throbber
Kaién Kuhn
`fjnivarsigy of Wasixingzon
`
`.
`
`ASML 1221
`
`

`
`Library at Cxmgmss Caizmgizxg-5n«§’ni:Eicxz:i<x:: Data;
`Kutm, Kalin J,
`Lass: wgiawingi Keiist J. Kuhn
`9‘
`cm.
`Includes index
`ISBN (}~02»36=692i«7 {har£i<:0ver)
`x ‘
`.
`.
`I flitr.&E;a.scrs-1£:w::s~i-gn and canstmczion. 2. béaalinezr optics.
`TA1675.KBé
`F393
`9763211
`C1?
`
`Acquisition Bdizncr: Esic Svansivan
`E<iit:>r«in-Cfxizfi Marcia Henson
`Production Mmazgcr: Eaywi Mendoza dc Lem:
`Ediz<:rt—in»C’hiefi Jerome (Exam
`Direczor of Pradutrtici-1 and Maswfacturirsgf David W. Rimardi
`. Manufacturing Mmager: Tnsdy Piscismi
`Full Fzgrvicze Ccéxrfiinmarz }'.}mma Suliiirzm
`Camg§§fi Smicez ET? iiazfisfin
`Editmial Assistant Amfima Ax:
`Creasjve Bkmzwz; Paula Mayizaim
`An Dimwr: Jayme Came
`Cave: Dcsigrwr. Bruce Kemciaar
`
`/
`(L1) 1993 by Frantic:-Hal}, 3:111.
`A Eflzarsora Emxcatian Campany
`Upper Sadcfie River, NJ 07458
`
`An rights reserved. 2% 314.331 4:? this Emok may he
`rcgrgéucsd, in my {mm er by any mums.
`witfxm gmxnission in writing from the gszstxiishezr.
`
`‘rise azmzur anti pxxhiishsr of this baa}: have xzsezi mair bass: effarts in gregaring this bmk. mm effcxts
`insiuéaa rim éavaingmmg rexaamch. amt.‘ testing M the thzerias mt! gzrognzns w.
`their dféaivemsss.
`Tm aummr anti pnhiishg: make as wagzmxzy nf any Tkixsfl, expmssed 91‘ irxxgaifiexl, wit}: regard II: that gragwns
`or the: dmmmxmsa cnmaéned mis beak. T11»: aazixor am: gzublishar ma not '39:: 3321112: in any wait: for
`inmdestai mt
`dismagas in ccsmedioz: with, ma! azaising om hf, she furnishing. sssrsrfarmmuza, or
`am 221' mm pmgrams.
`
`Pxintsd is the United Sterses 91" Azwexica
`13 9 3 7 ii
`5 6 3
`2
`
`ISER CI“33"‘3§'z¥&‘§314"‘7
`
`Prexxticsxffiall iitxtasrzzaéjnnal {tfxj Limii2<3,Lond:3n
`Pmnficwfiau af Augtmlia P13: ‘£.im_ited, Sydney
`Prianiicefiail Carmela Ix:c., Toremaa
`Prentiaie-§~§a§i Hi5pan0ame§'§tana, S.A., Mgxico
`I’r§::iic:~;:«§«iai1 of India Private Limiiaé, Nsswfleihi
`Prenticwfiaii of §apzm, Eng, Tokyo
`3?Ea&3{’S=6.’.'l ‘Sriucatiarn fissiua Pie. $321., Eingapara
`Eciitcxrz P‘:szzxté£e~I~ia§1 fix: Email, Lida‘, Rio cie}a.x2ei:s3
`
`
`
`

`
`
`
`Transitions Betwsaecu Lasts: 8:31:25, 10
`ilopuiatimz Inversion, 13
`
`Pfififfififi
`
`X1
`
`Organizatinn xi
`
`Tachxiical Eacicgmund xii
`
`Pedtagcgy
`
`xii
`
`Eeheciniing
`
`xiii
`
`Limknowiedgments
`
`xiv
`
`flats: Laser Funtéamantata
`
`3
`
`1
`
`ifiiméflfiflfififi Y6 3;..a&$§R$
`
`2
`
`1.2
`
`A Brief Histcszy
`
`2
`
`‘ 1.2
`
`The Laser Market
`
`5
`
`1.3
`
`1.4
`
`1.5
`
`1,6
`
`Enexgy fiiams in Atoms
`
`9
`
`Basic Stimulated Emissiém 10
`
`134.1
`L42
`
`Powar ami Energy
`
`14
`
`‘ Manzécizromaticizy. ilohémzcy, and Lizmwidth
`
`:5
`
`

`
`
`
`
`
`M..,-«:r;3/.:.,¢;.‘,;),,,_.,M
`
`'
`
`
`
`V‘_,..w.,-....~....~................w...«...¢,,_..m.,m:;MM,aWW,,,A..,w.....\,,,,.‘......,.,.V
`
`
`
`
`
`’v‘\J’!(€',%"/>v,-v,l~'rl\’.\»:\V\V'(7t"rM-yuI\/Ixyv
`
`«v,.,._\-,;..,._.«~.-2:~'«'xv.\,,.~;-
`
`
`
`"“'*"’\“‘\"“"“"“*""/-‘?'v’“"?.'m.°5°.'»...s...,.,
`
`Contains
`
`1,‘?
`
`L8.
`
`1.9
`
`. Syatiai Coherenne and Laser Sptxzkla
`
`18
`
`The {kmzfic Lamar
`
`19
`
`Transmsx: and Lsngituéinal Modes 20
`
`1.10
`
`Tim (3213:: Profile .22
`
`L11
`
`Lamr 8afnty
`
`24
`
`Symimls {ism ii: flu: Chapter
`
`25
`
`Exercises
`
`26}.
`
`9 ENERGY STAWS fiififl Gfiiifé
`
`3»?
`
`2,:
`
`35
`Energy States
`2.3.1
`Lesa: States, 35
`3,13 Mxfltigaiwszaxz Lass: Sysaams, 35
`23.3
`Lirrewidth
`the Umzeariaizxiy ikirxrsipic, 39
`2,19% Brtzaésxiizxg af Fmxisnzsezxtai 1.ia«ms2ic1ms., >41
`
`2&2
`
`Gain 43
`
`Basins af Gain, 43
`2.2.1
`22.2 Biaaiibody Rmiiafion, 4?
`2.2.3
`(}‘ain,~§5
`
`Symbuisflaad intha Ckzaptzzr
`Exercises $9
`
`ss
`
`3 3315 §¥S§.S3§"*§3§3i3?“ §’?'Ji§..(3*z9I
`
`'62
`
`3.1
`
`. 3.2
`
`Lzmgitnfiinai Matias fin the Lasgr Resonant Cavity 52
`341.1 Using an Ewan fer Sizsgie Lsngitudirml Made Oprrtatien, éé
`
`55
`Quantitative Amiysis of a Fabry-Perot Emlon
`32. 1
`Optifial W131 Rclazicms in a Fab:3e»F¢rut Etaicn, :35
`3.2.3
`Reficctioa 2122:! Transmission Coefficfiesnts in a Fa2>zy»?::rot Etalcm, 157
`3.2.’3
`Calculating the Refieeted 81143 Traxxémittad lmensixivas for 3 Fabry-Pew:
`Emlazn win: the Same Reiicavtaxsces, ’?0
`Calcufiatfmg the Refiemeé and T1"&f»:Smif£Eii Intemties for a Fa3ary«Paxot
`Estaioa wit}; ififfaxeni Reficczances, 72
`ilalcniafing the Q sari aim Fineesseof a f‘}':}}‘f}’-§3*81’t.)i Ewan, 73
`
`3.2.4
`
`3.2.5
`
`3.3
`
`Iiixssiraiiwz Fahry»’Pa.mt Etalarrz Calcislazions
`
`73
`
`Symbols Used in this Chapzar 78
`
`Exercisas
`
`‘E9
`
`

`
`vi
`
`Einnienis
`
`4 ’?°‘fiA1"J$V§:“§?§§ a§§£3£‘.T?E PRGPEfi’3*'¥£§'$
`
`83
`
`4.1
`
`4.2.
`
`4.3
`
`4.4
`
`4.5
`
`fntrodaction
`
`84
`
`8::
`TT£*IZ=siM, Transvexsée Modes
`43.2.1
`The Paraxial Apgsergmimation, 84
`4.2.2 Mafixamaxiual Treatment of the ‘lmaxverse Modes, 86
`
`TE3$’I()‘Q Gaussian Beam Fropagafim 88
`4.3.1
`The 'I'§3Mg,g car Ga1zssian_"i‘ran$vars=c Made, 88
`4.3.2
`Pmpetzies at” (has ’I‘”33i&«*I;m Mada ef the Laser, 94
`
`Ray Matxicas in Anaiyze Fwaxfial Lzms Sysimxs
`4.4.1
`Kay Matrix far a Distance :2’, 1113
`4.4.2 Ray Matrix for a Lens, KM
`43.4.3 ABC!) ‘Law Apgsiizd to Simple Lens Systcms, 108
`
`101
`
`1.10
`Gaussian Beams in Resonant Cavities
`4.5.1 Madaiing the Stability of the Laser R§$$€m:3.i€1£'.
`4.75.2 ASCD Law Apspiiexi tn Resonators, 11“?
`
`113
`

`
`Symbois Us.-mi in the Chapter 122
`Exercises
`124
`
`5 Gfiifsf
`
`$»§T£§fi.&’?'¥{3?é
`
`331
`
`5.1
`
`5.2
`
`5.3
`
`133
`fiaturation of the Exgonexxziai Gain: Pmcess
`5.1.1 Gain Sauxrafiinn far tha iiamcgeanaaxs firm, 1351
`5.1.2 Gain Sanitation fear the Efiumogmmoué Lima, 1362
`5.1.3 ‘ The Ixnpariance, cf Rate’ s‘3.:;ua.€ix;xns,'134
`
`Setting Up Rate Equatiam 135
`5.2.1 Rm Equaziflm for Fsnm~Smte Laws, 237
`{agar Quipui ‘13z:me‘:*:2‘ Charactarisiics
`$43
`5.3.}
`Optima: Tilonyling, a Simgla Appmacia, $42
`5.3.2
`PM vsrsazs 1%., an Engimzeriing fipgrcach, 147
`‘ 5.3.3
`Pm; vemxs Pg,” ziaekigtmzl ispyraach, I52
`
`Symbols‘: Um! 3:’: {ha Chezptar
`
`139‘
`
`Exercises
`
`1151
`
`3 mwssam smecgssfis
`
`ms
`
`Reiaxation Oaciilatians ’ 16:83-
`§.1.1 A Quaiitative Basctiptism. af Relaxatiun {}m11a.tion:s, 15%
`5.1.2
`NBII1=E:£1°{‘.§1 Mcatieiing of Ralaxafien Osciilmiotis. 165
`6.3.3
`Arzalyticai Traatmezzi bf Rziaxaiion Qscillaiians, 171
`
`~.»k'«.«'
`
`6.}
`
`6.2
`
`-
`1??
`Q~Swit<:hin,g
`6.2.1
`A Quaii'Ea;i've Desaripiicm of Q-«Switching, 377
`
`-»
`
`
`
`

`
`
`
`Cfiantants
`
`vii
`
`$3
`
`6.4
`
`6.23 Numerical Zvioxiaiing {if Q—Swizchiz1g, 37?’
`452.3
`Ana!y£icaIT:ca'tm§n1t. of AQ«Svwitc%1i.:1g, W8
`
`182
`The Design. cf Q~Swi£sh&s
`6.3.1 Mi:=ci:axti:;8i Qsfiwimhas, 183
`6.3.2
`Eizctraogzic Qfiwitches, E84
`6.3.,3
`Q~3Vr‘§£C:hv&s, 196
`6.331
`Saitxrabie: Ahsarber Byss for Q-Swittzhing, 19}.
`
`193
`M§3£§e~L0fs2k§:zg
`.193
`6.4.1 A Quaiixazivez ikscripticsa cs? Mosie:—Locking.
`$4.2
`aixnziytisxai ifisacriptinn of TMm3sz—Lockixig, E35
`6.4.3
`'I”i:c. ifiafiign sf Mc:ciz:~L9£:1:i§::g Madulatms. 1,98
`
`Symbols Used in the Chaim: 202
`
`6.5
`
`Exercises 204
`
`§?VT§¥£3i?£!£e‘?‘.'¥{.‘!§§ ‘R3 N{3:‘3L1W‘EfiR' £?§°T7:'G$
`
`297
`
`7.1
`
`Nnnii{mar Pularizabiiiiy
`
`298
`
`7.2 . Seamxd I-iarmsmic Gemraxian ‘Z39
`?.2;1
`‘me Pracess of Cozwersiarr, 210
`12.2
`Efixasa Matchigzg, 2&5
`12,3
`‘Design fzachrfiques fin: Fmtgusncyfiloubling Laser Beams, 320
`
`‘I13
`
`7.4
`
`7.5.
`.15
`
`Ggstiaai Parametric Qsci§.¥at<ars
`
`221-
`
`Szimxziated Ramzm Scattering 226
`
`Self-Fccusing and Opiiaai Baxnaga
`Nanliaéax Crystals
`233
`7:3»: Major cxyssags, 233
`‘R53
`{)2h::r fifrystais Used in Naniinca: Gpiics, 235
`
`231
`
`Symbcis Used in the Chapter 236
`Exercises 238
`
`$£¥.¥"P08?'3r'§v’§ ?'£{?Hi¥Q!..{3G!§5
`
`2%?
`
`8.1
`
`8.2
`
`8.3
`
`Imradsxctiozx 242
`
`2.42
`-Mniiilayer 9:2-a‘£$c£r§c Films
`8.2.1,
`The Fumiamentals {sf Muitilayar Fiim Theory, 2453
`8.2.2
`Afi{i~R&fi:i’€Ii¢3n Czsazings fmm Mizitiiayer Films, 245
`82.3 Highfleflectance Coatings from Mufiilayer Fiims, 248
`
`b
`
`Bireffingsnt Crystals 252
`8.3,:
`Fesizbée and Negaziva Urfiaxiai Cryavtals. 252
`3.3.2
`‘Wave Plates fromLBirafzi:2ge:12iCrysia§s, 25-4
`
`.,
`
`
`
`
`
`

`
`CI«3n$en’ts
`
`viii
`
`8.4
`
`261
`. ?§10t£3d§.‘»'£f3C{€3I’8
`84,1
`Thermal fleéetztors, 261
`344.2
`Fixotoeiwific Emission, 262
`84,3
`Pizetoconductors, 263
`3.4.4
`Junction ?h0todetecma~s, 265
`8.4.5 MOS Capacitor Devices, 268
`
`Symholsviised in ma Chapter 269
`
`Far! 3%
`
`fiasign at Law: 33.!-3:3-ms
`
`2%
`
`9 £:‘§NV£N'I?$NA:. G113 M3535
`
`27$
`
`9.}
`
`9.3
`
`274
`}{¢Nc Lasanrs
`9.1.!
`‘Hisimy atf Eieblé La.-z>:\2rs, 274
`9.1.2 Agxpiiaaticns fer fiézfie Lasers, $26
`29.1.3
`Tm: fiefle Enezrgy States, 23$}
`9.1.4 Design of 2; Maxim: Commarcial we Lascs, 283
`
`I
`338
`Asgun Lasers
`9.2.1
`iiistory of Argon» and Krypton-ion Laaers, 289
`912.2 Apgziicatiaas fer Argana anti Evixygszcarvion Lasers, 25%)
`9.2.3 Argan and Kryptan Law Statex. 292
`9.24 Design of :3 Medan: Cernmszcial Argon-Ian Laser. 394
`
`Exaraises 380
`
`75 €?£3‘3‘4§/E'i‘J3’?%'3s’fi€.e<3.£.
`
`8€?£..!fi»3‘i".é?'§' Ls4$£F?$
`
`333
`
`29.1
`
`18.2
`10.3
`
`303
`
`30’?
`Apygiicatizms
`.Lase:r Mamxiais 308
`19.3.1 Crysmiiine Lxsar H0338, 3&9
`1(}.3‘2 Glass Laser 803:3, 31%?
`10.3.3 The Shag: cf the Salixifitmse Laser Materiai, 313
`
`10.4
`
`The Lasar Transiiitm In Nd:YAG 312
`
`163.5
`
`Rump Txachnelogy‘ 315
`iO‘§.1 bioblc Cias Discharge Lamps as Ogticai §’um§> Sevurces far N:§:YAG
`Lascm 316
`‘
`
`103.2 Fswar sapplias far Ncsbie: Gas Discharge Lamps, 321
`10.5.3 Pam}: Cavitias for riobkz Gas Disaharga Lam?-Pazmgwd Laws, 32%
`10.5.4 S;;a:’.-¥m~?i2ys§cs (2umta~8ay GCR Famiiy, 327
`10.5.5 Sxzzmicomziucmr Lasaxs as .so1ié»sme 1.a3l:r Pump Soxxmas, 329
`10,16 Fm:z§ Cavities {or made Lassr Fumped ,8oIid~Statc Lasers, 333
`10.5.7 Cohzzrent B938 3064 ‘Laser Famiiy, 337
`Exercises
`333
`
`
`
`

`
`
`
`Cmtezm
`
`3‘? ?”fi'.%fia‘Sf??0?hf~1§»§;E?".&1L 3£3i.¥£?~$7}§‘1'°aE' £..2§S£“R3
`
`3:34
`
`11.1
`
`13.2
`
`11.3
`
`11.33
`
`U5
`
`iiismry 345
`
`3:38
`Apyficazims
`Lesa: kviaémials
`348
`13.3.1 Rnbywfrimary Lime at 694.3 um, 349
`13.3.2 A}exam:%:ite-«~Tm1ab1e imam 'i‘0£1 nm ‘to 813 mm, 351
`1'§.3,3 ’I"i:Sapp}:§:re—-'fa:r:ab1e fmm 67$ mm is: 3091) max, 353
`11.3.4 Csmpaxison batsman Ikiagczvr Sazlisiszate 3.»&S*i‘t iilnsts, 355
`
`"ri:s.a;;pmm Lam Basign
`11.4.1 Rissg Laaem. 355 '
`'
`11.5.2 Bimfringem Fiimrs, 3&2
`.1 1313.3 Cohexant Model ‘$90 and 899 Tftfiagrphitt Lxarers, 365
`
`355
`
`3'20
`Fcmtosacxzmd. Fxxise Laser mzségn
`11.5.1 i}is3;mf?.'icx:: in Fzmmsacézmsé Lama $30
`~ 31.5.2
`¥\Itsa%irma:i1ies’Us¢d to {flame Famaasecmwd msim, ?{;‘1
`11.53
`M::asx2:ris1g Femtqsecnnd Faises; 3??
`115.4
`Caiiiaiing fisiss Mafiwhuckfing, 373
`12.5.5
`fimtksg Piflsa Cempressinn, 3’?4
`11535
`fixilitsansg 37.3
`,
`11.5.”?
`Kz:rr~Le.ns M£>1§@»I.t>cki::g {i<Zi.M) in Ti:$spp.¥1ir~:. 376.
`Comxastt Mira Femmseconcl Lasars, .31’?
`11.3.8
`
`'
`
`Exercises
`
`380
`
`3‘? Qfiififi‘ Mfidflfi GOM!9¥&'R€§A£
`
`§...§$ER$
`
`3813
`
`12;}.
`
`12.2
`
`12.3
`
`The ?C)esi,gn of Carbon flisxide Lasers 385
`12.1.3 ,In1ms;i:1ction :6 C0; Laser Simes, 386
`12.1.2 The Evolxtfiaa cf C0; Lasasis, 389
`12.1.3 3rV£iVE‘.gfli(¥E {Sm Lasexs’. 393
`12.1.4 A Tygzical Medan CG; Kndxzszziai Law“, 3913-
`12.l.§ fiépfical Components and fietemom for Cf}; Lasers, 403
`
`The Bzsign af Excimer Lasers 4%
`12.2.1 Irmodxxctiun £9 Eixcimaer Last: $:a.ies., 405
`12.2.2 The iivolution of Excixrms, 403
`32.2.3 Ct'8€¥2§;$2‘33 Dmign B&c1<gmu11éi.,4i}9
`12.2.4 & Tygiical Madam Excimar Laser, 414
`12.2.5 Laser fieam Hnmogenisaers, 417
`12.2.6 2-‘xppiicatian Highlight 418
`
`42}
`{Zwerview of Seamicoxxiuctczr Dicda Lassrs
`12.3.1 Histtsry ‘sf Sezxxic.-cm<iuc=tor Diogie. Lasers, 421
`12.3.2 The Basics cf the Ssmicsmductor 9306: Laser, 424*»
`12.3.3 Coafintzmsm in the Sszmiconductor Diode Laser, $238
`12.3.4 The Qxmnmrn ‘wsii Szsmizsmnizzctcz Died: Laser, 432
`12.3.5 Application Highiight: The CD Player, 6335
`
`
`
`
`
`

`
`Ȥ
`2?
`2%
`
`
`
`.3
`
`§ i gi
`
`s2.3»:
`ii
`
`x
`
`}a;v;w§rw:x
`
`#4?
`
`Cements
`
`AJ
`
`1%.?
`
`2&3
`
`2&4
`
`3&5
`
`A13
`
`A31
`
`441
`Lasar Safety
`A.1.‘1
`Eicctamuxian, 441
`A.1.2 Eye Damage, 444
`A.I,3 Chemical Hazards, 446
`A,.i.4 Other Hazaxés. 447
`
`Significaxxt Figures‘ 450
`
`‘I136 Elestramagmfic Wave Equation 45$}
`Ay3.1 MaxweiI’s Equations, 450
`5.3.3 A Gama! Wava Equation far Light Pmpagaticn in a Eviazerial. 452
`. A33 Lig¥zt‘£’ro;311ga£iGnh1 2: Vacuum, 453
`A.3.4 Light Pmgpagaticn in a Simgzle Isotmgic Maxezéal with No Net Static
`Charga, 451$
`Ligjfxt Propagafien in 3 Sim}: Laser Mat::ia3 with Na Na? Emtic
`Cizatgm 454
`$3.5 A Dxwnimansienai Wave Eiquaxicn far a Lass Simple Iscmopic
`Bséaistiai, 4&4
`
`A.3.5
`
`Lcznscs arid ‘faiascagas
`AIL}
`Lansaas. 4:56
`13.4.2
`.(ZԤassica1 Lens Ecguations. 437
`A33 Teimww, 459
`
`456
`
`Refiactien and Rafxzacfian 461
`ASA hiemenciatzxze, 461
`A..5.2
`Szxews Law. 4&2
`A,5.3 was intexzzai Rezfiezztion, 462
`$5.4 £§mwsIs:r’s Angie, 4352
`
`Fresnel Equziiens
`
`463
`
`T225 ‘£iffe><:tivs Value cf zhs: Naniinaar Team:
`
`465»
`
`A3 mime ami Ifiesign Activities 466
`A.8,1 Gas
`Mtivizies, 456
`A.§i.2
`Z%E<§:’§’Ai§ Laser Astivifias, 4??
`$3.3 ’§‘razzsiti«:m M:::a13Las£r Activities, 4'33
`$8.4 Suxmssfnl. Smézxat Pragezzts, 4'34
`
`A;€¥
`
`Lasar z3.iig1m5zi£ 475
`
`Ali) Glussary of Basis: Lam‘ Tezsazs
`
`47’?
`
`iE‘£9EX
`
`4%
`
`#3Q%*§$?}§.N3"3 é2'S£'$ £83 BG~£'.3K
`
`£98
`
`
`
`

`
`
`
` Transifion~Mefai
`Solid -Sfafe Losers
`
`Objectives ’
`
`e To summariza the sequexxca of historig::a1 events leading to the development of rifle’
`£ransition~meia]. Sflfidrgffité laser.
`'
`’
`
`a To summarize commerciai appiications for *transiti0n~n1eia1 so3id~state ‘lasers.
`
`0 ‘TF0 Acoxnpam and contrast the energy band stmciura anti .major faser Lpmpmies ft; ._
`the -primary sammeirdal :~mIid«stat_e laser materials {ruby}, gaiexandriie,
`'I‘i:sapphirs,_
`LNd;YA¢:.}.
`_
`~
`9 T0 describe the design (if ring laser cavities.
`
`o T9 compare; and contrast ring laser cavities with linear cav’itic~s.
`a To describe tha impartance, uf bi7refri ngent fiiters.
`a To compu’te'tfi§. intensity t1'2m‘smiita'nce for a birefringent filter.
`a To describe1:h;e'c;3nstruc:ioi1 of a.co.n_1me1'cia1 1ase.rpmnped é:»011tinu0'I_1S wave:'.I‘ri:sapphi.:~e
`laser,
`
`9 T9 describe. the! design principles unxmrlying faxntosecond pulse laser design, This
`would inciude such .issue:.s as group ‘V=e1oc:i;y' dispersion (GVD), seIf~p’hase .modu,1a~
`tion (SPM), femtosecoixd pulse temporal measure_ment,‘co13iding pulse niodedocking‘
`(CPM), grating pu1s_e»c::m1px'ession, solitons, and I{er:*~1en‘s nmdwlocking (KLM).
`_
`
`a To describe the co.nstrucIi_on' of a cemmerciai u1iz'ashoz:tAp'u1se Tizsapphire lasex‘, ,
`
`‘E3
`>2;
`
`:§,
`
`344 ‘
`
`

`
`Sec. 11.1
`
`History
`
`345
`
`
`
`The transifion~1nef2s,l salm-
`. Fi'gu1':j: 11.1
`sxzltc tunable lasers use metais in the fourth
`rmv cf the ];:e.rikJdie.: {able as. the z1s:t§‘ve
`ions. Ttxszeaz ;neiais,::;a1; pmduce ‘trzx-zisitiqns
`that inwmivi-2 phomms as welt as phmons
`fiofzen cafled vibronk’: or p11onoI1'-t::rmi11atcd
`{$2‘msiti0ns)A_ Such tmus1tiQ:1s san curate
`in11a1>Ie4fb111'«‘les'ai Ilaser be-lmvior;
`
`‘i ‘L1 MSTORY
`
`V
`
`.F;;;-
`Tile hismry of tra11si§ion—':11eta1 s.o’Iic1-state txxnabie iasers is ex.cepti-_<m.a'i1y faszrixmting.
`the: HeNe, a1‘gon»-ion zinc? Nd:’YAG Iiasers (ieventhe diode pu111;7e<i Nd':YAG iasmtsz) the
`majority cf the laser science was in piace by the mid«’I960s anti ssonumcrcial deveiopmem
`proceeded rapidiy after that. T1'a11sition~meIa1 tunable soiidastate lasers are quite £i.ii”Ya’:'en£.
`Tra:1sit'ion*:neia1 II}I1<‘3b1€!’S€}H'd~SI21{€:1i1.'i81‘S
`are bmiy n2e.uAti<:med in rczxsiew papers on umabir:
`1ase;' techn<al~x::gy
`‘1f€:C€I1i}}{
`as 1982.‘
`'
`.
`‘
`’i‘i:sapphiz'e .2:-users {the cumtni stars of me mlidmaizz tmxabie mast‘ znarket) were discsw
`erad b}z»Mm1I_tonbin iI9€?>‘3.3
`'fi{:we'ver, cariy resuits with '£’i:.s21;2phir<s: wars not pmxnising due
`:0 difficuliieziwith mareriai gtmvth} If W1-3.‘5 mxiy after ‘iha .ma£ar§aIs probieins were sawed
`that the true potential af tha *IԤ:sa;)pf1im '_iz:5'ar was reatized. As: a colgseqmxxce, much of
`the Iaser devesigvpment {inciutiirxg the n2;nas*}<abia se}:f~:nacie~}x:>c.§:ing prepwsies of Titsapphiuz
`dVi.sc:ussad in Secticm 11.5) hag csecurred 1'e¥a{ive1y recenify‘.
`The tra:1siti’ox1~‘m<:£zz1 soiid«smta, tunabie lasers 133125 meial-3 in thefi faurth mw of the
`periodic ‘table as the active ions. The'transiti0n~n1e£za1i$ have a pzmially {flied 36 Shell, and
`the vzarious observed mmsitizms occur‘ near this :.<;he.iI.. 3d aiecérozzs interact mom strongly
`with the crystai field than the 4Vf’e‘lectx'o11's in canwzxxtional solidestate 1asers:suchL as .Nd:’YAG,
`This can pmduce transitions that involve’: phonons as wet] as photans {often <:.al§ed vihroziiz:
`or phonon~-terxni11at<:d t-ransétions). Such transitions am rather psca1Iia.r§ as. they can ;:reat<~:
`fiCIL’1.i‘~§£‘J£’€3}
`las¢:1‘be.h;w~iar bxatweexz two level Imnsit.ion:s,
`schematic of a vvibmnic trzmsition
`
`,
`,
`is ilimzimmd in Figzare 11.1.
`In at vib;'£mic tnmsiticsn an optical photon is used to make the transiticxn froxn the ground
`state tn the pump state, Then the ak2ct1'm1 decays tn the upper laser state by mleéwing as
`phonon (an acousticzai quanta simiiar to -a pmyton). The laser aciion oceans betweaaz the upper
`and kwwcr ‘l2ise1"As:€;tc:s. The lower laser state than decays to ‘£116 gronml state by iéieasiilg
`
`J‘. af‘Qiz(mIu121 Efzclrmz. QE—13:£ 179 (1.983)
`"B. D. Ciuenthzer and ‘R. G. Buscr,
`3?. F. Moulmn, Srziizl Sims Resemclx. 1€a,::orz, DTIC A'D».€3.Lf2~¥3(?3f4 (I982:3) (Lexington: MIT Lincoln. 1,321.,
`198:2), 91% 15~21.
`-‘P. Lacovzxra am! "L. Iisterowitzk IEEE J. ofQ:,:xz1mzm Z*£!<_:z:!mz:. QE~21:'16}-’$ >{'193S).»
`
`

`
`346
`
`~
`
`'
`
`Transitio'n»~MetaI S.olicl~Sia’te Lasers
`
`Chap. M _
`
`another phonon. Thus, founstate laser behavior is obtained from a system that is effectively
`two-state. More importantly, since a wide‘ va1*iet:_y of phonon tljansitiens are possible, the
`upper and ,lmver»1aser smtes; consist of large manifolds of states. Therefore. highly tunable
`laser action is poss.ib.1e.
`.
`The fi1‘stvibm’nic §aser\vas*1'eported by lc>h.n:=;m1et_ 3}. at Bell. Labomtmiies .in 1963.4
`It was a divalént u:ans.i{.ion‘»:netai. 32136;‘ ‘using Ni” in M‘gFg. it stimulated some early xx/mjk
`by Mc:Cumbe:‘ in the t_h.e0ry of Lvibronic lasers? Hewever, it was cryogenically cooled and
`did not excite much commercial itaterest.
`
`Fzxzither effparts by Jalmsim and his colleagues duritgg the mid to late £9609. x'esz11ted in.
`s<:ver:al mare cryeganically coaied divvallent tra1§sition~meta.1 lasers. These included Co“ in
`- Mgifi. and-“V24” in Mg}2g_.6
`.
`A major advancement occurred in 1976 when Morris and Clirxé’ obse;"s€c:d that allexam
`{kite {BeAl2().;:Cz'3*’ Q1: gzhmmium doped chsysizbexyi,
`tunable fmm 700 nm u) 818 mm)
`would ‘lass on $1'vi¥:>mnic't.ran:“siLic)n. "Walling at al. {;0‘:1§.r1nedthese results alTzd,d€i‘11Q11S{x‘zlt€d
`Q-switching behavior.” Aiexandrite. was; pal’-ticularly interesting at the time of its .dis<:o.v~ .
`‘ .<;2'y because it iasexi 21: team temperatum and inereawti in outgaut po‘.wE:r as the tcanperatme
`in‘cre:ased.9
`_
`'
`The succéssfui me at’ Cr” in a hazy! crystal. had to several <)thex'-inte1'eSiing’Vi'bmnic
`‘lasers.
`In particalar, in 1982 Shani! and Walling,” and i‘nd3pendan£¥y 'Buc}1e1“£ er 211;,”
`slxowed that exnemlkit (§3.e3AI2(SiE)3):C:‘3*, another type. of c:§1rc::i1iu.:n~d0;:ed cihrysobexiyi and
`tunable from roughly‘ 3'09 mm to 860 am} would laser as 3 vibrallic. 12156: at mam tmnpemtxzre.
`C§3r0mi—un1'waS ai5§i§.f£)L1lI£3‘3;0 generate vib_r0ni:s2 laser _parf<:¥riI1ar:c€
`in gzaduliniunu scazldiusn
`gallium game: {$3363.33 >
`.
`A
`'
`<
`.
`'
`.Thx=:se encoiz.mg.ing results; in (:hr0mium—d0ped zn.£¥le.rial.$ led ‘to a rebirth in tunable
`s;oiid~s’tate laser research. Tizsapphire fihe cmwn jaw’: of modem umab’le so'Iid*:ztate.~lasers)
`
`I. Gxtgganheilnn. I’2’z3>s. Raw, Let¥. H1318 (1963).
`‘L. F. Iolmsrm, R. €.'IZii.r:{2, and
`51}. ii. McCu1n7i_x:‘r, P}13*»5'.‘li8x'.
`l34:A2§9 (!£_i64~}_: 2). E. i\ricCumbe?, J. Mrztfz. Phys. 5:508 ’( l96<3}; and II). E.
`"M<:Cmnbe't, Phys, Rev. 336:A’952l £19653);
`'
`'
`”
`
`6L. F. 3‘ahns<1n, R. E. Diem, and H. I. Guggenlleian, App}. Pfgvs. Lexi. 5:21 (i’§)15=l); L. F. 3611113031 and H. J.
`fiiuggenheinx, J. A3321. F2153. 3l3:4l§3'I {1967};1..F.J'ahnsnn and H;I.€}11ggcx1I1eim, J. Appl. Plzyx. 38:48’37 (3.957); .
`-and L. F. 3'oIn1's»<:m,i~¥. 3. Gugganlmim and R; :’&."I‘h0n121s, Phys, 123:’. 149:179 (1966,).
`"R. C, Mzmis and._{2. F. Cline, “Clh1‘L)rniu1I!~DL>pcd Beryllixrnm g‘dnmi’nme I.as:ars;" (3.3. P:m:nt,#3,§97.853,
`Use. 14, "1976.
`f
`’
`_
`.
`‘
`
`C. Morris, ‘:3. W. 0‘Dell, and O. G. Peterson. Anmml meeting Opt. Sci.
`-31;. C, Walling. H; F;,_Jc:assen,
`.
`Amaxz, Sim F1‘ancisc;3, CA, 1978: 3. C. Walling, H. P. Brmssm. R. (3. Moms. ‘W. 0‘I}el1, zu1d‘G, Peiecson, Clpi.
`L911, 4:182 »{ 19393 3. C. VValIi;_xg, (3, G. Peterson, H. P. Jensscn, R. C. Morris, and W. 0’Del1, IEEE J. Quaufwn
`Eiemzzrz. Ql?S—l6,:13£)2 (1980); Land C. L, Sam. 1. C. Waiting, I:-1'. P.3<m$scx1. R. C. Moms, and E. W. O’Dc'Il_, PI-ac;
`Soc. I’I1o!o~§}pI. Iszsr, Eng. {S'P1‘1E’) ‘?217:l30 (1980).
`’
`-
`“M”. L, Shad zrncl H. Jcittseiarx, IEIEE J. rzf Qugmfzzm Elecwzm. QE~19:<380 {.1933}.
`mivfi. Shal1d'm1r}'3.'Wa1ling, IEEE J. of Qnrmmm .I:"?ecmm. QIE~].8:I829 (1982).
`”J',Buv:l1en,A. Km, and R. R, Alfano, 12:5}; J. of Quanlzmz zazecxz-an. QE~19:l477 £1933).
`‘ZR. V. Zharikov, N. N. ll’iche—v, S. P. Kaltin, V. "V. Laptcv, A. A. Malyutin, V. V. Osiko, V. G. Osrroumov,
`P. I’. Paslainim A. M, f’r<Si<h<:mv, V. A. Smimov, A. F. Umyslmv, and I. A. Shcherbzxkov, Emé. J. Qmummz Elecrrron,
`133274 (1983).
`‘
`
`

`
`Sec. 11.22
`
`Appfications
`
`34? '
`
`was Cliscovérccl in 1982 by 1‘vi<.>‘u.1t0n at MIT Lincoln Labs.” Aithough sz1pphi.re.is that oidesst
`laser material {ruby is (‘$173+ in zgapphire) the discovery of the lnxrtmdly tunable nalure of Ti“
`in sapphimwas quite unexpected, A review report on tunable so.1id~state lasers pubIi.<;h<:d in
`198?.” and a review paper on aIAex.andrii‘e lasers in 19.85” do not <—:v<~:n-mention Tizsapphins.
`4 Part of the deiay in Ti:sapphire ‘emerging as a viabie cmmnercial tux1ab}e‘solid«state
`lasar was inatezials~bzzsed.
`.Barl'y 'I‘i:sappl1‘ix*e crystals showed an absmption at the lasing
`wave1engt,I1s that was appmximately an order of _magnitude higher than the absoxrption in
`highvquaiixy sapph‘ire. A number of pcmible dezfects were propessdlfi and a1.‘tcr.rnuch inves-
`tigation the residual absm“ptien Vin. ~vs:ticz1i—gradir3nt~f1~aeze (V61?) :crysta1s was shown to be
`due to quadrupiy ionized ti£_auium {’I‘i‘”‘) substituting for the aluminum in ‘the. $é3pphi1”€.”’iS’
`G1‘<)wt'h.a'nd anxleaiixig methods have significantfiiy reduced this pmbieamt in moxiem com,naer-
`C5211 'I‘i:sa;_3p.hire mat£:ri—ai.,
`In spite of its many advantages, T:i:Sapphim‘doeSA suffer ffmm a_ few c'iis.advan:tages. In
`particniar, its shod upper state 1ifz:time(3,2 us) makes it quite difficzuis; in pump with a lamp,
`Aitfwugh §amp'-pumfzed ’I‘i:sapphi1':2 lasers have been 'buiit,“’ most comnaerciai ‘I’.i:sap'phirc
`lasers are pumped with zxrg:>n—i0n or vclcztzbied Nd:YAG iasexs.
`V
`Several other materials have seen some connncr<:i211_i11£e.1'est as posgibie iamp pumped
`laser nxatariais. infipmicular 1.iCz1A.1.‘£~Q;:'Cr3§“ and LiS:¢A1.F5:Cr3’*‘ havaseen mm: interest as
`possible £un.a33§e camxnmacizil laser sou1‘ce.s.2" A number of aches‘ c:i1mI11iu1n~dopr::d Inamriais
`including Cr:forsier.ite and Cr:YA(3 are aim showing strong potemia1.2‘
`Transi{ion~n1e.taI saxiidasiaira zunabie iascrs am still being acfivaiy developed. Barnes”
`and Budger er. 211.33 pmvide goo-ti cwezrview tmatments of this tieveiaping fieki.
`in addition,
`there arcs three specizzi issues: in IEEE journals on iunabie iasersfé
`
`‘E9. 1“. Nioufttm, Solfd’ Sta-.z‘£: Rmaxrrciz Regan. DTKC ADA124305/4 (I9'82:3)v(MIT.L?ncoh1 i.z§b., Lexingttm-,
`1982), pp,
`15-21, repm-ted by 3?.
`Moulmn, “.Rec::.m Ativances. in Solid-Slate Lmgers.” Pros. Can. 1.aser.s
`}§ft:‘€fm«0pf., Anal}:-311:, CA. 1984, paper WA2.
`,
`
`J.‘ ¢:j’QuauIztng .¥:‘1»2cf_rw2. QB-18:l1?9 {N382},
`“B. B, Guaxxlher and R. £3. Buser,
`*5}. C, Wa11i.ng,.D». F. Hellex, H. Samuelson, 13.. J. Harm‘, J. A. 134213, {mt} E. C. Morris, 1588!; rzf Qttwtrnm
`Eieclmrz. Q_Ev‘2i:1568 (1985).
`‘GP. Laeovam and L. Estemwitz, 15:5}: J; 9; Qzmnmm zs1mm»z. QB32 141614 (11985).
`
`”A..Sanc¥1m:, A. 3.» Strzmss, ‘R. L. Agga’rss?.aL and R. Ii. ¥?ahay, 1858 J. <2fQtta1ztu::zE3z!€rz‘z'>11} 241995 (1983).
`“IR. Aggzuwal, A. Saxtciiez, M. Siuppi, "R. Fahey, A, Smmss, W. Rapoport. and C, Khanak,
`J, 12!‘
`Qwrmzum I-ZIe'-<:tn:m. 2:$:1{i(}3 (1938).
`“P. Lacovara, I.‘ Esteroxvitz and R. Allen, Dpr. Len. 10:37} 0985}.
`30.8. A. 'Pa'yut:, L. L; Chase, B. W. Nkswkirk, L. K.A3mith,-m1d W. F, iiirupkn, IEEE J. cf Qua/1_mz2z* Elecirarz.
`343243 (1988); and 3.. A. Fame, L, L. Chase, L. "K. smith, W. L. Kway; and H; W. 'N"cxvk’irk, J,_AppI. Plum.
`66:185.} (1989)
`"
`i262 (1995).
`'l'0pirs in Qumzlum Elecrrtm.
`“C. I’oI1m:k., "D.
`'B»z£gber, J. ‘MESS;-alld S, .Ma1}<.ga‘zxf, IEE131 of5561.
`z3Norm:.m P.
`]3z11'11e;§, ‘Transition Mata] Solid State Lasers,” in Twzrzbfe Lzzxem Hamiimok, ed F. J. Dmu-t«:
`‘ (San Ibiegzxz Acad¢mic }“.a'e:2;s, 1995),
`33 A, B1xd_‘gor, L‘ Esmroxvxiz. and L. G, I:)x‘:S1x:1zm', eds;.'1'um1b1'e Solid Smre L{I.‘§é‘i‘.§‘ I1 {B,erIin‘:' Springer Ver]ag,,
`1986).
`-
`-
`
`3"IEE£i' J. of Qmmrmn Elecmm. QE~l8 (3982); QE~2»l
`i.i’Iec:m)n. C1995).
`
`(19851: and
`
`J. of Se],
`
`i‘":71)iL’$ in Qmuztzmv
`
`

`
`348
`
`.v
`
`Transition~MetaI Solld—Stale Lasers
`
`Chap. 11
`
`1-1.2 Apm.:c;A'rt0N7s
`
`Transiticm~metal s-o1‘id»state u1nab.l<:.1asers provide two major featm‘es. First, they are tunable
`ovcz'ab1:<>ad range of visible and nea1‘IR wavelengths. Second, they can "bra used to procluce
`extramely "short pufisss.
`‘
`The ltunability feature means that these: lasers are icieal. for speczimscopic applications.
`This nm‘ only invlxxcies traditional saientific spectroscopy, but also ‘medical dizlgnostic spec»
`trosc.o_py.. For example, Ti::.»rappI1ix'e ‘lasers inwe b..e=e.n used to perform an optical version of
`conventional maxnm.ography.25 'I‘here -are alse potentéal applicatmns for absorption, Raman,
`ant} fluorescence sprzctzmzassopy in meciical i’n1aging.2"’
`SoIid~sta£¢: lasers czmnpefiz. with dye lasers far medicai applications 1'equ3ri:1g bath
`mnabiiity and .i11:ens§ty. Priznary ammxg these are cosmetic surgery for port-‘wine birtllmarks,
`telangiectasia, warts, stretch marks, acne scars, re’moving taztoos, and psoriasis.” Tunable
`sol.id~:s_tat’:: lasers also compete; Wiifi (1% lasers for mrecfical apygiications such M s‘hattering
`.k.ic‘mey stcn1€:s.,3x
`"
`,
`In additima’,
`the ssxtrelxxely s31or§. _pu¥se;<; possil3’le with {unable so'lid~s’tate "lasers are
`finding appl.icati0I1 in micmnzachining. ’F<:mtasece11d»pulsed Tizsapphire. lasers can be used
`for micrt>1nach.ining hula: in snetzill Aamcl ‘polymer sutastrates as well as for abljating pho~
`tczresist films and cutting f1‘2l§3€’:S on se1nico11{lm:tor 1naterials.39 Titmpphire [lasers compete
`with Nd:YAG, ciiodeqzuxngged 3N6:YAG, and excimer ilasars for this extra;-mly important
`znarkei.
`'

`=
`‘
`'
`
`11.3 L9‘-\3§R Mfi.TEF§iAL$
`
`Ruby, ‘akvzandrita, and Tizsapphire are the Illfljfif transitioxmxetzii soiisimxate: l£!se;1' materials.
`Altlmugh why is -nut used emzxmmtialely
`a.Ttzxna:b1ta lasar; 3% does have a mxmble v:it3.r<:~1xi-::
`transi.ti'on., Interestingly enough, the ‘band struc:ture czf alexzxnclrite is quite .simi1ar ta -ruby;
`_ except in a1lexan;:l.:‘i‘t:: the xzibmxxic tm.ns.it'i0n is this imparlant (me mad 8:: namrzw line iransitiorr
`is not used. ' 111 coxltrasi, Titsappifirfz has crysiallime axxdxxiecixanficval properties virtuaiiy.
`.identica1 ta ruby, but a draxxxaiically ciiffment band stmcmre.
`:
`A number of pub'li<:ax:imzs cal: provide additigmal infomtaiion ‘fer the in’t£rested tezstiexf.
`O.ve.1‘View Irezmnenis are givtf-:11 by Wc3b::r,3° Koechnm;3‘_ an:i"{Zmar£e,33 whiia ’n1o1"a specific
`
`T
`
`"’~‘I,rzs«2’ I“m.-xix l.§;c{r1(I, Feb; .38 (1996).
`35£ase*r Focus world, Feb; 72 (1995).
`27La.s‘z>.r Fmsus l-i"ori’r1,. 1‘vf2ty': 6647 (1996),
`ifizam I-"o.cu.$ Wm-‘rd, May: 6631 (1996).
`29Lnxe2‘ Fr):-us Wm-Id, January: 22 (1996).
`3"i\’}a1‘vil: J". Weber, -ed, Harzdfzoaic 43]‘ I,¢1.s‘cr 5’r::'{2:zc¢' m2c¥’I'z:c11rzalczgy, Va-I. I,-Lcwerx (::zc'U*e:f;1se1's (150113 I~’.;’x£,0n,
`FL: CRC .P;'e5:‘<. I.nc,, 1982.); and more nwsntiy, Marvin J. Weber. ed, H¢m.n'[_2ook qflcrxer .S'cie:ztxe r1r,zdTec1zzzaI<2g31,
`S::1;;z?e1:z.enI I, Lasers (Boca Raton, F.¥...: CRC ,Px'c3s>:,- Incl,
`IQSJI}.
`3’\Valtm’ K(“2v€(Ihl1(t)’._ Solid Stale .l.aser Ezzgizrewirzg‘, 4th ed, (Berlin: Springcl'-Vc~rlag, 1996).
`
`

`
`‘Sec, 11,3
`
`Laser Materials
`
`A
`
`V
`
`349
`
`ruby.
`
`Figure 11.2
`
`The energy band diagraxn for
`
`information can be obtained fmrn the Wide variety of review papers on a1ex,andrite35 and
`'I‘i»:sa_pphire.34+35 Manufacturer data sheets and application notes are also very usefui.”
`
`' 11.3.3‘ Ruisy-«Primary :..ine=.»a:.a94.3 hm
`
`Ruby .(chromium—d0ped A1293} is a red or pink hexagfinal crystal whose maxi fanfiiiar app1i~
`cation is jeweiry. Ruby is an opticaily uniaxial cry31a¥37 that is hard {EX/IQh’s hardness cf 9),
`of gwd ep1i<:a’1qua’Ii.ty, and extremely thermally mmfiuctive (0.42 W'!cm«K at 380K). Ruby is
`vnoxiirygroscuyie, 1*efracw:y, anti -is gcxmmfly -cO!’1Si{§e{i3£'1 the mam’ ziurabie of {I15 common laser
`crystals {with the peossibie: exmzption 9:? Tizsapphire). Ruby erystais are typically grown by me.
`.€L‘.zoc;hra§sk’i method {the saM1ne’me€§md_as used fur the gmwtix of Siiiflfifi}; Ruby can he gmwn
`at 0,, 60, or 90 degrees tome tsptic axis, and laser material is usuaiiy gxtawxt at 60 degrees.
`Sapphire "is doped with C‘r3““ to: obtain ruby. The 'Cr3“" substitutes far the A}3+ in tha
`crystal. Typicai. dopings are 0.05 waight percent of C1203. Hoxvever, excess chromium can
`distort. the crystal structure anzi‘coneerztr’at.i<znsA'are sometimes reduced to 6:03 weight pament
`ta enhzmce the opticai beam quaiityt
`The energy diagram far ruby is givan in Figure: 11.2, Ruby is ‘th.ree‘~s,Iate fanii is that
`oniy commercially viable three-«state iaser system The Iasar pump bands are prirmpaliy
`that ”F; and ’the;4Fg bauds. The: gmmfxd state is the ‘A2 haxxd. The Iwa pump bands form
`manifolds centered. around the biue, €400 nm) anclgreen {555 nm). The pump bands are
`
`,
`“F. J. Duane ed, ..7’zmrzl71‘_’e Lasers Haz2dbaok(Sax1 Diego; Academic. Yress 1995).
`“J. C. Walling,‘ D. F. Heller, H, Same-.1,so.n; :3. J. Harm‘, 1, A. ‘Pete, and R. c. Mom's, 2322131. af Qua/ztznn.
`f:ZIe::£mI:. QB.-2121558 (.1985).
`“A. Sfincfxez., A. 1'. Sixm1.ss, R, L. Aggarwal, zmd,R’. E. Palm}.-3.1. of Qumzlzrrn EleC;‘rr7n. 24995 (L988).
`3512. Aggarwal, A, Sanchez, M; smppi‘, R. Fahey, A. Stmuss, w. Rapmpom and c. Khzmak, II52'1E.l. of
`- Qz.1m2IzgI:zEle<:fro11, 2£1CfI0G3' (1983),

`’
`363./lajor
`é:'ty‘s{€I§
`suppiiets are Union Carbide (ruby, alelxnndrite and Tizsapphire) and Litmn Airimn
`-(ztlexzxndriié).
`‘
`
`“A uniaxial crystal is one where: two «.1? the Canesian directians have one index of ,refra<:tio_n '10 and the third.
`has a different index of refraction 42¢. See: Section 8.3 for 21, di$c11~zsSio;) of uniaxial and biaxial crystals,
`
`

`
`350
`
`1
`
`.
`
`Transitionwletél Soiid~Siate Lasers
`
`Chap. H
`
`each. quite wide, with £he~blue.ba11d about 0.05 microns wide and the green band about 0.07
`microns wide.
`’
`‘
`‘
`
`The lifetime in the pump bands is extremely short, with the ions cascading almost
`immediately totho metastable 33‘ states. The 'u_ppe.r 2!? state is termed the 2X state and the
`lower is termed the 73 state. The 235 and 2: states are separated by 29 em"‘, which gives
`a population. yatio at thermal equifibrium, of 87%. Thus,» while fluorescence in ruby occurs
`from both the 23: state to the "A3 (tanned the "R2 transition at 692.9 nm) and from the E7
`state to the “Ag (termed_ the Re, mansitiorx at 694.3 nm), laser action firs: occurs on the R1
`1ra'nsi1ion. Qnce‘ laser action‘ has begun, we rapid r4:-.Iaxatio11 time from the '2}? in the 7*?
`transition. prohibits laser action starting on the Kg line. The only way to start faser action.
`on the R; ‘line is to suppress the R} Iineby special dielectric coated mirrors or internal
`cavity ebsorisers,
`(Interesting enough, even though 1.asing_ cszcurs primarily on. the R; and
`R; 11:163., sidebaxlds have been observeci on the long wavelength side, in pax'tiéuIa1' at 767
`no}, attribuxed to vibronic lasing.)
`V
`T
`Since ruby is uniaxial, its absorgation coefficient is. a_ very strontg‘ funetioxi of the po~
`iarization ciirection of the Eight (see Figure 11.3). This property ssgrongiye affects the be-anl
`,;..gusIi:y;
`‘The best optical quaiity‘ ruby is grown with :he crystal axis at 60 degrees to the
`boots axis. When such a ruby rod is pumped in a diffuse refiecting pump cavity, pump
`Iightjparailel to the oasis wiii be absorbed differently than pump light pergendieolar to
`the Mtxis, Tizis wili _cause the pump disuébutitm (and thus the laser outgmt beam) to be;
`sfiiipticai,
`
`A
`
`" M ‘
`3.8"
`
`‘ 2.
`
`
`
`'
`
`-
`
`'
`_ 0.2 _
`“V
`‘g
`- M
`5 0.‘!
`V
`(LO?
`s=.
`§ 0.05
`» 3 0.64
`"§ 0.93
`‘O
`.
`:3 0.62 .
`
`’
`
`L
`
`.
`
`b
`Pink ruby
`ias-erred
`
`A
`
`’
`V 0.5
`Q 4
`*1
`Q3
`
`L5
`
`__
`NE
`to 0
`V
`$
`0.7 3
`3*
`,5
`2:.
`4?;

`03 E
`035 «°
`’§~
`0,1 8<
`
`am
`
`.
`0.007
`
` 0.04 :’ V I I
`
`
`
`
`
`0.07
`0.05
`
`.6860
`6880
`6900
`6920
`6940
`6980
`6980
`7000
`7020.
`Waxieleragth A {3}
`
`Figure 11.3 Since ruby is nniaxia1,_ its absorption coefficient is a very strong function
`"of the polanization direction of the light,
`(From D. C. C_r0nemey&:r,» J, Opt. Soc. Am.
`5621.703 (1966). Reprinted with the permission. of the Optical Society of America.)
`
`‘
`
`

`
`Sec. 11.3
`
`Laser Materiais
`
`’
`
`351
`
`Btue
`
`1
`
`2
`
`4A
`2
`
`
`
`I
`
`1 Yellow
`
`Laser
`
`Vimonm Fjigure.

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket