throbber
111111
`
`1111111111111111111111111111111111111111111111111111111111111
`US008537279B2
`
`c12) United States Patent
`Kahle
`
`(10) Patent No.:
`(45) Date of Patent:
`
`US 8,537,279 B2
`Sep.17,2013
`
`(54) DIGITAL MICROFORM IMAGING
`APPARATUS
`
`(75)
`
`Inventor: Todd A. Kahle, Hartford, WI (US)
`
`(73) Assignee: e-ImageData Corp., Hartford, WI (US)
`
`( *) Notice:
`
`Subject to any disclaimer, the term of this
`patent is extended or adjusted under 35
`U.S.C. 154(b) by 0 days.
`
`(21) Appl. No.: 13/560,283
`
`(22) Filed:
`
`Jul. 27, 2012
`
`(65)
`
`Prior Publication Data
`
`US 2012/0293845 Al
`
`Nov. 22, 2012
`
`Related U.S. Application Data
`
`(63) Continuation of application No. 11/748,692, filed on
`May 15, 2007, now Pat. No. 8,269,890.
`
`(51)
`
`(2006.01)
`
`Int. Cl.
`G03B 21110
`(52) U.S. Cl.
`USPC ............................ 348/487; 382/114; 358/487
`(58) Field of Classification Search
`USPC .......................................... 348/487; 382/114
`See application file for complete search history.
`
`(56)
`
`References Cited
`
`U.S. PATENT DOCUMENTS
`3,836,251 A
`9/1974 Hertel eta!.
`4,870,294 A
`9/1989 Hasegawa
`5,061,955 A
`10/1991 Watanabe
`5,133,024 A
`7/1992 Froessl
`5,137,347 A
`8/1992 Imai
`8/1993 Parulski et a!.
`5,241,659 A
`
`Nodelman eta!.
`12/1995
`5,477,343 A
`Sussman
`12/1996
`5,586,196 A
`Krzywdziak et a!.
`7/1997
`5,647,654 A
`Mehlo eta!.
`3/1998
`5,726,773 A
`Furukawa et a!.
`5/2000
`6,057,941 A
`Kimball et al.
`10/2001
`6,301,398 B1
`Hoshino eta!.
`6,339,483 B1
`1/2002
`6,473,205 B1 * 10/2002
`Pepe ............................. 358/483
`Schaack
`6,476,979 B1
`1112002
`7,312,454 B2 * 12/2007
`Safai et al . .................... 250/347
`7,425,067 B2 * 9/2008
`Warden eta!. ................ 3511205
`8,113,658 B2 * 2/2012
`Warden eta!. ................ 3511212
`8,269,890 B2 * 9/2012
`Kahle ........................... 348/487
`112004 Fujinawa et al.
`2004/0012827 A1
`2005/0225725 A1 * 10/2005 Warden eta!. ................ 3511216
`2006/0043303 A1 * 3/2006 Safai et al . .................... 250/347
`(Continued)
`
`JP
`
`FOREIGN PATENT DOCUMENTS
`2000356800 A
`12/2000
`
`OTHER PUBLICATIONS
`
`S-T Imaging, Inc., "Got Film? ST200X" Brochure, circa 2004, 4
`pages.
`
`Primary Examiner- Khanh Dinh
`(74) Attorney, Agent, or Firm- Quarles & Brady LLP
`
`ABSTRACT
`(57)
`A microform imaging apparatus comprising a chassis includ(cid:173)
`ing a microform media support structure configured to sup(cid:173)
`port a microform media within a plane substantially orthogo(cid:173)
`nal to a first optical axis, a fold mirror supported along the first
`optical axis to reflect light along a second optical axis that is
`angled with respect to the first optical axis, a lens supported
`along one of the first and second optical axis, an area sensor
`supported along the second optical axis, a first adjuster for
`moving the area sensor along at least a portion of the second
`optical axis and a second adjuster for moving the lens along at
`least a portion of the one of the first and second optical axis.
`
`53 Claims, 15 Drawing Sheets
`
`DIGITAL CHECK CORP. EXHIBIT 1001
`Page 1 of 25
`
`

`
`US 8,537,279 B2
`Page 2
`
`(56)
`
`References Cited
`
`U.S. PATENT DOCUMENTS
`2007/0103739 A1
`5/2007 Anderson, Jr. eta!.
`2008/0284847 A1
`1112008 Kahle
`
`2008/0288888 A1
`2009/0003854 A1 *
`2012/0008820 A1
`2012/0134029 A1 *
`* cited by examiner
`
`1112008 Kahle et a!.
`112009 Naoi eta!. ...................... 399/38
`112012 Kahle et a!.
`5/2012 Warden eta!. ................ 359/642
`
`DIGITAL CHECK CORP. EXHIBIT 1001
`Page 2 of 25
`
`

`
`U.S. Patent
`
`Sep.17,2013
`
`Sheet 1 of 15
`
`US 8,537,279 B2
`
`0
`!Vl
`
`N
`N
`
`.
`
`0
`lL
`
`DIGITAL CHECK CORP. EXHIBIT 1001
`Page 3 of 25
`
`

`
`U.S. Patent
`
`Sep. 17, 2013
`
`Sheet 2 of 15
`
`US 8,537,279 B2
`
`N .
`0
`LL
`
`DIGITAL CHECK CORP. EXHIBIT 1001
`Page 4 of 25
`
`

`
`U.S. Patent
`
`Sep.17,2013
`
`Sheet 3 of 15
`
`US 8,537,279 B2
`
`r
`
`!V)
`
`~
`
`('() .
`0
`LL
`A
`
`r'--'\
`f
`
`\
`
`_j-
`
`DIGITAL CHECK CORP. EXHIBIT 1001
`Page 5 of 25
`
`

`
`U.S. Patent
`
`Sep.17,2013
`
`Sheet 4 of 15
`
`US 8,537,279 B2
`
`DIGITAL CHECK CORP. EXHIBIT 1001
`Page 6 of 25
`
`

`
`U.S. Patent
`
`Sep.17,2013
`
`Sheet 5 of 15
`
`US 8,537,279 B2
`
`DIGITAL CHECK CORP. EXHIBIT 1001
`Page 7 of 25
`
`

`
`U.S. Patent
`
`Sep.17,2013
`
`Sheet 6 of 15
`
`US 8,537,279 B2
`
`!/')~
`! j
`
`/17
`I Jt.
`13 6
`lrn.l--#.1-!ltfH-·ttr- I 3 0
`IUE~~+r-Ht- q p
`
`FIG. 5
`
`DIGITAL CHECK CORP. EXHIBIT 1001
`Page 8 of 25
`
`

`
`U.S. Patent
`
`Sep.17,2013
`
`Sheet 7 of 15
`
`US 8,537,279 B2
`
`~
`I\"'•
`'\..I
`
`\,j
`
`\\
`
`0
`f' ~
`
`c
`
`~
`\")
`
`t ' \
`
`~~
`\D
`
`_ _g
`VI
`
`s·
`V)
`
`0
`l,[j
`
`()0
`\/)
`
`lO .
`0
`LL
`
`~
`..r-·
`
`DIGITAL CHECK CORP. EXHIBIT 1001
`Page 9 of 25
`
`

`
`U.S. Patent
`
`Sep.17,2013
`
`Sheet 8 of 15
`
`US 8,537,279 B2
`
`0
`
`C)
`~"·
`
`.
`
`0
`lL
`
`DIGITAL CHECK CORP. EXHIBIT 1001
`Page 10 of 25
`
`

`
`U.S. Patent
`
`Sep.17,2013
`
`Sheet 9 of 15
`
`US 8,537,279 B2
`
`+.J'
`...)·
`
`'
`
`...tP'
`
`i
`~
`!
`l~~
`
`~ 0/i m
`
`46 l
`1 r-
`~~
`.,.,,. ,..,~¥ . _
`.• ~L---1 t t t t
`
`l
`I
`I
`I
`I
`
`:
`I
`
`:
`
`l
`
`:
`~
`
`:J
`
`: :
`
`i
`~ _,:- ------------------------------------------------- _:
`i
`]b
`
`Z·6
`
`FIG. 8
`
`DIGITAL CHECK CORP. EXHIBIT 1001
`Page 11 of 25
`
`

`
`U.S. Patent
`
`Sep.17,2013
`
`Sheet 10 of 15
`
`US 8,537,279 B2
`
`DIGITAL CHECK CORP. EXHIBIT 1001
`Page 12 of 25
`
`

`
`U.S. Patent
`
`Sep.17,2013
`
`Sheet 11 of 15
`
`US 8,537,279 B2
`
`DIGITAL CHECK CORP. EXHIBIT 1001
`Page 13 of 25
`
`

`
`U.S. Patent
`
`Sep.17,2013
`
`Sheet 12 of 15
`
`US 8,537,279 B2
`
`-
`
`0
`N
`
`'
`
`DIGITAL CHECK CORP. EXHIBIT 1001
`Page 14 of 25
`
`

`
`U.S. Patent
`
`Sep.17,2013
`
`Sheet 13 of 15
`
`US 8,537,279 B2
`
`ll,) c
`.....
`~ ....,
`u
`0
`Q
`v
`0
`~
`~
`
`~
`
`.....
`""'
`
`00
`
`N ,_
`QJ .n
`E
`QJ
`<.>
`;1.)
`0
`
`.
`G
`u..
`
`DIGITAL CHECK CORP. EXHIBIT 1001
`Page 15 of 25
`
`

`
`U.S. Patent
`
`Sep.17,2013
`
`Sheet 14 of 15
`
`US 8,537,279 B2
`
`.
`
`0
`LL.
`
`DIGITAL CHECK CORP. EXHIBIT 1001
`Page 16 of 25
`
`

`
`U.S. Patent
`
`Sep. 17, 2013
`
`Sheet 15 of 15
`
`US 8,537,279 B2
`
`DIGITAL CHECK CORP. EXHIBIT 1001
`Page 17 of 25
`
`

`
`US 8,537,279 B2
`
`1
`DIGITAL MICROFORM IMAGING
`APPARATUS
`
`This application is a continuation of U.S. patent applica(cid:173)
`tion Ser. No. 11/748,692 which was filed on May 15,2007
`now U.S. Pat. No. 8,269,890 and which was titled "Digital
`Microform Imaging Apparatus" which is incorporated herein
`by reference in its entirety.
`
`FIELD OF THE DISCLOSURE
`
`The present disclosure relates to a digital microform imag(cid:173)
`ing apparatus.
`
`BACKGROUND OF THE DISCLOSURE
`
`Microform images are useful in archiving a variety of
`documents or records by photographically reducing and
`recording the document in a film format. Examples of typical
`microform image formats include microfilm/microfiche,
`aperture cards, jackets, 16 mm or 35 mm film roll film, car(cid:173)
`tridge film and other micro opaques. A microfiche article is a
`known form of graphic data presentation wherein a number of
`pages or images are photographically reproduced on a single
`"card" of microfiche film (such as a card of3x5 inches to 4x6
`inches, for example). Any suitable number of pages (up to a
`thousand or so) may be photographically formed in an
`orthogonal array on a single microfiche card of photographic
`film. The microfiche film may then be placed in an optical
`reader and moved over a rectilinear path until an image or a
`selected page is in an optical projection path leading to a
`display screen. Although other electronic, magnetic or optical
`imaging and storage techniques and media are available,
`there exists an extensive legacy of film type records storing
`the likes of newspapers and other print media, business
`records, government records, genealogical records, and the
`like.
`Past microfilm readers included an integral display which
`made the reader quite large, see for example U.S. Pat. No.
`5,647,654, . As the number of images that can be put on a
`standard size varies, and also the size of the record, for
`example a typical newspaper page is larger than a typical
`magazine page, images are recorded on film within a range of
`reduction ratios (original size/reduced size), and aspect ratio
`(ratio ofheight to width of the image, or vice versa). A typical
`microfilm reader may have a range of zoom or magnification
`available to accommodate a portion of the reduction ratio
`range; however, this zoom range is limited and does not
`accommodate all reduction ratios. Further, in a microfilm
`reader of the type in the '654 patent, the optical system is
`enclosed and relatively fixed, and cannot be modified by a
`user to accommodate a range of reduction ratios for which it
`is not designed. With the adoption of new storage media such
`as CDs and DVDs, and the prevalent use of desktop comput(cid:173)
`ers in libraries and other facilities which store records, it
`became apparent that a microfilm reader which acts as a
`peripheral device to a desktop computer and uses the com(cid:173)
`puter's display for displaying the film's images has several
`advantages. Such a device is shown in U.S. Pat. No. 6,057,
`941, for example.
`One of the advantages is that a single workstation can
`accommodate a variety of media such as microfiche or other
`film, optical media such as CDs and DVDs, and other elec(cid:173)
`tronic and magnetic media. Another advantage is that a single
`display is used for displaying a variety of media images. 65
`These advantages have led to the development of microfilm
`readers which work in conjunction with a desktop computer;
`
`2
`however, known peripheral device microfilm readers still
`have the problem of accommodating a relatively large range
`of reduction ratios for the film images. One known solution is
`to provide a peripheral device microfilm reader with multiple
`zoom lenses to cover the full range of magnification required
`by the relatively large range of reduction ratios. There are
`several disadvantages to this approach which include the
`lenses end up missing or misplaced, the microfilm reader
`becomes undesirably large, and/or special instructions are
`10 required to swap out lenses which makes the different zoom
`lenses difficult to use. An apparatus and/or method is needed
`which can accommodate a relatively large range of reduction
`ratios without the need for changing out parts of the apparatus
`such as the lenses, or without the need for very expensive
`15 zoom lenses.
`U.S. Pat. No. 6,301,398 discloses an apparatus for process(cid:173)
`ing microfiche images where two carriages ride on common
`rails, driven by lead screws and small DC servomotors, where
`one carriage carries the CCD camera board, and the other
`20 carriage carries an objective lens mounted upon a vertically
`moving lens board. In operation, the system's digital control(cid:173)
`ler solves a simple lens equation based upon three variables:
`lens focal length, optical reduction ratio and pixel resolution
`at original document scale, or "dots per inch" (dpi). It then
`25 drives the Z-axis carriages to their calculated positions. The
`controller then commands a succession of image scans, each
`time displacing the lens carriage slightly. It analyzes the
`images and then returns the lens carriage to the position
`giving best focus. Although this system can accommodate a
`30 variable optical reduction ratio, it has several disadvantages
`or limitations. Disadvantages include that the lens carriage is
`iteratively focused which can cause eye strain if a person is
`viewing the image during the focusing process, and this pro(cid:173)
`cess takes time. Another disadvantage is that the leads screws
`35 include backlash when reversing direction, which can make
`the iteratively focusing process difficult and/or imprecise, and
`the '398 patent is absent disclosure which discusses how to
`rectify such a problem. Yet another disadvantage is that illu(cid:173)
`mination system, film holder, lens and camera are all in line
`40 which creates a bulky system. Yet further, the '398 patent is
`absent disclosure which indicates what range of reduction
`ratios it can accommodate.
`Other noted U.S. Pat. Nos. 5,137,347; 5,726,773; 3,836,
`251; and 5,061,955. However, these patents, along with the
`45 other cited patents, together or separately, fail to disclose or
`suggest a compact digital microform imaging apparatus
`which can easily adapt to a broad range of reduction ratios,
`and also fail to disclose or suggest such a device while offer(cid:173)
`ing other modem features leveraging the potential versatility
`50 available in such a system used in conjunction with a com(cid:173)
`puter system.
`What is needed in the art is a compact and versatile digital
`microform imaging apparatus which can easily adapt to a
`broad range of reduction ratios and media types while pro-
`55 viding good resolution of the images and ease of use.
`
`SUMMARY OF THE DISCLOSURE
`
`The invention comprises, in one form thereof, a digital
`60 microform imaging apparatus which includes a chassis which
`has a microform media support structure, and an area sensor
`rotatably connected to the chassis.
`The invention comprises, in another form thereof, a digital
`microform imaging apparatus which includes an approxi(cid:173)
`mately monochromatic illumination source transmitting an
`incident light through a diffuse window along a first optical
`axis of the apparatus. A microform media support is config-
`
`DIGITAL CHECK CORP. EXHIBIT 1001
`Page 18 of 25
`
`

`
`US 8,537,279 B2
`
`3
`ured to support a microform media after the diffuse window
`and along the first optical axis. An approximately 45 degree
`fold mirror reflects the incident light transmitted through the
`microform media approximately 90 degrees along a second
`optical axis. An imaging subsystem includes a lens connected
`to a first carriage which is linearly adjustable approximately
`parallel with the second optical axis, and an area sensor
`connected to a second carriage which is linearly adjustable
`approximately parallel with the second optical axis.
`The invention comprises, in yet another form thereof, a 10
`digital microform imaging apparatus which includes a chas-
`sis and an imaging subsystem connected to the chassis. The
`imaging subsystem has a first lead screw and a second lead
`screw approximately parallel with the first lead screw. Each
`lead screw is connected to the chassis. The imaging sub- 15
`system includes at least one approximately L-shaped carriage
`with a first leg threadingly coupled to the first lead screw and
`slidingly coupled to the second lead screw.
`An advantage of an embodiment of the present invention is
`that it provides a compact microfilm viewer/scanner.
`Another advantage of an embodiment of the present inven(cid:173)
`tion is that it can accommodate a broad range of image reduc(cid:173)
`tion ratios without the need to change zoom lenses.
`Yet another advantage of an embodiment of the present
`invention is that it can accommodate a broad range of micro- 25
`form media types such as all film types and micro opaques.
`Yet other advantages of an embodiment of the present
`invention are that it uses an area sensor to sense the image
`being displayed thereby eliminating the need for scanning
`individual images with a line sensor, and resulting in high 30
`resolution scans in a relatively short amount of time, for
`example one second.
`Yet another advantage of an embodiment of the present
`invention is that it provides 360° image rotation.
`Yet another advantage of an embodiment of the present 35
`invention is that it has low energy usage.
`Yet other advantages of an embodiment of the present
`invention are that it has either auto focus or manual focus.
`
`20
`
`4
`FIG. 7-7 is a cross-sectional view taken along section line
`7-7 in FIG. 3A;
`FIG. 8 is a schematic view of the digital microform imag(cid:173)
`ing system of FIG. 1;
`FIG. 9 is a perspective view of the imaging subsystem of
`the digital microform imaging apparatus of FIG. 2;
`FIG.10 is an exploded perspective view of the lens carriage
`assembly ofFIG. 9, including among other elements, the lens
`and lens carriage;
`FIG. 11 is an exploded perspective view of the rotating
`sensor carriage assembly of FIG. 10, including among other
`elements, the rotating sensor and sensor carriage;
`FIG. 12 is a screen shot of an embodiment of a computer
`user interface of the digital microform imaging system of
`FIG.1;
`FIG. 13 is a perspective view of another embodiment of a
`digital microform imaging apparatus according to the present
`invention, particularly illustrating a motorized roll film
`microform media support; and
`FIG. 14 is a perspective view of another embodiment of a
`digital microform imaging apparatus according to the present
`invention, particularly illustrating a hand operated roll film
`microform media support.
`Corresponding reference characters indicate correspond(cid:173)
`ing parts throughout the several views. The exemplifications
`set out herein illustrate one preferred embodiment of the
`invention, in one form, and such exemplifications are not to be
`construed as limiting the scope of the invention in any man(cid:173)
`ner.
`
`DETAILED DESCRIPTION OF THE
`DISCLOSURE
`
`BRIEF DESCRIPTION OF THE DRAWINGS
`
`The above-mentioned and other features and advantages of
`this invention, and the marmer of attaining them, will become
`more apparent and the invention will be better understood by
`reference to the following description of embodiments of the 45
`invention taken in conjunction with the accompanying draw(cid:173)
`ings, wherein:
`FIG. 1 is a perspective view of an embodiment of a digital
`microform imaging system according to the present inven(cid:173)
`tion;
`FIG. 2 is a perspective view of the digital microform imag(cid:173)
`ing apparatus used in the system of FIG. 1;
`FIG. 3A is an exploded perspective view of the digital
`microform imaging apparatus of FIG. 2;
`FIG. 3B is an exploded, fragmentary, perspective view of
`the digital microform imaging apparatus of FIG. 2, illustrat(cid:173)
`ing particularly the X-Y table mobility;
`FIG. 4 is a perspective view of the digital microform imag(cid:173)
`ing apparatus ofFIG. 2 with the cover removed and as viewed
`from generally rearward of the apparatus, and particularly
`illustrating the correlation between the rotational movement
`of the motors and lead screws, and the translational move(cid:173)
`ment of the carriages;
`FIG. 5 is a top view of the digital microform imaging
`apparatus of FIG. 4;
`FIG. 6 is a side view of the digital microform imaging
`apparatus of FIG. 4;
`
`Referring now to the drawings, and more particularly to
`FIG. 1, there is shown a digital microform imaging system 20
`which generally includes digital microform imaging appara(cid:173)
`tus (DMIA) 22 connected to a computer 24. Computer 24 can
`include one or more displays 26, and user input devices such
`as a keyboard 28 and mouse 30. DMIA 22 and computer 24
`40 can be placed on a worksurface 32 of a desk, or other work(cid:173)
`surfaces, for convenient access and ease of use. DMIA 22 can
`be electrically connected to computer 24 via cable 34, which
`may provide communication using a FireWire IEEE 1394
`standard, for example.
`Computer 24 can be connected to a printer (not shown) or
`connected/networked to other computers or peripheral
`devices (also not shown) to print, store or otherwise convey
`images produced by DMIA 22. Although cable 34 is
`described as an electrical type cable, alternatively DMIA 22
`50 and computer 24 can communicate via fiber optics, or wire(cid:173)
`lessly through infrared or radio frequencies, for example.
`Referring more particularly to FIGS. 2-9, DMIA 22
`includes an approximately monochromatic illumination
`source 36, such as a light emitting diode (LED) array or other
`55 monochromatic illumination source, transmitting an incident
`light 38 through a diffuse window 40 along a first optical axis
`42 of apparatus 22. Light emitting diode (LED) array 36 can
`be an approximately 13 x9 array of individual LEDs operating
`in the 495-505 nm wavelength region, although array 36 is not
`60 limited to such parameters. The relatively monochromatic
`nature of source 36 helps reduce chromatic aberration in
`DMIA 22, thereby improving the optical resolution of the
`images produced. Diffuse window 40 can be a frosted glass
`which diffuses the light emanating from array 36, thereby
`65 creating a more uniform illumination source. DMIA 22 can
`include cover 43 to help protect the inner elements ofDMIA
`22.
`
`DIGITAL CHECK CORP. EXHIBIT 1001
`Page 19 of 25
`
`

`
`US 8,537,279 B2
`
`5
`A microform media support 44 is configured to support a
`microform media 46 after diffuse window 40 and along first
`optical axis 42. In the embodiment shown support 44 is an
`X-Y table, that is, support 44 is movable in a plane which is
`approximately orthogonal to first optical axis 42. Referring
`particularly to FIGS. 3A and 3B, microform media support 44
`includes frame 48 which supports first window 50 on one side
`of microform media 46, and second window 52 on the other
`side of microform media 46. Second window 52 hinges
`upward at 54 when frame 48 is moved forward to the extent
`that lever 56 (connected to second window 52) contacts ramps
`58 (one ramp on either side), and similarly, hinges downward
`at 54 when frame 48 is moved rearward as lever 56 is released
`from contact with ramp 58. In this way the microform media 15
`46, shown as a microfiche film withanarrayofimages 60, can
`be placed and held securely between windows 50, 52 for
`viewing. Frame 48, along with windows 50, 52 and media 46,
`are slidingly supported on rods 62 by bearings (not shown) to
`allow a transverse movement 63 of frame 48, windows 50, 52 20
`and media 46. Rods 62 are connected to brackets 64, which
`brackets are slidingly supported by chassis 66 and bearings
`(not shown) to allow a longitudinal movement 68 offrame 48,
`windows 50, 52, media 46 and rods 62.
`Referring particularly to FIGS. 6-8, an approximately 45° 25
`fold mirror 70 reflects the incident light transmitted through
`microform media 46 approximately 90° along a second opti-
`cal axis 72. First optical axis 42 and second optical axis 72 can
`be thought of as segments of the single or main optical axis.
`Mirror 70 is connected by a three point mount 76 to mirror 30
`mount 78 by fasteners 80 and springs 82. Mirror mount 78 is
`connected to chassis 66 as shown. Fold mirror 70 advanta(cid:173)
`geously shortens the overall longitudinal length of the optical
`axis which allows DMIA 22 to be more compact.
`An imaging subsystem 84 includes a first lead screw 86 and 35
`a second lead screw 88 where each lead screw is approxi(cid:173)
`mately parallel with second optical axis 72. A lens 90 is
`connected to a first carriage 92 which is linearly adjustable by
`rotating first lead screw 86. Lens 90 includes stop 94 and
`f-stop adjustment 96 which can adjust the aperture of stop 94. 40
`Lens 90 can have a fixed focal length of 50 mm, for example.
`This focal length has the advantage of a relatively large depth
`of focus. A rough formula used to quickly calculate depth of
`focus is the product of the focal length times the f-stop
`divided by 1000, which yields a depth offocus of0.55 mm for 45
`a 50 mm focal length and fll f-stop adjustment. An area
`sensor 97 is connected to a second carriage 98 which carriage
`is linearly adjustable by rotating second lead screw 88. Area
`sensor 97 can be an area array CCD sensor with a two dim en(cid:173)
`sional array of sensor elements or pixels, for example, with a 50
`3.5 fill12 pixel size, or other types of sensors and pixel sizes
`depending on resolution size requirements. The area array
`nature of sensor 97, when compared to a line sensor, elimi(cid:173)
`nates the need for scarming of the sensor when viewing two
`dimensional images. The overall novel optical layout of the 55
`present invention including the separately adjustable area
`sensor 97 and lens 90; 45° fold mirror 70; and film table 44
`location; algorithms for moving the lens and sensor to appro(cid:173)
`priate respective locations to achieve proper magnification
`and focus of the image; and the lens focal length and relatively 60
`large depth of focus, allows DMIA 22 to auto focus without
`the need for iterative measurements and refocusing the of! ens
`90 during magnification changes to accommodate different
`reduction ratios of different film media. Further, the present
`invention can easily accommodate reduction ratios in the 65
`range of 7x to 54x, although the present invention is not
`limited to such a range.
`
`6
`A first motor 100 is rotationally coupled to first lead screw
`86 by timing pulley 102, belt 104 with teeth, and timing
`pulley 106, and a second motor 108 is rotationally coupled to
`second lead screw 88 by timing pulley 110, belt 112 with
`teeth, and timing pulley 114. A controller 116 is electrically
`connected to first motor 100, second motor 108 and area
`sensor 97, where controller 116 is for receiving commands
`and other inputs from computer 24 or other input devices,
`controlling first motor 100 and second motor 108, and other
`10 elements of DMIA 22, and for outputting an image data of
`area sensor 97. Consequently, controller 116 can include one
`or more circuit boards which have a microprocessor, field
`programmable gate array, application specific integrated cir-
`cuit or other progrmable devices; motor controls; a
`receiver; a transmitter; connectors; wire interconnections
`including ribbon wire and wiring harnesses; a power supply;
`and other electrical components. Controller 116 also provides
`electrical energy and lighting controls for LED array 36. The
`lead screws serve a dual function of providing guiding ele(cid:173)
`ments as well as drive elements for lens and sensor carriages.
`It is contemplated that the present invention can include alter-
`nate designs which can separate these two functions of guid(cid:173)
`ing and driving using, for example, rails or unthreaded rods or
`a combination thereof for guiding, and a belt or rack and
`pinion arrangement or a combination thereof for driving.
`A third motor 118 is rotationally coupled to area sensor 97,
`where controller 116 additionally controls third motor 118
`through electrical connections as with motors 100 and 108.
`For example, controller 116 can rotate area sensor 97, using
`motor 118, timing pulley 120, belt 122 with teeth, and timing
`pulley 124, to match an aspect ratio of microform media 46,
`and particularly an aspect ratio of images 60. A light baffle
`126 can be connected to area sensor 97 to reduce stray light
`incident on sensor 97 and thereby further improve the reso(cid:173)
`lution and signal to noise ofDMIA 22. Light baffle 126 can
`have an antireflective coating at the front and inside surfaces
`of the baffle to further reduce stray light incident on sensor 97.
`Motors 100, 108 and 118 can be DC servomotors, or other
`motors.
`In order to autofocus DMIA 22 without iterations and
`successive measurements, and for other reasons, it is impor(cid:173)
`tant that backlash is minimized or eliminated when rotating
`lead screws 86, 88 to linearly actuate carriages 92, 98. Fur(cid:173)
`ther, lens 90 and area sensor 97 require a stable platform in
`order to maintain optical aligrnnent. Referring more particu(cid:173)
`larly to FIGS. 10 and 11 there is shown in detail lens carriage
`assembly 127 and area sensor carriage assembly 129, respec(cid:173)
`tively. First carriage 92 can beL-shaped with a first leg 128
`threadingly coupled to first lead screw 86 using a tubular
`fitting 130 coaxially mounted with first lead screw 86 and a
`toothed insert 132 inserted into slot 134 in tubular fitting 130
`threadingly engaging at least some of the threads of first lead
`screw 86. A biasing element in the form of 0-ring 136, for
`example, holds toothed insert 132 in slot 134 and biases
`toothed insert 132 against the threads of first lead screw 86.
`The threads of lead screws 86, 88 are approximately rectan-
`gular in profile, and teeth 138 of toothed insert 132 are trian(cid:173)
`gular. Further, lead screws 86, 88 can be made from stainless
`steel whereas toothed insert 132 can be made from a self
`lubricating polymer such as polyoxymethylene, sometimes
`referred by the brand name Delrin, or other Nylon-based
`products such as Nylatron, or other materials. When triangu(cid:173)
`lar teeth 138 are inserted into corresponding rectangular
`threads oflead screws 86, and biased thereto with 0-ring 136,
`one edge of each tooth is always engaging a corresponding
`edge of the rectangular thread, and the other edge of each
`tooth is always engaging the other corresponding edge of the
`
`DIGITAL CHECK CORP. EXHIBIT 1001
`Page 20 of 25
`
`

`
`US 8,537,279 B2
`
`8
`as DMIA 22. Therefore, the microform media support struc(cid:173)
`ture according to the present invention is at least one of a X-Y
`table, a motorized roll film carrier, and a hand operated roll
`film carrier, and a cartridge film carrier.
`A preferred embodiment of the invention has been
`described in considerable detail. Many modifications and
`variations to the preferred embodiment described will be
`apparent to a person of ordinary skill in the art. Therefore, the
`invention should not be limited to the embodiments
`10 described. Rather, in order to ascertain the full scope of the
`invention, the claims which follow should be referenced.
`
`15
`
`7
`rectangular thread. In this way backlash is eliminated because
`teeth 138 are immediately engaged with the threads regard(cid:173)
`less of clockwise or counterclockwise motion of the lead
`screws, and also regardless of their just previous clockwise or
`counterclockwise motion. First leg 128 is also slidingly
`coupled to second lead screw 88 with a bushing 140. A second
`leg 142 is connected to first leg 128, the second leg slidingly
`coupled to first lead screw 86 with another bushing 140. In a
`similar manner, second L-shaped carriage 98 includes a third
`leg 144 threadingly coupled to second lead screw 88 using
`another tubular fitting 130, toothed insert 132 and 0-ring 13,
`and slidingly coupled to first lead screw 86 using a bushing
`140. A fourth leg 146 is connected to third leg 144, where
`fourth leg 146 is slidingly coupled to second lead screw 88
`using another bushing 140.
`Lens carriage assembly 127 can include a three point
`adjustable mount for lens 90 by mounting lens 90 to first
`carriage 92 using plate 148, ring 150, fasteners 152 and
`springs 154.
`Computer 24 can include a software computer user inter- 20
`face (CUI) 156 displayed by display 26 with user inputs to
`control DMIA 22 in general, and particularly, illumination
`system 36, motors 100, 108 and 118, and other elements of
`DMIA 22. Referring to FIG. 12, CUI 156 can include the
`following software user input buttons: positive/negative film 25
`type 158; landscape/portrait film orientation 160; rotate opti(cid:173)
`cal162 for rotating third motor 118; optical zoom 164 which
`controls first motor 100 and second motor 108; digital image
`rotation 166; mirror image 168 for adjusting for when media
`46 is placed on support 44 upside down; brightness 170 which 30
`adjusts the speed of sensor 97; contrast 172; focus 174 with
`manual focus (-I+) and autofocus (AF), also controlling first
`motor 100; digital magnifier 176; live button 178; scan type/
`selecting grayscale, grayscale enhanced, halftone 180; reso(cid:173)
`lution/image capture 182; scan size button for prints/fit to 35
`page 184; save image scan to computer drive #1 186; save
`image scan to computer drive #2 188; save image scan to
`computer drive #3 190; save image scan to email192; print
`image 194; restore settings 196; save settings 198; setup/tools
`200; and motorized roll film controls 202 for embodiments 40
`with motorized roll film attachments. A programmer with
`ordinary skill in the art in Windows, or other, operating sys(cid:173)
`tems, and C++ or Visual Basic programming language can
`create the CUI 156 as shown in FIG. 12 and defined above.
`CUI 156 images the image data 204 from sensor 97 on display 45
`26.
`Illumination source 36 can alternatively include lasers or
`laser diodes, electroluminescent panels, light sources with
`narrow band light filters, or other monochromatic sources.
`Media 46 can include any microform image formats such as
`microfilm/microfiche, aperture cards, jackets, 16 mm or 35
`mm film roll film, cartridge film and other micro opaques.
`Micro opaques are different than transparent film. Images are
`recorded on an opaque medium. To view these micro images
`one needs to use reflected light. The present invention can use
`LED arrays 37 (FIGS. 6 and 7) for use with micro opaques,
`which can be the same, or similar to, the monochromatic
`LED's

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket