 'Th~ <liffet~m:e itll•
`;igt.• is then thre~ho!1:,.l:ed at an appHiprj.itc v,iJue tu
`tiht~ln :a binary hmige in \Vhkh tht '\)ff' \ib:tg rep-(cid:173)
`-reRem h."1.:kgmu.nd p1xd\\ .and th~ ''nn'' _pixels
`ropr~.__,;;~n~ "moving ~)t(cid:157) J~:cf' pix.:~f~, Thf- fol1r--~l)n·
`m~ded co.lUfK111enfa 1-.·f tru:.win~ 1Jizji.:.!Ct pixds. in the
`thtt$hokl~d jn:i~~! ,lr~ th1c.l l)'l•~tlt]i1 rcgfons fw~ flg-(cid:173)
`Hre-· l ).
`
`Simpfo llpplic~{i{m tif the nhjett det<~tton pr1xe~
`dure onlfoi~d above re~ult~ in a rmn'lm.'<f' (tf ertot£;
`htrge!y due to the limii.iht:>ns of th~-e:<;ht~lding, IHhti
`thre$hoM tised is t.()O f ow~ ,,im.~ra ilt)i~e and s.had-(cid:173)
`{).WS wUI prod11c<.~ sp11riou" t)b_ki::t~: wtw.:reas if the
`thre~!mld :is to1> nigh, sm'n<.t pmt!uns of fhe 9bjech
`in th~ seem:-w!H foit tt} be. i::epa.rnled fmm the back"
`
`AVIGILON EX. 2005
`IPR2019-00311
`Page 5 of 18
`
`

`

`g_roMd, resilliing in br-iJa:btp, ln which a ~ingk
`\Vtxld tih_iect g.i '>'e~ ri:;e !<.1 se,•eral mothm t~gfrrm,
`within ~ sittgk ftam~, Our geMri\J appmijch is t<)
`,l}low hr~:1kup, hut u-:;~ gmuping hm~ri-:;tk~ t1>
`rl·terge multiftfe ~Hl'HR~t{ed C'Ollq,(>tients itito a 3tilglc
`mnti~)n mgi(m ,\nd mai~itain a -0ne»tt)•(n1e ,:rirr1:.~-(cid:173)
`sp~).1id~t"KC lx~twtl'tn rn-i:itkm -regioni. and w,xld
`~)bjects ·within each ft .. wn~.
`
`One W't)l.rping techiiiqut. ~-~-,uni1k)y is 20 mN.1:ib().
`.fogica! tlifatl{Jn t.->f the motion Rigion~. 'fhfa.cnahfos
`the sy~h:!1n w merge ci.m~iected compone:m"' ~pa-(cid:173)
`mteJ by a fow pix~ts,. but ttsing this kti,;hni,we tt1
`i.11an huge g,lpii result-:; fo i:t ·st~vere performan1~e
`d~grndah11i1. Mo:re-1,l\"er, diladon in the iu-1ng1:.~ $pace
`nilly t~:.t1l1 ttl lrlt<)Ht-x~rly n~s1-gh1g distant nhj,ic1s
`wnid1 a~c. nearby in th<.~ irnage {a fo·w piindt-). but
`aN in fatl sepanited hy a: la.rgt:: {iiM;:µ1ce. ·iJJ the
`wo_rl<l {a fow t~~~t).
`
`tr JD infon11atkm 1$ a-.~ibhlt-. the -t:(miii~cted ct1m~
`pone.nt grouping ,ifgoriihm mak:t$ uw of an
`¢sttm~ite ti the size (ill ·w{ffld com:-di.n;.ttes) of the
`()~jet:ts ht the tm~t:,, ]1~ bt)UJ1tfotg h1:,xe-" ()J' the
`ct1i1nected CfHUfl"ments ~re exp,lnded v~rtkaHy and
`h(iriZ(xntaJly by a tli$ml1Ct 1)1t;;~Sllted tn fhet (rather
`thuu ph.-:ds) .• and.~m:im~teJ cmnptments whh: over-(cid:173)
`),¼J)ph1g boundiiig b()X1c:~ 11re 11-ieriw<l int() a sin:gk
`1u.otion n~g~on, The techliique fi:)r ei<limatillg the
`size (If the obj~~!:-; fo the frni1ge i~ <le~criood in se<>~
`tk.m 1A below;
`
`Tb{>. fo_nctkm 1:if it-le l\VS tracking J'()tllifl~ fa hH'-S~
`ta.bHsh. corres.pondencus between
`int~ motimi
`reg:i()J\~-i.11 tht~ ciJnent fr-an~·.Mid th<)Se in th~ pti!Vi•
`t.1ns frame. \Vt> ti:sti the ledmi<Jmi t)f Cmittney
`[l.997], w'hkb pm<..~ee<l$. ~:-, ioHows. Finst a.ssm1w
`th,,t Wt': have <.:.mnpmed 2D-vtl.ocity ei.tirnm.1}s· for
`the n:lQtkin n.·gi<ms in the prt.w1mt~ frame, The$~ ve-(cid:173)
`fodty e.itirnalt~t,, toge-the..r ,.vhh !he .. !oc.~itinn~ 11f th~
`cemrnids fo the i,revh>us frame, ~ire ustd tl) prt1Ject
`th-e ki:c.nkms of th{~ <c:~n.trcshJs fJf th-.:~ 1.nNion r~gion~
`iilh) the s:.:mn~nt fra.rne, Tht.~1, a imifui.i! 1:~!i1t.:st•
`criteri<m
`iS used
`to
`t~,-,tablis-h
`tl~~ighbor
`corn:~~pmidt~m:,~s~.
`
`Let P be th<.~ ,;c.t 1,t: mmimi rt~ifoi, tt~l1t~)id kica•
`lion~ in the ptt.1,'i-mht .frarne, with p1 <.me ~uch
`location, Let p'; be the _pm_iected Jocatkm of pi iu
`
`bt~ the ·srt nf au -such
`th<~ cmn~nt frn:me. ,ind !~t
`pr<.tl~ted fo,:§1ti(m~ in the corr,~111 frame.. Let C be
`the SN (if w1otit.ifi reghm <:tntttii<l kicsititms. iti thst-(cid:173)
`.:-mr~nr frame. If the distanct: h¢tw~t~t1 p' i an;J
`c i E C is th~ smaHt.\St for an ~kmiem~- i:,f C. !ind
`thh dis.t.an<:e is ah<.) the sman~t 1}f die dist~mi~es·
`h~t<.~.'ten (~; imd ,lll ekme11ts t:1f JP {Le., 11\ and ci.
`are rm1tual n~a.n.tit neigl:fm)r:;\ theti ~s,abHstl 11 -::or•
`re-spt~fld~nq~ b~tw-et~r1. f..\ m1d {~ i ~y creating a
`b-idire~tinmil strong link lx:twctm them, tfae the zfif~
`foren(e in Hmt' and .Sf.!'<K"t~ bd\\'eell P; ,md <:; h'.l
`dete:nnine a vclodty e.siiiii,ilt~ t'Of (\_, exprnsst•d in
`phds per seci):mL H there is ~m mdsting trnck ttm-,
`taining P;-, ad(! J\ tiJ it Otherwise-, ~~tabibh a n~w
`tm<>k, and add bi:tth pl a.nd ,,--<' to it.
`
`The ~trrmg links' fom1 the Ntsfa oJ the tr,\cks \.\,ith a
`high,c<mfldtnce ()r their.- C(ln:t'.:t!nt:~$, Video obiectJ;
`-~"hkh <i1:.)· tliJt h.:w~-n~utti~l nefttest ik~ighbi::;ts :1t~ the.
`adj.Kent fmm_e- rmrf"t'lil to _fonn C()rresp(mdfnt)i;.:~
`b~ause tM under-lyi11g world <.)bjet.:t i!i inv{J!¥ed fri
`.Hn ev~•~t (t~.g., entc:r:, exit,_ dep(~it._ ~rmwc}. h t t)r·,
`<ler 1n ~s.sist in thi~ idemifo.:ath?n tl H1ese ewnts,
`1,bJtt.ts \'ltithout .\.tr(mg lints· are givc:n unidii-ed:ioi1~
`,d -~vnJk. b'tih t,1 the their fomHtMual) nearest
`m . ...-ightii:;rs, The~ ,v~ik links repr:e$en:t p,:lten:fo1l ~m,
`higuity 111 the tnkk.ing_ pttx:e:.;s;:l'he moti{m regions
`m a.H of t1H~- frame~. togefher Willi thei.r ttrm.ig amj
`wt~\k lfoks, form a mmiNt ,gmph.
`
`Hgu.1,:. 2 depict~ a 1'iimpre m(ttion graph Jn th~ fig-(cid:173)
`um, each fr~uw
`l::-
`.:me--dim~msi(maL ,tn~
`t~
`re.pre;;ente"-1 hy a vertitaf .line (r't) -- Fl R). Circle<;.
`rnpre~~m ()Qje~t~ jn tht~ $C.{~ne., the-dart tim,ws ft>!)·
`resent strxmg. links. and the g.ra)' am)ws repre-1.em
`wtia.k :Ut1k$. An ~~fett enters the s,Mn~~ in frm,1e Fl ,
`~md then move-s throi.1gh tru.~ ~-tme until Jrtmle F4,
`wMr~ it (fofri1sit~-a seci:.md ot~Ject. Th<.~ flt-~t objt~c~
`Ct)niirme~: tc1 mbw through th~ seem,. ,ttid exits; ,it
`fi:a1rie, F6. The depr:i,~itcd (lh.je..:.t remain~ :stadomtry,
`At frnn1e F'S -~nother i:.thjt~t- .enter$ tilt~ .sct~1e. lttl~(cid:173)
`f)(.)turily ~x:.dlkle~ the ~.i.fo:m.-uy s:.shj{.>ct at frar11e
`fl.n (or is o~duikxl hy it}. ,md then pn:ic<.:eds t<J
`rn.<.)Yt:: p,ii(t the SMioml.t'y <.lbfect Thh st~oncl m~\'•·
`ing ohje<:t rt~vi1rs¢~ dire~ti<)-Oi- .trxmnd frames Fl3
`and F!4, rerums w remm-'e the· :{l.atfomi.t)' i:,hj,•tf in
`·tnuui:.i, f'l 6, and frnally exit~ in frnm(~-Pf 1, t\n atidi·
`-ti1Jnal til~ject cnk~,ri iii fr;.1me ·Fs ,amt exits ut-fmme
`'E'S w·ith<'1Ut hHt~rntting with {U~y <:.)ther <)bie,t,
`
`t\s itidicated by the ~ttip{i.-1 HU patterns in Figure 2,
`the n,rrect correspondences: for the 1rn-ck:s ,iu: ~m-,
`
`AVIGILON EX. 2005
`IPR2019-00311
`Page 6 of 18
`
`

`

`ENTER
`
`I
`
`F2
`
`F;l F4
`
`FO
`
`F1
`
`bigunus after object :intcr~~tt.ions such as
`the
`occlusion ih frame FlO. The AVS system resofves
`fht~ arnbigii.ity when~ poss1hJ~- by preforring to
`rrn~tch n1nvtng o\,">je:Ct~ with mQ\c'ing obje,:is, and
`stmkmru~'-t nhjects. with J>tation(iry o~je~~t.:, Th~ xfo(cid:173)
`t:in,!lli)n bet\W.•e:n 11.K;ving and ~t.-Uimuu·y 1r11:eks i~
`~omput<.xl using thre-sholds 1.-\n the v~-t(X:tty es1.i~
`:maws., and hystere~is fbr .st:.i.biliiing 1:ransitkms
`hetwe(~.n mt>vh1g ,n<l stationa._iy,
`n .. %.iwing ,m t-x:i:.:.!u~ion. {whith 1.nay la.st ihr 1everal
`frames) ti¾~ fr;;im~-s in:1rnedfottily hdhre :md a.ftt'sr
`-the ot.~~!w;ion m-e compar~ re,g,, frames P9 mid
`Fl J .in Fl:gttrtt 2). Th~ AVS syste:n, exa:11:lint~~ e\~t.:h
`sta.ti.otiary obj~"J in the p:nH:.<iedus.ion franw,. an<l
`se.udi.es for hs cotrespt>n<fon.1 in the poi;t,oc~.luskm
`frarr.ie (whi<.:h sb:.HJ!d b{~ e.~.-a~li)' \vber~ it was be(cid:173)
`for(i,. since th~~ obje,ct is ~t~1t:iormry), ·n1i" pro~ed.tirf:
`rest1h'es a forge _port.i<.lit <.lf the. tracbns; ambigui.6e~A
`Geru~r~! re-~(cid:144)ltttfon of a:mbtgulli.e:s rn~uhing. from
`multiple mo,dng tlbjecb :in th.e. si;.eJJe is a lopk for
`ftlrth(~r n.~sl\latch, 'rhe AV$ :-yMr:Itl may ~n,~tit.
`from ind11si.on t)f a '\:fosed wottd tntckini'' faciHtv
`s.u1ch .as that described h.y
`lnti!k and Hohk~
`t4f•'-'l ·}
`l ! .'>:?,. a, • ~ ,.H)_! ,
`l ! (<.t\'\'.<'
`
`"
`
`.
`
`' ~-
`
`y
`
`~i .. ne~ir· tn time ,ts poS!iiblf to the actual occurr~m .. -e
`o:f the ztvent. The pn.~v·ious sy,,;tem whk:h ust~d rn.o(cid:173)
`tion graphs for event detedlon fCt:;unney,_. 1997}
`opernicd in a batch mode~ 1md .required mulhpl~
`passes o,,er the mmk10 graph;. pn~d11ding ordirie
`optrnti.tm. The: AVS sys.tetl} d~tecis M¢nts in,, sin-(cid:173)
`gfe pa:~~ <.rv~r th~~ .u~ol:ion grnph • . as tht'- graph is
`crca(etl. l-fowe'i<'tX~ in orde!' to reduce ,~r_mrs due h'>
`rmisc the. AVS ~yste:m introd~1~es li ~ligh1 ,t.~tay t)f
`n frame tfrnes (n~:3 itt the current .imptemenl,llt(m)
`be,fom .rep,:irting certairi evimts. F<)r ~x;;impk. "in
`Figur~ 2, ~o enter ~v-~nt occi:u·~ <m frn.m.e Fl. 'rhe
`,AVS t.ys.tem n~quires the track fo ht~ nminia.ined for
`n fran)\15 bdhre repmting the enter event. tr the
`lrnck nt.1t mttirna.ined for the required number ()f
`frame!l-, it ts ignor~di at~fl .th~ enter l~w:mi i~ m~t re-·
`ported., i.!,g" if n > 4, th~ r}hj~d itl Figure 2 whkh
`i::ntcn, in fnm1t~ F5 and c~ih, in fmm~ F8 will not
`ge11erme-.u-iy twei1t~.
`
`A .track that spHts inJo two tnidrn, ,m.e of \\'hicb l~
`movi11g, .:i.m:l tht~ other of which i:s st.itifmary. t~t)n-~-(cid:173)
`~ptmds to a DHPOS lT event. lf ,1 n!oving trM-k
`int,~rSc(:ts a. SJ.i.ltt)H<lry track, tmd lhcn OOt\tiniWi (O
`flllW{\ hut tht ~lcl(fonary track oods ,tl the interse,<;v
`tion, this ton-e.spnnds. t.-:i ~1 RE~·iOVE event. The
`remov~ event cJn be gtiti.mned a!I soot1 ;\i; fh{~ l\.."'(cid:173)
`n,cM:r disocdudt.~s 1hc. loc~tl¢n nf the stl¼fh)JltJry
`Q~joot which Wl'i!:, ·mmm,ed. and the i:.yskm t-.an ,fo •
`term.ine that .the s.t.it1m1ary nl:iect is tKl h)J1g1;.ir at
`tha( loc:,ttorL
`
`Ce.rtain fraton:_~~ t>f trn ... ks itt).d pairs d ' nw;k s c-0~(cid:173)
`~t~n<l h(cid:157) events, For exampfo, the beginnin~ of a
`.track i:.:ar.respfl!'lds tc:i ~m HN7.1:'.R ~v~nt, Md the end
`t~orre.Sp<.lnd~ t(> all EXlT ewnL 1n ,ill 1Jl1vline event
`detection sy.-;tcn:1, .it h pn!forabk t~:>.detect· tht! t:vent
`
`164
`
`AVIGILON EX. 2005
`IPR2019-00311
`Page 7 of 18
`
`

`

`11
`'-·,J t ___ ;
`----_ ______ _J
`
`'~"""'Jll't,,. r"''"~·.::~-~::~~----...
`
`I
`
`.
`
`tn. ~l ni~irmer gimilar ti:> the ncdu'>i1Jrt sftmttifm de(cid:173)
`scribc<i.l iib<)ve: in section 3,2, the :depo~it t:<:Vtilt also
`glY~)S rise t~> amhigutty n:-:i ro which (1b)t~ct is !fa::. tk··
`Jlt,siwr, and whk~h is the depo~itef.'.. F6r ~xam.ple, it
`m~.y ha.v~ be-en Huit tht~ t:>hject whkh emere<l at
`fr~h)e Fl ()t' figure .2 -~t<'JpjMd at frnme F4 and de(cid:173)
`I}o$ittd -~ tm.n-itig 1Jhje,;:t and H l$ the dtpvsitt">!:l
`object whh;h then pn;.~i.!ed~d tn exh the st:eni.i at
`Hi, Again, Ihe /\VB sy~tt.1m rehe-s {m a moving ~'s,
`.~tath:m.My distindion t(} resdve. thi.! mnbiguity. ~ml
`iH:'>tM~ t.h,u the dept~~ik>e re11).;:1in ~(4itki11:u:y ~ftt;o:_r \l
`ceJX}~it event:. Tne AVS $y1>tem require,; lmth ihe
`(k~1>o~itor Mid the de!)(,~ik't.~ trncb to t~xtetK! fr1r n
`fmmet pa1't the point al which the. trnd,s separate
`fo,g., p;:H,t fnune F5 in Flgi1re 2), ,md that the· d<>·
`pt,sired oi:,lje{',t :remain stath.ir~ary; t}therv.-ise 110
`dept)~it (iv~~-nt is gt'sK~-n\ted,
`
`A{!,O dete.cted {but ,mt Hh .. t~irate.d in Figur.t' 2}, are.
`RESl events {wlwn a m(wii1g object ~<)tne~ to a
`Sl()p). :md \\JOVE t':Wmt:s (when ,1 RESTing, t~bJtcr
`beg1n:1< W trHJ'.'t agai.n} Finally, i:me fnttlter ~•,'\\)nt
`that b: de.teeted i$ the LIGHTSOVT event, ·1vhich
`occ.tirs \11henever a forg.e ~:ha.nge {lcturs tJVt)r tht~ en-·
`tfre image .. The n1:ti{ion g:i'aph n~ed nt:,t be cN1::;1.Jlted
`t() ikte"'·:t thts event
`
`3.4 fo:~ng.e to \Vo-'rid l.Vfapping
`
`In <Jr<le.r w lrw.i.te t)bje<:t!;: ~cell ifl the image with re-(cid:173)
`~l'let! t{1 a m,w, it i~ l'l{~'X~~:<ilr</ tt) e:miblish ,i
`mapping heti..vt.*rl :image ,rnd m;.i1, toun:hmite:t This
`mapping is ~~~tJbHshed in the A.VS tyste.ni by hnv(cid:173)
`iug· a tiser draw quaclri-lattmlfs <m ihe hori2<.mtal
`
`l.urfact-"S vi~ihk lt1 an im,<\ge-, and th~ c9rresf1~)nding.
`q\i~drilatern!~ r.in a n:inp,. as shown in Figtm.:: 3, A
`warp tr,ii,11sfonna1i1:>n frnrn image t,~ m~p cnrmJi--
`th~ q11a{fri!.a.1ern!
`11ates
`is C()n:i,tri.ltt~d 11-sing
`C<)<.)rdimit~Ji-,
`
`(}nee the. transfrinnatkim. a.re,- est.iMEhe<l, the 1'J~"
`tem tan C!>tirna,~ ihf i()Cmhm i:.W an ,>b}t::<.~i (as in
`Flindih;mgh and Bammn f'f 994].) hy a~suming that
`,1ll t~bj:et,ts l\'.St (m a ht)tt21)mal s11rfac{!. \Vhen im
`~-;bject i~ Je.tccted in the scene, the-midpqlnt Qf the
`JowcH sid<.~ ~)f the b1>nndh1g twx i$ used l1S th(:· irn(cid:173)
`~1ge po.int t~) prnject int<.) ~be m;~p window using rhe
`quadrilatttal warp U'lmsforn:1-1.iion l\\.\)lberg, 199l)l,
`
`4 Applications
`·nw. i\VS core- algurithtm de,-.criood in :<;:ection '3
`have ~s.·m used as th~ b,sis for ~even1t video sur~
`v~.ill,mc.e applk,itiuns, !-kctkin. 4 describes three
`n1:1plkntkms th,1t W'~ h,1vt~ impJen:it.Jutd; .situ,~thm,\J
`,rwarene~:,, best-view sde{'.t:km for m:tivity loggfog,
`a.1Kl cnvlti:.mm~m fo,\rning.
`
`4-,l Situatfonal Awai--cness
`
`The goal (,f the s1tuational awarent~s~ ,ippliq,ition h
`HJ pr<)c.k1t.e--a !~~ll--time map·b.\sed display ('Yf the It),
`(~ations of pe-0pk, objez:ts arid
`iweott<
`'in 3.
`nl()nihJr~d reglt)n, ~md tl) alh>,.,- a user· l<:) $1x.·dfy
`i£form 1wndition~ intcriictivel.y. Ahmn ct>nditi<:ms
`may be based (m the bcafo:m~ <Jf peor,te amt. ob ...
`sects \fl the seem:, th~ !)'l~~ of (J~jt."('.tS in the i(.'.~I)(!,
`the e'\<-t:nt~ in \'>hkh 1he f)~ople Md (>lrjocls .~re 'ltl··
`
`AVIGILON EX. 2005
`IPR2019-00311
`Page 8 of 18
`
`

`

`~I!:: 1:
`l!~:!::::f!~:!'?~:!!~~:::!'~1#: .. :~l'.:::::::::\:::, .,., .
`
`.
`
`.
`
`.·.
`
`..
`
`..,.,.· ..
`
`m~1;:~~~1::~1:irnf:::::t:w
`
`· :::;;:;:rr::::::s::::::t::::.,.: ::rn::::=rn:::::.
`
`,:::::::::t•;::}}
`
`.. ··.,
`
`,,.,.,
`
`!!:~~1r:•::::i::& :liiill\\lC!:_,ij;IIiil{,i:.:,,:,.•·:,.i.p,,·:•;:·: .• ,.:.:. :,.··::.:.:'·1,.:,,:,.•·:,,: :.A: ::.: :,.: :,.•. :,:,:,,:~.;:.~:.••·.i.·.:r.:.·_:,:.1.'. ·.·.•·,•~,·, ·,:,:.·.:,::•·~:.:. :.:_,~,;,F·:·:·•.·.;,:·:.•~.:.•_~.:. •.·.:, . . •·.1.·:::•-:.' . t:~. ,: :,:;:·· :•f f::, .. ; .• ,:,·_:,:1.1 .•.I·'·:::.·.>o:.::.t
`•;n:::::::::::,:, i ilililiiili;i:Jj:l:j:!;l:J: ::rw::::::m@tntnt@::
`-
`~'!''"'"'~ 1 ~.
`
`_:; .. \_·.;
`
`.:.:::·•.•.:,.•_;:.::•_::•··.:.•.:,.i.i,. f.•,:,.l:.:·.::r
`
`- · .
`
`.•. i,.·_1,.·.i,:l,·.:,:.:.;.:, •. : .. i,.:.:,·_,.·:·.: .•. :.•.:.'.:.•::.:.:.·.~.•.:.: .. :.• .. :.: .•. l.· .. :.:.·.·.•·•.::i·•
`.. :::·• .. :,._':~.•-·,•.',: .• _:,!_:.•_:.·_:,'..:,.:,.·_!,•.: .. 1.i.i
`

`
`volve<l, and the tirnes lit which the. e·vems o,:ctu.
`F~r.tht~ru.roi:e, th~ user t'.:m specify the. acth)n to· take
`wh<~n u-n ~llum1 is triggered, e,g,, w. ge11ernte an m,t~
`,fa, Jdarm ·or wrile a hsg fik, Fer e.:,rnmp.k, tfa.~ user
`shotsld be 1tb-le to ::specify t.lrnt .m audio aLim1
`~hotdd he tr.i.ggcred if n 1}1.~rso.n dep~)sit$ :J hriefe.ase-(cid:173)
`t'l-n a glveri Htbk bct\.\.'e~n 5:00pm and 7:fK) ~m ,;m. ~
`weektiig:ht
`
`The archltt-cture, {)f the AVS situaiit)nal. awareness
`i,ystcm is dt!:pided in Figure 4, The systt~m <..:orisisls
`of one or mt,re smart ca~ne:r:is (i:11mntmk:ati11g with
`11. VjJeo Sun,eilhtm::<.i Shell {VSS). Ead1 i::amen1 hiV:.
`aSSt':ICiated with it ~1{1 in<k~pt<.ndt11t AVS ~().11~ <.~!'.lgine
`tk::it per.forms the. pnx.-:essirtg ckscrlbed in section 3.
`That is, the engine tfods. Md m.1cks movitig ohjed;<,.
`in the sce.11e, map~ their inmge- tO<.\ilions to W<)rld
`c<Jordhta.tes,. ,11)<.i W<~;ignit.cs ev~11ts h'tvi:.~king !ht"c
`ol>jtcts, Each <..:o~ engine emits ,1 stream 1.Jf hx:a(cid:173)
`tkin ii.nd ~v¢n~ r<.~pt1rts to dk VSS. which fi!tenr the
`incOn'ling ~:ven~ stre~m$ fot uwr~-::sp~!{;:Hloo ~i!tttm
`t'.1Jnditk)rt.s.and takes the apprtiprhtk cidion!"i,
`
`(},.,hje<:I f&.\~mfk-m
`Ff gm\~ 4< The $itu3.!it)M! 1i\v.aretwss !iysh~m
`
`166
`
`Jo Mlkt to d.et<~rn1h1t~ the ideniltit~s nf Z)bjeds (t,g,.
`h.riefoa..~e. riolem:K~k}. the sim:ulonat awatt~i~ss &:}'"£··
`\.1/itb m1e or more
`lcrn cotnmi.mica.te-s
`(>lUt~Cl
`analy~is. mui-hd1:1s (QA.Ms). 'flte core e"'-~ines cap(cid:173)
`tu.re Silap~hois of it:rt.crt.~hng <)bje,:ts in the scenes,
`and forward the snapsh1">t<; to thi:i. OAM,. i1long with
`the IDs ,,f the tr~ch containing the d.tjecfs .. The
`OAM the•l pro~esscs the snap$hOt in ur<ler Ul de,ter(cid:173)
`m.ine the type of ol)jeet , The OAM p,xK~~sitig and.
`the /\VS core engine C{ll'iipurntitms M~ asynctm.'>-
`1tou~. so the rnre t~nginc may hiwe pmcessc::d
`severul more fnime-s by Hine f!}e OAM .:_:ompkt~s.
`its analysis, Orn.ce tht~ analysis ·is c1)mpkte, the.
`OAM. ~'erKls the· ~s11hs (at1 ol*ct iype h,t~l) and
`the trnt.k m hack to thi~ z:,,re· engine. '.fbe tl)~ e11-
`gitle uses the ti.ad;, Il) IIJ ,)KSt)Ciate the .lahet with
`the , .on-:1:x:t object in the ~orrcnt fn~mt~ (as!>uming
`th~ <1bject h.ns remained in the :ia::,em.: anct t~~cn suc(cid:173)
`(iess!\1Uy tr~cktd).
`
`The VSS pnwide,\ a map dispfay of the monitored
`il.t'¢a. with the locations ·,•f the <)l~ject~ in the ~cene
`reported as icons•O:!l th(: map, Th~ VSS ~list) l¼Hows
`the use.:r t{) spt~ify alarm ·regions arid conditions,
`Alarul r.~gkms are si~•iiied hy Jrnwing tht)n1 on
`!he map usitlg a ffii)tis(! 5 :ind na.rning th(m1 a~ de••
`~in.!d, T

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket