throbber
Fl
`
`i
`
`\
`‘
`'
`t
`i
`
`!
`
`‘ ‘
`
`ul
`i
`'
`\
`i
`
`i
`
`f
`i
`I
`{
`
`L
`
`Fannie
`
`;
`
`SOLID-STATE #74362.985
`CIRCUITS /
`Ee ESTARS PS
`FAST
`
`9844834
`
`14/01/7093
`
`BOSTON SPA LS23 ?°BR
`
`
`
`Volume 43:Number 12(2@88:Dec.)
`
`a
`
`;
`pa
`f
`it
`vi
`i
`
`fhAy
`
`iy
`lat
`ai
`
`;
`1°
`Ny
`“4
`}
`9a
`a
`AV)
`it
`Ml
`
`pea
`
`H
`
`i
`jib
`ah
`kee
`
`:
`ee.
`
`‘
`H
`\
`i]
`t
`*
`A
`\I
`
`A1)
`i
`
`TTT
`
`senan
`
`ed
`:
`?
`
`j
`
`fa
`
`H
`
`H
`

`
`p
`:
`
`‘i
`}
`Pf
`
`a
`
`|s
`
`ie
`re
`fae
`ii
`
`}
`
`3
`;
`
`id
`i
`
`fy
`*)
`
`\
`
`)
`
`t\
`
`|
`is
`j
`
`oan
`
`INTEL 1104
`
`i
`
`

`

`IEEE JOURNALOF SOLID-STATE CIRCUITS
`The IEEE JOURNAL OF SOLID-STATE Circurts is published by the IEEE Solid-State Circuits Society. All LEEE members are eligible for membership and will receive this JOURNAL
`upon payment of the annual society membership fee of $22.00. For information on receiving this JOURNAL, write to the IEEE Service Center at the address below. Member copies of
`Transactions/Journals arefo
`r personal use only.
`
`President
`W. SANSEN
`K. U. Leuven
`Leuven, Belgium
`FAX: +32 16 321975
`
`Elected for 2005-2008 Term
`W. Gass
`6 Crownwood Ct.
`Dallas, TX 75225-2068
`
`Elected for 2007-2009 Term
`J. CORCORAN
`Agilent Technologies
`Palo Alto, CA 94303
`
`Elected for 2008-2010 Term
`T. Fiez
`School of EECS
`Oregon State Univ.
`Corvallis, OR 97331-3736
`
`Vice President
`B. Boser
`EECS Dept.
`Univ. of California
`Berkeley, CA 94720
`
`SOLID-STATE CIRCUITS SOCIETY
`http://sses.org
`Treasurer
`R. KUMAR
`Technology Connexions
`Poway, CA 92064
`FAX: (888) 386-2030
`
`Secretary
`D. A. JOHNS
`Univ. of Toronto
`Toronto, ON M55 3G4 Canada
`FAX: (416) 971-2286
`
`Past President
`R. C. JAEGER
`Alabama Microelectronics Cu.
`Aubum Univ., AL 36849
`
`A. HaAJIMiRi
`California Inst. of Technol.
`Pasadena, CA 91125-0001
`
`K. KORNEGAY
`Sch. Electr. Comput. Eng.
`Technol.
`Georgia Inst.
`Atlanta, GA 3
`0332-0250
`
`ADMINISTRATIVE COMMITTEE
`P. J. Hurst
`Univ. of California
`Dept. Elect. Comp, Eng.
`Davis, CA 95616
`
`H.-S. LEE
`Dept. Electr. Eng.
`Massachusetts Inst. Technol.
`Cambridge, MA 02139
`
`A. MATSUZAWA
`Tokyo Inst. of Technol.
`Ookayama, Meguro-ku
`Tokyo 152-8505, Japan
`T. H. Lee
`Cr. [otegr, Syst.
`Stanford Univ.
`Stanford, CA 94305-4070
`
`Executive Office
`sscs@icec.org
`Executive Director:
`A. O'NEILL
`(732) 981-3400
`FAX: (732) 981-3401
`a.oneill @iece.org
`I. YOUNG
`Intel Corp.
`Hillsboro, OR 97124
`
`J. VAN DER SPIEGEL
`Dept. Elect. Syst. Eng.
`Univ. of Pennsylvania
`Philadelphia, PA 19104
`
`B. Nauta
`Univ. of Twente
`7500 AE Enschede
`The Netherlands
`
`J, SEVENHANS
`AMIs Belgium
`B1804 Vilvoorde, Belgium
`
`M. SovuER
`IBM T. J. Watson Res. Ctr.
`Yorktown Heights, NY 10598
`
`K. A. L HALONEN
`Dept. Micro & Nano Sci.
`Helsinki Univ. Technol.
`02150 Espoo, Finland
`fax: +358 9 45] 2269
`karth@ecdl.tkk.fi
`
`B. Kim
`Qualeamm Ine.
`675 Campbell Technology Pkwy.
`Campbell, CA 95008
`beomsupk@qualcomm.com
`
`T. Kurapa
`Keio Univ.
`Kohoku-ku, Yokohama
`223-8522, Japan
`EDITOR
`JSSC Epiror
`B. Nauta,
`of Twente
`University
`Enschede, The Netherlands
`utwente.nl
`jssc @ewi.
`
`Associate EditorsIS
`B. Baas
`P. GILLINGHAM
`A. N. KARANICOLAS
`B. Ra2avi
`§. L Liv
`D. K. SHAEFFER
`ZeroG Wireless, Inc.
`Dept. Elect. Comput. Eng.
`Electr. Eng. Dept.
`Beceem Communications,Inc.
`Mosaid Technologies Inc.
`Dept. Electr. Eng.
`Univ. California
`11 Hines Road
`3960 FreedomCir.. First Floor
`,
`National Taiwan Univ.
`255 San Geronimo Way
`Univ. of California, Los Angeles
`Kanata. ON K2K 2X1
`Davis, CA 95616
`Santa Clara, CA 95054
`Los Angeles, CA 90095
`Sunnyvale, CA 94085
`Taipei 10617, Taiwan R.O.C.
`bbaas@ucdavis.edu
`Canada
`(310) 206-1633
`(408) 738-7518
`fax: (408) 496-0121
`fax: (886) 02-2367-1909
`fax: (310) 206-8495
`fax: (408) 738-7601
`fax: (613) 591-8148
`Isi@cc.ce.ntu.edu.tw
`dshaeffer@beceem.com.com
`A. R. BEHZAD
`razavi@ve.ucla.edu
`ank @zerogwireless.com
`gillingham@mosaid.com
`K. L. SHEPARD
`Broadcom Corp.
`16340 West Bernardo Dr.
`Dept. Elect. Eng.
`Columbia Univ.
`San Diego, CA 92127
`fax: (85%) 521-5622
`New York, NY 10027
`arya@broadcom.com
`shepard@ce.columbia.edu
`M.P. FLYNN
`D. YounG
`Dept. EECS
`Dept. Elect. Eng. Comput. Sci.
`Case Western Reserve Univ.
`Univ. Michigan
`Ann Arbor, MI 48109-2122
`Cleveland, OH 44106
`fax: (734) 763-9324
`fax: (216) 368-6039
`mpflynn@eecs.umich.edu
`djy@po.cwru.edu
`R. GHARPUREY
`Dept. Elect. Comput. Eng.
`Univ, Texas at Austin
`Austin, TX 78712
`(512) 232-7940
`ranjilg@ mail.cerc.utexas.edu
`
`P. K. T. Mox
`Dept. Elect. Electron. Eng.
`Hong Kong Univ. Sci. Technol.
`Clearwater Bay, Hong Kong
`eemok @eeust.hk
`
`D. NAIRN
`Dept. Elect. Comput. Eng.
`Univ. Waterloo
`Waterloo, ON N2L 3G, Canada
`naim @uwaterloo.ca
`
`§. Rusu
`Intel Corp.
`2200 Mission College Bivd.
`Santa Clara. CA 95052
`J. SAvOs
`Qualcomm, Inc.
`3165 Kifer Rd.
`Santa Clara, CA 95051
`(408) 216-4282
`fax: (408) 533-9632
`savoj @icee.org
`
`D. LEENAERTS
`NXP Semiconductors
`High Tech Campus 5
`S656AE Eindhoven, The Netherlands
`fax: +31-40-27 44113
`Domine.Leenaerts@nxp.com*
`
`S. JAMAL
`Marvell Semiconductor
`5488 Marvell Lane
`MS 2-301
`Santa Clara, CA 95054
`sjamal@marvell.com
`
`Lewis M. TERMAN, President
`JOHN R. VIG, President-Elect
`Barry L. SHoop, Secretary
`Davip G. GREEN, Treasurer
`LEAH H. JAMIESON, Past President
`
`§, NATARAJAN
`TSMC Design Technology
`349 Terry Fox Dr.
`Kanata, ON K2K 2V6, Canada
`sn @emergingmemory.com
`IEEE Officers
`EVANGELIA MICHELI-TZANAKOU, Vice President, Educational Activities
`JOHN BAILLIEUL, Vice President, Publication Services and Products
`JosepH V. LILLIE, Vice President. Member and Geographic Activities
`J. RogerTo B. DE MARCA, Vice President, Technical Activities
`GEORGE W. ARNOLD, President, EEE Standards Association
`RussetJ, LEFEVRE, President, IEEE-USA
`GIOVANNI (NANNI) DE MICHELI, Director, Division i
`
`Betsy Davis, SPHR, Human Resources
`ANTHONY DuRNIAK, Publications Activities
`JUDITH GORMAN, Standards Activities
`CECELIA JANKOWSKI, Member and Geographic Activities
`DOUGLAS GoRHAM, Educational Activities
`
`IEEE Executive Staff
`MATTHEW LOEB, Corporate Strategy & Communications
`RICHARD D, SCHWARTZ, Business Administration
`Curis BRANTLEY,
`/EEE-USA
`MARY WARD-CALLAN, Technical Activities
`
`IEEE Periodicals
`Transactions/Journals Department
`Staff Director, FRAN ZAPPULLA
`‘
`Editorial Director. DAWN MELLEY
`Production Director; PETER M, TUOHY
`Managing Editor. MONA MITTRA—Senior Editor: ELIZABETH STEWART
`IEEE JOURNAL OF SOLID-STATE CIRCUITS (ISSN 0018-9200)is published monthly by The Institute of Electrical and Electronics Engineers, Inc. Responsibility for the contents rests
`upon the authors and not upon the IEEE, the Society/Council, or its members. IEEE Corporate Office: 3 Park Avenue, 17th Floor, New York, NY 10016-5997. IEEE Operations:
`Center: 445 Hoes Lane Piscataway, NJ 08854-4141. NJ Telephone: +1 732 981 0060. Price/Publication Information: Individual copies: IEEE members $20.00 (first copy only),
`nonmembers $77.00 per copy. (Note: Postage and handling charge not included.) Member and nonmember subscription prices available on request. Available on CD-ROM and DVD
`(see http://www,sscs.org/jssc/) as well as in microfiche and microtilm. Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to
`photocopyfor private use ofpatrons, provided the per-copy fee indicated in the code at the bottom ofthefirst page, is paid through the Copyright Clearance Center, 222 Rosewood Drive,
`Danvers, MA 01923. For all other copying. reprint, or republication permission, write to Copyrights and Permissions Department, IEEE Publications Administration, 445 Hoes Lane,
`Piscataway, NJ 08854-4141. Copyright © 2008 by TheInstitute of Electrical and Electronics Engineers, Inc. All rights reserved. Periodicals Postage Paid at New York, NY, andat additional
`mailing offices. Postmaster: Send address changes to IEEE JOURNAL OF SOLID-STATE CIRCUITS,IEEE, 445 Hoes Lane, Piscataway, NJ 08854-4141. GST Registration No. 125634188.
`CPC Sales Agreement #4001 3087. Return undeliverable Canada addresses to: Pitney Bowes IMEX, P.O. Box 4332, Stanton Rd., Toronto, ON MSW 3J4, Canada,Printed in U.S.A.
`
`
`Digital Object Identifier 10.1 109/JSSC.2008.2010302
`
`ii
`
`

`

`IEEE JOURNAL OF
`SOLID-STATE
`CIRCUITS
`
`A PUBLICATION OF THE IEEE SOLID-STATE CIRCUITS SOCIETY
`
`
`
`DECEMBER 2008
`
`VOLUME43
`
`NUMBER12
`
`JSCBC
`
`(ISSN 0018-9200)
`
`SPECIAL ISSUE ON THE 2008 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE (ISSCC)
`
`Introduction to the SpecialIssue on the 2008 IEEEInternational Solid-State Circuits Conference ..........cccccccccccecececsecececee se.
`satay apne ibaa tease onacaaein ea wing canst pen: nay Yona wales ana Rca Sle TR TRH alata SRO es S. Tsukamoto, §.-1 Liu, S. Heinen, R. Thewes, and J. Lee
`
`DATA CONVERTER PAPERS
`A 108 dB SNR, 1.1 mW Oversampling Audio DAC With A Three-level DEM TECHHIQUE pccepreseryereei siden oousseguesonesnsemesvinne
`meacamrcnanmennesemmeana mend te Ai dee memmeiemmemmarnnan manne K. Nguyen, A. Bandyopadhyay, B. Adams, K. Sweetland, and P. Baginski
`A Noise-Coupled Time-Interleaved Delta-Sigma ADC With 4.2 MHz Bandwidth, —98 dB THD, and 79 dB SNDR ssesie ti ceswcssvoace
`A aniaL AT NEeSEERRRT SRN OSA AMeECeMeEE ESOC K. Lee, J. Chae, M. Aniva, K. Hamashita, K. Takasuka, S. Takeuchi, and G. C. Temes
`A 14-b 100-MS/s Pipelined ADC With a Merged SHA and First MDAC.... B.-G. Lee, B.-M. Min, G. Manganaro, and J. W. Valvano
`An Over-60 dB True Rail-to-Rail Performance Using Correlated Level Shifting and an OpampWith Only 30 dB Loop Gain ..........
`LiNetiswaaernenemeuenecennnenations ee weneudeneaiy's vinnnnin ett haisindiandisive uuelduWNSUNSs LESTE SENET cee on wneawace B. R. Gregoire and U. Moon
`A 150 MS/s 133 pW 7 bit ADC in 90 nm Digital CMOS «2.0.20. oo cece cece ecececcececcucecenccuceccecce G. Plas and B, Verbruggen
`Highly Interleaved 5-bit, 250-MSample/s, 1.2-mW ADC With Redundant Channels in 65-nm CMOS ......0....cccccccccceeeceeeesccee.
`scavenged WAS AREAS OEE RAE UT TORT OSU HELA GER NY SNE SUSESART p Fa anes tuned beeansanve eaves cesses BP Ginsburg and A, P. Chandrakasan
`RF PAPERS
`
`2587
`
`2592
`
`2601
`2613
`
`2620
`2631
`
`264]
`
`A 52 GHz Phased-Array Receiver Front-End in 90 nm Digital CMOS 00.0.0... 0c. ccecceccccucceusecuuceccccuuceueceeeecececeeecencceecce,
`iaae INES RA eESr K. Scheir, 8. Bronckers, J. Borremans, P. Wambacq, and Y. Rolain
`A Scalable 6-to-18 GHz Concurrent Dual-Band Quad-BeamPhased-Array Receiver in CMOS ...........cccccececcecececceeceeececesee,
`cmasgnnce ag dg ADURETT EL MUS MELT ITIS ORC dienes eo 5S. Jeon, ¥.-J. Wang, H. Wang, F Bolin, A. Natarajan, A. Babakhani, and A. Aajimiri
`Transmitter Architectures Based on Near-Field Direct Antenna Modulation ........... A. Babakhani, D, B. Rutledge, and A. Hajimiri
`A Compact Wideband Front-End Using a Single-Inductor Dual-Band VCO in 90 nmDigital CMOS .......0..00c.--cececceeeeeesceee ee.
`cigs wala wie W Ware aretaraatnemeare gewialawenaeeee J. Borremans, A. Bevilacqua, S. Bronckers, M. Dehan, M. Kuijk, P. Wambacq, and J. Craninckx
`The BLIXER, a Wideband Balun-LNA-I/Q-Mixer Topology ......::scssseeeeeecreeeeneeeuuscueceueceesstueseusstuesiteeceescsrseeeeccesccee.
`een ncn NEMESIS de wren eon pace eceunsndid thd aremmminece ninyecemmayayniermacecarecace 5. C. Blaakmeer, E. A. M. Klumperink, D. M. W. Leenaerts, and B. Nauta
`Class-C Harmonic CMOS VCOs, With a General Result on Phase Noise ............ccccecececececececees A. Mazzanti and P. Andreani
`Terahertz CMOS Frequency Generator Using Linear Superposition Technique ........000.........cccsessesevececsceesecceceueseceeccccee.
`MERINOwae EEE D. Huang, T. R. LaRocca, M.-C. F Chang, L. Samoska, A, Fung, R. Campbell, and M. Andrews
`A 56-65 GHz Injection-Locked Frequency Tripler With Quadrature Outputs in 90-nm CMOS............. W. L. Chan and J. R. Long
`A Fully-Integrated Quad-Band GSM/GPRS CMOS Power Amplifier ........00..00..ccccccccccescceveeuesecsauscssetesestuteceseeseccsee.
`eracarestigceraeinieeareacneemersd lit gree
`I, Aoki, S. Kee, R. Magoon, R. Aparicio, F. Bohn, J. Zachan, G. Hatcher, D. McClymont, and A. Hajimiri
`2747
`
`7—_—_—_—_"eha»,ll
`ANALOG AND WIRELESS COMMUNICATION PAPERS
`
`2651
`
`2660
`2674
`
`2693
`
`2706
`2716
`
`2730
`2739
`
`A Field-Programmable Analog Array of 55 Digitally Tunable OTAsin a Hexagonal Lattice 20.0... ooo... ceececececcuccecceccecceucecce.
`Me errr errr er rrr rrr Rrra J. Becker, F. Henrici, S$. Trendelenburg, M. Ortmanns, and Y. Manoli
`A Current-Feedback Instrumentation Amplifier With 5 j:V Offset for Bidirectional High-Side Current-Sensing ......cccc;eeceseeneures
`cca eeeuuaeeetvnccecnneetseteteeecuneennaeeseeeeetenseessueeeesenseeetsreteeneteeeeunaaees J. F. Witte, J. H. Huijsing, and K. A. A. Makinwa
`
`2759
`
`2769
`
` "
`
`IEEE
`
`iii
`
`

`

`OOOO
`A Low-Noise Wide-BW 3.6-GHz Digital A Fractional-N Frequency Synthesizer With a Noise-Shaping Time-to-Digital Converter
`and Quantization Noise Cancellation 2.0.20... 0.0... ..ccccecccceceececuseuueveeuucuaenuee C.-H. Hsu, M. Z. Straayer and M. H. Perrott
`Spurious Tone Suppression Techniques Applied to a Wide-Bandwidth 2.4 GHz Fractional-N PLL ...........c000ceceeeceeeeeeeeneeeeeees
`SARA eR RRR NS RRR RINE REELS Ep EN eae ana TalON a Ma Tee oU alata td BaTRMET SEES GEES SET SEER. laniog SSS K. J. Wang, A. Swaminathan, and £ Galton
`Load-Independent Control of Switching DC-DC Converters With Freewheeling Current Feedback .........0.cc0ecesesereceeeeceeee teens
`Stegrrea ane ea rae y uN REET ER PRERIOIST pTSG TEs dee naenenencanemenuaeaecas ¥-J. Woo, H.-P. Le, G.-H. Cho, G.-H. Cho, and S.-1, Kim
`A 10 MHz Bandwidth, 2 mV Ripple PA Regulator for CDMA Transmitters .................-+ W-Y. Chu, B. Bakkaloglu, and 8. Kiaei
`A Pulse-Based Ultra-Wideband Transmitter in 90-nm CMOS for WPANS...........ccceccecececeeeeees M. Demirkan and R. R. Spencer
`A Fully Integrated 14 Band, 3.1 to 10.6 GHz 0.13 jm SiGe BICMOS UWBRE Transceiver ..........csceccecsuceceneeueccceseeetseecess
`{VieNTS O. Werther, M. Cavin, A. Schneider. R. Renninger, B. Liang, L. Bu, ¥. Jin, J. Rogers, and J. Marcincavage
`UWBFast-Hopping Frequency Generation Based on Sub-Harmonic HUjCCON LOCKIBE: siscsecsnsenernnnenecaneeenensncenersens unease sneies
`srnmaebneds aeeheenens td PULTE CANA Aa eeneens S. Dal Toso, A. Bevilacqua, M. Tiebout, 8. Marsili, C. Sandner, A. Gerosa, and A, Neviani
`Equalization of Third-Order Intermodulation Products in Wideband Direct Conversion Receivers ........ E. A. Keehr and A. Hajimiri
`A Low-Power WCDMA Transmitter With an Integrated Notch Filter .............0..ccccceceeeceececeusveuees A. Mirzaei and H. Darahi
`A Dual-Band CMOS MIMO Radio SoC for IEFE 802.1 1n Wireless LAN .........cccceccceeecceesceecucevueeeuuceuetecsetecnnaeetenecune
`Sep Role ea pela arate aca me Hee EWEN STEER Seas M. Zargari, L. ¥. Nathawad, H. Samavati, §. 8. Mehta, A. Kheirkhahi, P. Chen,
`K. Gang, B. Vakili-Amini, J. A. Hwang, S. Chen, M. Terrovitis, B. Kaczynski, §, Limotyrakis, M. P. Mack, H. Gan, M. Lee, R. Chang,
`H. Dogan, S. Abdollahi-Alibeik, B. Baytekin, K. Onodera, S. Meniis, A. Chang, ¥. Rajavi, 8. H. Jen, D. K. Su, and B. A. Wooley
`A Single-Chip CMOSBluetooth v2.1] Radio SoC ........ccecscssccuceucecesceccoscuceecnsctseecuucucuuecsensaectsauctsseeavanses WW Si,
`D. Weber, S. Abdollahi-Alibeik, M. Lee, R. Chang, H. Dogan, H. Gan, Y, Rajavi, S. Luschas, 8. Ozgur, P. Husted, and M. Zargavi
`
`2776
`
`2787
`
`2798
`2809
`2820
`
`2829
`
`2844
`2853
`2868
`
`2882
`
`2896
`
`aW
`
`IRELINE COMMUNICATION PAPERS
`
`A T-Coil-Enhanced 8.5 Gb/s High-Swing SST Transmitter in 65 nm Bulk CMOS With < —16 dB Return Loss Over 10 GHz
`Bandwidth occ cceccesese M. Kossel, C. Menolfi, J. Weiss, P. Buchmann, G. von Bueren, L. Rodoni, T. Morf, T. Toifl, and M. Schmatz
`A 10.3 Gb/s Burst-Mode CDR Using a AS DAC ... J. Terada, K. Nishimura, S. Kimura, H. Katsurai, N. Yoshimoto, and ¥. Ohtomo
`A 40-Gb/s CDR Circuit With Adaptive Decision-Point Control Based on Eye-Opening Monitor Feedback ............000c cece eeeee ees
`da aie eter Cee RIE Ree Le ae MEy emeTRNNNR WHat SicatalateneTe ete TONS H. Noguchi, N. Yoshida, H. Uchida, M. Ozaki, §. Kanemitsu, and S. Wada
`A 901m CMOS DSP MLSD Transceiver With Integrated AFE for Electronic Dispersion Compensation of Multimode Optical Fibers
`AUTO GDIS 0... ee cece ec eee cece e ccc ee ec ec ee eneesneeeeeseee ener eneeeucabavegeuauneessntesntneaeueseenseseetsttntneateneens O. E. Agazzi,
`M. R. Hueda, D. E. Crivelli, H. §. Carrer, A. Nazemi, G. Luna, F. Ramos, R, Lopez, C. Grace, B. Kobeissy, C. Abidin, M. Kazemi,
`M. Kargar, C. Marquez, 8. Ramprasad, F. Bollo, V. Posse, S. Ware, G. Asmanis, G. Eaton, N. Swenson, T. Lindsay, and P. Voois
`Fast Power Transient Management for OC-192 WDM Add/Drop Networks..... H.-M. Bae, J. Ashbrook, N. Shanbhag, and A, Singer
`Low-Spur, Low-Phase-Noise Clock Multiplier Based on a Combination of PLL and Recirculating DLL With Dual-Pulse R ing Oscillator
`and Self-Correcting Charge Pump ............ccccececeeeucceseeceececcucuveetererstusatsusssseestceusiieiciecereusences SL. J. Gierkink
`2967
`EEE
`IMAGERS, MEMS, MEDICAL, AND DISPLAYS PAPERS
`
`2905
`2921
`
`2929
`
`2939
`2958
`
`A 128 x 128 Single-Photon Image Sensor With Column-Level 10-Bit Time-to-Digital Converter Artay .......sessc0seeseeeseeeeeeeeeee
`week eden nee ee ee enn e cnet eee ste eeteeeseceuuassenstEFestasscesnbseeteeceucs C. Niclass, C. Favi, T. Kluter. M. Gersbach, and E. Charbon
`A Multi-Aperture Image Sensor With 0,7 jrmPixels in 0.11 jrm CMOSTechnology......... XK,Fife, A. El Gamal, and H.-S, P. Wong
`A 5: W/Channel Spectral Analysis IC for Chronic Bidirectional Brain-MachineInterfaces ............---.ececccceceeeeeeecececceceee..
`sista Biavo SHAT R TRENT ERIE SEL sw A.-T. Avestruz, W. Santa, D. Carlson, R. Jensen, S. Stanslaski, A. Helfenstine, and T. Denison
`A 200 y)W Eight-Channel EEG Acquisition ASIC for Ambulatory EEG Systems.........2.2.ccceceececececususausscessetseereuasusavenes
`Sen ene eee eee een tect rena eens e eet eneseseneetuaeseeecnevenueennaseus R. F. Yazicioglu, P. Merken, R. Puers, and C. Van Hoof
`A Mode-Matching SA Closed-Loap Vibratory Gyroscope Readout Interface With a 0.004°/s/\/Hz Noise Floor Over a 50 Hz Band...
`3039
`FENN EEE EEE eH eee c eee seen E EE REE ESSE SEES SEE eee e pec cucncnbenenetetttrntntttttetttetettnnenns C.D. Ezekwe and B. E. Boser
`scareaenannN
`2008 INDEX weceeeeeeeet ete ceecssesssseeseseesseeenssseescvsuaucessussesunsusesesessusesestsuaseeeeausessesratecsctssecsetttriteseecesssss
`3049
`
`2977
`2990
`
`3006
`
`3025
`
`a3
`
`iv
`
`

`

`This material may be protected by Copyright law (Title 17 U.S. Code)
`
`

`

`2810
`
`IEEE JOURNALOFSOLID-STATECIRCUITS, VOL. 43, NO. 12, DECEMBER 2008
`
`'
`
`oe ee cee ctee
`
`DSP
`
`
`7
`| 2 s§
`=
`5
`Modulator
`
`
`| 2 = a
`RF envelope
`
`
`ies
`£24. g
`oO ©
`oO
`Var)
`5
`|
`
`
`RF output
`-
`to antenna
`
`RF
`Carrier, ®,
`
`Fig. 2, Typical polar modulation based transmitter block diagram.
`
`CDMAPSD(dBc)
`Composite
`PSD‘(dBc)
`
`CDMAenvelope
`
`Frequency (MHz)
`(b)
`
`Fig. 3. Power spectral density (PSD) of(a) composite CDMAsignaland(b) its
`extracted envelope.
`
`using an accurate current sensing technique, efficiency and lin-
`earity of the supply modulator is further optimized. The organ-
`ization ofthis paper is as follows: Section II describes the op-
`eration of the PA supply modulator and techniques for perfor-
`mance optimization. Section III details the circuit level imple-
`mentations ofthe lincar amplifier, switch-mode regulator and
`current sensing circuit. The measurement setup and results are
`presented in Section IV, followed by a conclusion in Section V.
`
`II. DESIGN OF MASTER-SLAVE PA REGULATOR
`
`A, Operation
`Fig. 4 showsthe block diagram ofthe proposed master-slave
`linear and switch-mode combined supply modulator loaded
`
`with a PA. A high GBW linear amplifier in voltage follower
`configuration ensures that output node V,(é) tracks the refer-
`ence envelope voltage A(t). A current sensing circuit, high gain
`transimpedance amplifier and switch-mode regulator forms a
`global feedback control loop that suppresses the current output
`from the linear amplifier within the switch-mode regulator
`bandwidth, Consequently, a large portion of the load current is
`provided by the switch-mode regulator. The lower efficiency
`linear amplifier sources small amounts of output current Jjj,(€)
`to cancel out switch-moderegulator ripple and high frequency
`signal content. The transient response ofcurrents at the output
`of the switch-mode regulator J,,,(é), the linear amplifier Jy, (é)
`and combined master-slave supply modulator J,(t) is shown
`in Fig. 5. Assuming an infinite GBW linear amplifier,
`this
`architecture will generate a ripple free output current [,(¢) to
`the load. However, due to finite GBW ofthe linear amplifier,
`only the ripple energy within the linear amplifier is cancelled.
`This tradeoff between GBW of linear amplifier and ripple size
`will be discussed later,
`To gain further insight on the operation of master-slave
`supply modulators,
`the current-mode frequency response of
`the linear amplifier, switch-mode regulator, and their com-
`bined response are analyzed. The steady state output current
`of switch-mode regulator J,,,, can be defined by the linear
`regulator current J}; as follows:
`
`Ign =
`
`iy
`1
`fie jy beEy
`
`where nis the current sense ratio, A,j, is the transimpedance
`gain, S,. is the slope of the ramp in the switch-mode regulator
`and /?, is the equivalent PA load resistance. The sensed current
`is amplified by the transimpedance amplifier, comparator and
`the voltage divider formed by equivalentseries resistance (ESR)
`of the loading inductor and resistive component /?, of the PA
`load. The second-order LC filter and the ESR set the dominant
`
`pole location of the frequency response.
`From (1), we can derive the transfer function of the combined
`output current [, as follows:
`
`l
`2
`iy
`SO ey pe
`A
`Ek
`i+ 2Abin
`
`(2)
`
`

`

`CHUet al.: PA REGULATOR FOR COMA TRANSMITTERS
`
`2811
`
`Envelope
`Alte
`
`Supply Modulator
`
`
`
`Class AB
`ranslinea
`
`Biasing
`
`
`amp
`Class AB Output} Volt
`Switch
`Mode Output
`
`
`Fig. 4. The proposed master-slave linear and switch-mode PA regulator block diagram.
`
`Current Loop
`Response, K(f)
`
`
`
`
`Linear
`Amplifier
`
`
`
`
`PA Load
`
`
`lealt)AGATA |e
`la) APSA 0
`
`
`I,tt)
`
`Fig. 5. Simplified block diagramofthe proposed regulator showingripple cancellation.
`
`is the
`where Arepresents the input envelope signal and Ajj,
`open loop gain of the linear amplifier. The switch-mode regu-
`lator output current J.,, can be shown as
`
`Tem _
`l
`
`1
`
`l
`
`a
`
`
`
`Current(mA}
`
`700
`600
`
`1
`
`andfinally the linear amplifier output currentJjj,, is represented
`by
`fin_n+ S,-(L+s?+L-C) 1
`
`
`(4)
`A”
`Atia
`, 1+ = ‘
`As shown in (3) and (4),
`the output current response ofthe
`switch-mode amplifier has a two-poletransfer function forming
`a second-order low-pass characteristic, while the output current
`responseof the linear amplifier has a two-zero transfer function
`that contains a second-order high-pass characteristic. At low fre-
`quencies, the linear amplifier current output is suppressed and
`the switch-mode regulator dominates the output current. Con-
`versely, at high frequencies, the switch-mode regulator current
`responsestarts rolling off and the linear amplifier takes over the
`output current. The switch-mode regulator and linear amplifier
`current response combine and forma flat frequency response for
`the master-slave regulator. The frequency where switch-mode
`regulator current responserolls off and linear amplifier current
`response takes overis called transition frequency, fi. This [re-
`quency plays an important role on efficiency optimization and
`will be discussed in the next section.
`
`100
`
`1K
`
`1M
`
`Frequency (Hz)
`
`Fig. 6, Current-mode frequency response ofthe linear amplilier, the switch-
`mode regulator and the master-slave combined regulator.
`
`Fig. 6 plots the current-mode frequency responseofthe linear
`amplifier, switch-mode regulator and master-slave regulator. As
`predicted in the mathematical analysis, second-order low-pass
`and high-pass characteristics were obtained. The resulted flat
`output current responseis suitable for high linearity implemen-
`tation. In addition, the overall bandwidth extended by the linear
`amplifier makes the supply modulator suitable for wide band-
`width signal transmission.
`
`

`

`2812
`
`IEEE JOURNALOF SOLID-STATE CIRCUITS, VOL. 43, NO. 12.DECEMBER 2008
`
`
`
`Low F,
`
` Frequency
`(a)
`
`lem €f)
`
`lan (FS
`
`PSD(dBe),Current(mA)
`
`
`PSD(dBc),Current(mA)
`
`_ 20
`
`i)
`
`
`{ Af|
`
`aa
`
`Qono
`ao
`sawu
`
`2 5e£z
`
`tne
`~&#50
`
`0
`
`10
`
`40
`
`30
`20
`Frequency (MHz)
`(a)
`rs20 |
`
`sai
`
`oO
`
`o
`
`z Q
`
`2 -80)
`o
`|
`
`o
`-20 |
`o
`|
`60 at
`:
`a
`-40|
`5
`yallVet
`zm
`
`
`-120 |
`
`0 40~°&#5010 20 30
`
`
`
`Frequency (MHz)
`(b)
`
`Fig. 7. Ripple energy fora 10 dBm. 100 kHz SSB suppressedcarrier modula-
`tion waveformfor (a) a synchronousrectifier versus (b) a hysteretic controller.
`
`B. Performance Optimization
`
`Master—slave regulator configuration is commonly used for
`audio amplifiers, and for these applications a switch-mode
`regulator is typically configured in hysteretic control mode.
`Hysteretic controllers do not need a clocked comparator; instead
`they use a window comparator, and frequency of operation
`depends onthe load conditions. The loop response ofhysteretic
`controllers is quite fast during load transients. However, this
`variable frequency operation generates wideband spurious
`emissions at the regulator output. This in turn increases the AC
`power from the linear amplifier since more ripple energy falls
`within class-AB amplifier bandwidth. The two powerspectral
`density plots in Fig. 7 represent the ripple energy for a 10 dBm,
`100 kHz single sideband (SSB) suppressed carrier modulation
`waveform for a synchronous rectifier versus a hysteretic con-
`troller. As shown in this figure. the integrated ripple energy
`within the class-AB bandwidth is much higherfor a hysteretic
`controller. For wideband modulation schemes,
`this analysis
`shows that synchronousrectifiers are a better choice for low
`power, low spurious emissions design.
`To optimize the efficiency of a PA supply modulator, two
`properties of the envelope signals should be considered: the
`power level probability density function (PDF) discussed in
`Fig.
`| and powerspectral density (PSD). As shown in Fig. 3,
`
`
`High F,
`Frequency
`(b)
`
`Fig. 8. Portion of CDMA spectrumamplified by linear amplifier and switch-
`mode regulator at (a) low fy and (b) high fr.
`
`the envelope PSD contains high DC content and most ofthe
`envelope energy is accumulated at frequencies less than 2 MHz
`with a small portion of the envelope energyrolling offat higher
`frequencies, The bandwidth specifications of the switch-mode
`regulator can be relaxed further reduce the switching losses and
`use the linear amplifier to amplify the high frequency portion
`of the signal. However,as the bandwidth ofthe high efficiency
`switch-mode regulator becomes too low,
`the low efficiency
`linear amplifier dominates the output current, reducing overall
`efficiency. Fig. 8 showsthe portions of the envelope spectrum
`amplified by the linear amplifier and switch-mode regulator
`with different transition frequencies fr. Fig. 9 shows that peak
`efficiency of the supply modulator with a 20 dBm, 400 kHz
`SSB suppressed carrier modulated input waveform is achieved
`at 100 kHz fr.
`As discussed earlier, output ripple is another critical spec-
`ification requirement for PA supply modulator design due to
`stringent ACPR and spurious emission requirements. [8].
`In
`the proposed master-slave linear and switch-mode regulator,
`a significant portion of current ripple from the switch-mode
`
`

`

`2813
`
`Vo
`
`Vow
`
`T
`
`
`— Vewn -D — Vow
`Ve D
`Vy
`
`Veet
`
`Ramp
`V(t)
`
`“MW ‘omparator
`
`c
`
`G.= Ve
`“Vet
`
`Fig. 11. Gain calculation in comparator. D is the duty cycle of Vawm(t)-
`
`A(l)
`
`
` Current
`
`Sensor
`
`
`Comparator
`[
`
`Linear Model
`
`
`
`. 12. Linear model for master-slave linear and switch-mode regulator,
`
`a8
`
`008
`
`;
`Transimpedance
`amplifier
`
`1008Lo Comparator
`
`odB
`
`LC fiter
`
`400B
`
`es
`sv
`
`Combined
`response
`
`Individual block and the combined frequency responses in switch-
`Fig. 13.
`mode regulator feedback loop.
`
`0 dB and used —55 dBe per 30 kHz bandwidth ACPR require-
`ments to extract a maximum ripple specification of 2 mVp,
`at the overall regulator output [8]. As shown in Fig. 10(c), as
`the linear regulator unity gain-bandwidth increases, the voltage
`ripple at
`the output reduces, with the expense of reduced
`efficiency and increased linear regulator power consumption.
`For a given 2 mV,, ripple specification at a typical 16 dBm
`output power level, a linear regulator unity gain-bandwidth of
`100 MHz is selected.
`
`C. Switch-Mode Regulator Feedback Loop
`
`The switch-mode regulator feedback loop includes a current
`sensing circuit, an error amplifier, a comparator, power stage and
`a low-passfilter and is designed with maximum loop gain for
`
`CHUet al.: PA REGULATOR FOR CDMA TRANSMITTERS
`
`48
`
` -+fBs&§Efficiency(%)
`
`10
`
`100
`
`1000
`
`Transition frequency F, (kHz)
`
`Fig. 9. Efficiency optimization of a 20 dBm, 400 kHz SSB suppressed carrier
`modulation envelope waveformby varying transition frequencyfy.
`
`rso
`
`(mV)
`Outputripple
`
` 0
`
`
`Outputripple(mV)
` Output
`
`ripple(mV)
`
`0
`
`20
`
`60
`40
`Inductance (uH)
`
`80
`
`100
`
`:
`-
`9 10MHz
`Switching frequency (MHz)
`
`100
`
`>
`
`0
`
`50
`100
`Supply modulator BW (MHz)
`
`150
`
`10, Peak-to-peak output voltage ripple versus
`Fig,
`(b) switching frequency, and (c) linear amplifier GBW.
`
`(a)
`
`load inductor,
`
`regulator is cancelled by the linear amplifier. This results in a
`much smaller residue voltage and currentripple at the PA drain.
`Output inductor and switching frequency also play an important
`role on output ripple value. Fig. 10(a) and (b) shows output
`ripple versus load inductor and switching frequency for the
`proposed composite regulator. Since both ripple frequency and
`output filter corner is determined by the transition frequency,
`these parameters cannot be used for ripple optimization. There-
`fore, the effectiveness ofcurrent ripple cancellation depends on
`the GBWof the linear amplifier. For the ripple specification, we
`have assumed a worst case PA power supply rejection (PSR) of
`
`

`

`2814
`
`IEEE JOURNAL OF SOLID-STATECIRCUITS. VOL. 43, NO. 12. DECEMBER 2008
`
`
`
`Output Stage
`
`Rail-to-rail
`Input Stage
`
`Class AB
`Translinear Biasing
`
`Fig. 14. Rail-to-rail input linear class-AB amplifier with common-source outputstage in voltage follower configuration for ripple cancellation and master-slave
`supply modulator bandwidth extension.
`
`
`| linkt)=lougt{tlout)
`— lgn(t)
` V(t) : voltage is set
`
`
`by linear amplifier
`
`To PALoad
`
`Fig. 15. Switch-mode regulator in master-slave supply modulatorfor high efficiency amplification.
`
`accurate envelope tracking and highest linear amplifier output
`current suppression. For AC analysis, a linear model is utilized.
`As shownin Fig. 11, linearized gain of the comparator is defined
`by the ratio ofits output voltage swing to the amplitude ofits
`rampinput. Viwm(#) is the switching version of V, (¢) that has
`equal magnitude but containsstronger and more high-frequency
`harmonics. A linear model is obtained and Fig. 12 shows the
`linearized model of the system.
`In the comparator design a ramp voltage swing of 0.3 V is
`used,yielding an equivalent gain of 10. This gain is optimized
`in such a way that there is minimum penalty to the loop band-
`width and phase margin. The disadvantage of using a smaller
`ramp voltage is the increased comparator response time. This
`delay results in degradation in envelope tracking accuracy of the
`switch mode output current and consumes morelinear amplifier
`output current to correct the time delayerrors. Furthermore, ex-
`cess comparator delays degrade the phase margin ofthe feed-
`back loop around the combined regulator. In this design, with
`the switching frequency of the supply modulator at 10 MHz
`and a comparator BW of 96 MHz, the comparator achieves a
`response time ofless than 6 ns. The delay introduces a phase
`shift of less than 1° and requires almost no extra current from
`the linear amplifier.
`To ensure the stability of the feedback loop in the switch-
`mode regulator, the bandwidth of the switch-mode regulating
`
`loop should be at least ten times less than the switching fre-
`quency. The limited operating bandwidth filters the high fre-
`quency contents ofthe output current ripple and preventsinsta-
`bility. To minimize current use from the linear amplifier, close
`loop gain should be high. Thereis also a gain-attenuation at the
`outputofthe switch-moderegulator: the ESR andresistive load
`form a voltage divider that degrades the loop gain. Small ESR
`is preferred to minimize attenuation and power losses.
`Fig. 13 plots the frequency response ofcach block inside the
`switch-mode regulating loop. It showsthat the total current to
`voltage conversion gain of current sensing and transimpedance
`stage is approximately 30 dB, followed by a comparator gain of
`10 dB yielding an in-band gain of 40 dB. The transimpedance
`error amplifier and comparator are designed to have wide BW.
`Their poles should place beyond the GBW ofthe switch-mode
`regulator. The loading inductor sets the GBWofthe close loop
`below switching frequency.
`
`If]. Cigcuir IMPLEMENTATION
`
`A. Linear Amplifier
`
`A two-stage class-AB amplifier with a common-source
`output stage, as shown in F

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket