throbber
I. Stephen Matthew Grimes, hereby certify that I transiated the attached document from
`
`Hungarian into English and that, to the best of my ability, it is a true and correct translation. I
`further certify that I am competent in both Hungarian and English to render and certify such
`translation.
`
`flfiitfluvrvv
`
`FULL LEGAL NAME
`
`Sworn to before me this ith day 0
`
`201.
`
`‘Z}_’1%fl/HA/l_C',€a.w¢u
`
`EXHIBIT
`
`(cid:44)(cid:51)(cid:53)(cid:21)(cid:19)(cid:20)(cid:25)(cid:16)(cid:19)(cid:19)(cid:26)(cid:21)(cid:25)(cid:16)(cid:36)(cid:38)(cid:55)(cid:44)(cid:57)(cid:44)(cid:54)(cid:44)(cid:50)(cid:49)(cid:15)(cid:3)(cid:40)(cid:36)(cid:15)(cid:3)(cid:55)(cid:36)(cid:46)(cid:40)(cid:16)(cid:55)(cid:58)(cid:50)(cid:15)(cid:3)(cid:21)(cid:46)(cid:15)(cid:3)(cid:53)(cid:50)(cid:38)(cid:46)(cid:54)(cid:55)(cid:36)(cid:53)(cid:15)(cid:3)(cid:40)(cid:91)(cid:17)(cid:3)(cid:20)(cid:19)(cid:20)(cid:25)(cid:3)(cid:15)(cid:3)(cid:83)(cid:17)(cid:3)(cid:20)(cid:3)(cid:82)(cid:73)(cid:3)(cid:21)(cid:23)
`
`

`
`(cid:44)(cid:51)(cid:53)(cid:21)(cid:19)(cid:20)(cid:25)(cid:16)(cid:19)(cid:19)(cid:26)(cid:21)(cid:25)(cid:16)(cid:36)(cid:38)(cid:55)(cid:44)(cid:57)(cid:44)(cid:54)(cid:44)(cid:50)(cid:49)(cid:15)(cid:3)(cid:40)(cid:36)(cid:15)(cid:3)(cid:55)(cid:36)(cid:46)(cid:40)(cid:16)(cid:55)(cid:58)(cid:50)(cid:15)(cid:3)(cid:21)(cid:46)(cid:15)(cid:3)(cid:53)(cid:50)(cid:38)(cid:46)(cid:54)(cid:55)(cid:36)(cid:53)(cid:15)(cid:3)(cid:40)(cid:91)(cid:17)(cid:3)(cid:20)(cid:19)(cid:20)(cid:25)(cid:3)(cid:15)(cid:3)(cid:83)(cid:17)(cid:3)(cid:21)(cid:3)(cid:82)(cid:73)(cid:3)(cid:21)(cid:23)
`
`from the University of Illinois at Urbana-Champaign Library
`Attachment 7a: Copy of Document 7
`
`

`
`(cid:44)(cid:51)(cid:53)(cid:21)(cid:19)(cid:20)(cid:25)(cid:16)(cid:19)(cid:19)(cid:26)(cid:21)(cid:25)(cid:16)(cid:36)(cid:38)(cid:55)(cid:44)(cid:57)(cid:44)(cid:54)(cid:44)(cid:50)(cid:49)(cid:15)(cid:3)(cid:40)(cid:36)(cid:15)(cid:3)(cid:55)(cid:36)(cid:46)(cid:40)(cid:16)(cid:55)(cid:58)(cid:50)(cid:15)(cid:3)(cid:21)(cid:46)(cid:15)(cid:3)(cid:53)(cid:50)(cid:38)(cid:46)(cid:54)(cid:55)(cid:36)(cid:53)(cid:15)(cid:3)(cid:40)(cid:91)(cid:17)(cid:3)(cid:20)(cid:19)(cid:20)(cid:25)(cid:3)(cid:15)(cid:3)(cid:83)(cid:17)(cid:3)(cid:22)(cid:3)(cid:82)(cid:73)(cid:3)(cid:21)(cid:23)
`
`from the University of Illinois at Urbana-Champaign Library
`Attachment 7a: Copy of Document 7
`
`

`
`(cid:44)(cid:51)(cid:53)(cid:21)(cid:19)(cid:20)(cid:25)(cid:16)(cid:19)(cid:19)(cid:26)(cid:21)(cid:25)(cid:16)(cid:36)(cid:38)(cid:55)(cid:44)(cid:57)(cid:44)(cid:54)(cid:44)(cid:50)(cid:49)(cid:15)(cid:3)(cid:40)(cid:36)(cid:15)(cid:3)(cid:55)(cid:36)(cid:46)(cid:40)(cid:16)(cid:55)(cid:58)(cid:50)(cid:15)(cid:3)(cid:21)(cid:46)(cid:15)(cid:3)(cid:53)(cid:50)(cid:38)(cid:46)(cid:54)(cid:55)(cid:36)(cid:53)(cid:15)(cid:3)(cid:40)(cid:91)(cid:17)(cid:3)(cid:20)(cid:19)(cid:20)(cid:25)(cid:3)(cid:15)(cid:3)(cid:83)(cid:17)(cid:3)(cid:23)(cid:3)(cid:82)(cid:73)(cid:3)(cid:21)(cid:23)
`
`from the University of Illinois at Urbana-Champaign Library
`Attachment 7a: Copy of Document 7
`
`

`
`(cid:44)(cid:51)(cid:53)(cid:21)(cid:19)(cid:20)(cid:25)(cid:16)(cid:19)(cid:19)(cid:26)(cid:21)(cid:25)(cid:16)(cid:36)(cid:38)(cid:55)(cid:44)(cid:57)(cid:44)(cid:54)(cid:44)(cid:50)(cid:49)(cid:15)(cid:3)(cid:40)(cid:36)(cid:15)(cid:3)(cid:55)(cid:36)(cid:46)(cid:40)(cid:16)(cid:55)(cid:58)(cid:50)(cid:15)(cid:3)(cid:21)(cid:46)(cid:15)(cid:3)(cid:53)(cid:50)(cid:38)(cid:46)(cid:54)(cid:55)(cid:36)(cid:53)(cid:15)(cid:3)(cid:40)(cid:91)(cid:17)(cid:3)(cid:20)(cid:19)(cid:20)(cid:25)(cid:3)(cid:15)(cid:3)(cid:83)(cid:17)(cid:3)(cid:24)(cid:3)(cid:82)(cid:73)(cid:3)(cid:21)(cid:23)
`
`from the University of Illinois at Urbana-Champaign Library
`Attachment 7a: Copy of Document 7
`
`

`
`(cid:44)(cid:51)(cid:53)(cid:21)(cid:19)(cid:20)(cid:25)(cid:16)(cid:19)(cid:19)(cid:26)(cid:21)(cid:25)(cid:16)(cid:36)(cid:38)(cid:55)(cid:44)(cid:57)(cid:44)(cid:54)(cid:44)(cid:50)(cid:49)(cid:15)(cid:3)(cid:40)(cid:36)(cid:15)(cid:3)(cid:55)(cid:36)(cid:46)(cid:40)(cid:16)(cid:55)(cid:58)(cid:50)(cid:15)(cid:3)(cid:21)(cid:46)(cid:15)(cid:3)(cid:53)(cid:50)(cid:38)(cid:46)(cid:54)(cid:55)(cid:36)(cid:53)(cid:15)(cid:3)(cid:40)(cid:91)(cid:17)(cid:3)(cid:20)(cid:19)(cid:20)(cid:25)(cid:3)(cid:15)(cid:3)(cid:83)(cid:17)(cid:3)(cid:25)(cid:3)(cid:82)(cid:73)(cid:3)(cid:21)(cid:23)
`
`from the University of Illinois at Urbana-Champaign Library
`Attachment 7a: Copy of Document 7
`
`

`
`(cid:44)(cid:51)(cid:53)(cid:21)(cid:19)(cid:20)(cid:25)(cid:16)(cid:19)(cid:19)(cid:26)(cid:21)(cid:25)(cid:16)(cid:36)(cid:38)(cid:55)(cid:44)(cid:57)(cid:44)(cid:54)(cid:44)(cid:50)(cid:49)(cid:15)(cid:3)(cid:40)(cid:36)(cid:15)(cid:3)(cid:55)(cid:36)(cid:46)(cid:40)(cid:16)(cid:55)(cid:58)(cid:50)(cid:15)(cid:3)(cid:21)(cid:46)(cid:15)(cid:3)(cid:53)(cid:50)(cid:38)(cid:46)(cid:54)(cid:55)(cid:36)(cid:53)(cid:15)(cid:3)(cid:40)(cid:91)(cid:17)(cid:3)(cid:20)(cid:19)(cid:20)(cid:25)(cid:3)(cid:15)(cid:3)(cid:83)(cid:17)(cid:3)(cid:26)(cid:3)(cid:82)(cid:73)(cid:3)(cid:21)(cid:23)
`
`from the University of Illinois at Urbana-Champaign Library
`Attachment 7a: Copy of Document 7
`
`

`
`IPR2016-00726-
`ACTIVISION, EA,
`TAKE-TWO, 2K,
`ROCKSTAR, Ex.
`1016, p. 8 of 24
`
`from the University of Illinois at Urbana-Champaign Library
`Attachment 7a: Copy of Document 7
`
`

`
`(cid:44)(cid:51)(cid:53)(cid:21)(cid:19)(cid:20)(cid:25)(cid:16)(cid:19)(cid:19)(cid:26)(cid:21)(cid:25)(cid:16)(cid:36)(cid:38)(cid:55)(cid:44)(cid:57)(cid:44)(cid:54)(cid:44)(cid:50)(cid:49)(cid:15)(cid:3)(cid:40)(cid:36)(cid:15)(cid:3)(cid:55)(cid:36)(cid:46)(cid:40)(cid:16)(cid:55)(cid:58)(cid:50)(cid:15)(cid:3)(cid:21)(cid:46)(cid:15)(cid:3)(cid:53)(cid:50)(cid:38)(cid:46)(cid:54)(cid:55)(cid:36)(cid:53)(cid:15)(cid:3)(cid:40)(cid:91)(cid:17)(cid:3)(cid:20)(cid:19)(cid:20)(cid:25)(cid:3)(cid:15)(cid:3)(cid:83)(cid:17)(cid:3)(cid:28)(cid:3)(cid:82)(cid:73)(cid:3)(cid:21)(cid:23)
`
`from the University of Illinois at Urbana-Champaign Library
`Attachment 7a: Copy of Document 7
`
`

`
`IPR2016-00726-ACTIVISION, EA,
`TAKE-TWO, 2K, ROCKSTAR,
`Ex.1016, p. 10 of 24
`
`from the University of Illinois at Urbana-Champaign Library
`Attachment 7a: Copy of Document 7
`
`

`
`[Back Cover]
`
`Price: 14 HUF [Hungarian Forints]
`Yearly subscription: 28 HUF
`
`Responsible Party for publication is Director of Academic Publishing
`Editorial content: István Sándor
`Date of publication: May 16, 1978 – Size: 17.85 (A/5) iv
`78-2482 – Szeged Press – Director: Jozsef Dobó
`
`Index: 25 564
`ISSN 0025—519X
`
`[Front Cover]
`
`Mathematical Proceedings
`János Bolyai Mathematical Society
`
`[Stamp: The Library of the University of Illinois]
`
`Edition 27: 1976-1979, 3-4
`
`(cid:44)(cid:51)(cid:53)(cid:21)(cid:19)(cid:20)(cid:25)(cid:16)(cid:19)(cid:19)(cid:26)(cid:21)(cid:25)(cid:16)(cid:36)(cid:38)(cid:55)(cid:44)(cid:57)(cid:44)(cid:54)(cid:44)(cid:50)(cid:49)(cid:15)(cid:3)(cid:40)(cid:36)(cid:15)(cid:3)(cid:55)(cid:36)(cid:46)(cid:40)(cid:16)(cid:55)(cid:58)(cid:50)(cid:15)(cid:3)(cid:21)(cid:46)(cid:15)(cid:3)(cid:53)(cid:50)(cid:38)(cid:46)(cid:54)(cid:55)(cid:36)(cid:53)(cid:15)(cid:3)(cid:40)(cid:91)(cid:17)(cid:3)(cid:20)(cid:19)(cid:20)(cid:25)(cid:3)(cid:15)(cid:3)(cid:83)(cid:17)(cid:3)(cid:20)(cid:20)(cid:3)(cid:82)(cid:73)(cid:3)(cid:21)(cid:23)
`
`

`
`“Evolution” by vertex of even-order regular graphs
`Tamás Dénes
`
`In graph theory circles, it is generally interesting to examine a structurally similar problem, but
`from a different point of view, to see alternate forms of graphs under certain transformations.
`For example, (cid:299)n, the n-vertex complete graph, can be constructed from (cid:299)n-1, the complete graph
`on n-1 vertices, by adding a vertex and connecting it to each vertex of (cid:299)n-1. The same transformation on
`any other regular graph of other degree does not achieve the goal. Pal Érd(cid:280)s and Alfréd Rényi addressed
`graph evolution in [3] from another perspective.
`In the present work we are only concerned with undirected, even-order regular graphs.
`In the first section of this paper we define the evolutionary transformation and prove several
`related theorems. The second and third sections concern graphs for which the transformation cannot be
`applied.
`
`Definition 1. Let (cid:299) = (P,E) be an n-vertex simple graph and pi (cid:1134)P, pj (cid:1134)P be neighboring vertices, and p
`be a vertex which is a neighbor to neither pi nor pj . (P and E represent the sets of vertices and edges of the
`graph (cid:299).)
`We take the EC transformation on vertex p to be the following:
`(1) EC: E (cid:314) E’(cid:850)
`where
` E’ = E \ {(pipj)} (cid:137) {(ppi), (ppj)}
`
`Herein we designate the set of all even regular graphs using as PR and the sets of all 2, 4, ..., k
`(k even) order regular graphs as PR2, PR4, ..., PRk. Then the following must be the case:
`
`1. PR = PR2 (cid:137) PR4 (cid:137) ... (cid:137) PRk (cid:137) ...
`
`2. (cid:1126)i (cid:122) j, (i, j even), PRi (cid:320) PRj =(cid:1486)
`
`3. (cid:1126)(cid:299)n,k (cid:1134)(cid:3)PRk, (cid:1129)! PRk: (cid:299)n,k (cid:1134)(cid:3)PRk ; that is, the set PR has a classification.
`
`Definition 2. Let (cid:299)n,k (cid:1134)(cid:3)PRk be an n-vertex, k-regular graph. Further suppose (cid:299)n,k = (P,E) and (cid:299)n+1 =
`
`(P (cid:137) {p}, E’), where p (cid:144) P.
`
`We take the ET transformation on vertex p to be the k/2 EC transformation on vertex p, that is, let (p1p2),
`(p3p4), ..., (pk-1pk) be edges in (cid:299)n,k , then
`
`(2)
`
`ET: (cid:299)n,k (cid:314) (cid:299)n
`
`Mathematical Proceedings
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
` [page 365]
`
`where E’ = E \ { (p1p2), (p3p4), ... , (pk-1pk) } (cid:137) { (pp1),(pp2), ... , (ppk) }
`
`Theorem 1. Let k be an even number. The ET transformation can be used for every (cid:299)n,k (cid:1134) PRk .
`
`PROOF. It is sufficient if we observe that in every (cid:299)n,k there exist k/2 independent edges. For the proof
`we use the following theorem from G. A. Dirac [2]:
`
`“If in a simple graph every vertex has degree of at least r (r > 1), then there exists a cycle in the
`graph of length at least r + 1.”
`
`(cid:44)(cid:51)(cid:53)(cid:21)(cid:19)(cid:20)(cid:25)(cid:16)(cid:19)(cid:19)(cid:26)(cid:21)(cid:25)(cid:16)(cid:36)(cid:38)(cid:55)(cid:44)(cid:57)(cid:44)(cid:54)(cid:44)(cid:50)(cid:49)(cid:15)(cid:3)(cid:40)(cid:36)(cid:15)(cid:3)(cid:55)(cid:36)(cid:46)(cid:40)(cid:16)(cid:55)(cid:58)(cid:50)(cid:15)(cid:3)(cid:21)(cid:46)(cid:15)(cid:3)(cid:53)(cid:50)(cid:38)(cid:46)(cid:54)(cid:55)(cid:36)(cid:53)(cid:15)(cid:3)(cid:40)(cid:91)(cid:17)(cid:3)(cid:20)(cid:19)(cid:20)(cid:25)(cid:3)(cid:15)(cid:3)(cid:83)(cid:17)(cid:3)(cid:20)(cid:21)(cid:3)(cid:82)(cid:73)(cid:3)(cid:21)(cid:23)
`
`

`
`If we take K to be a cycle of length k+1 in (cid:299)n,k (one certainly exists on the basis of the theorem cited),
`then using the method illustrated in figure 1 to select the edges (p1p2), (p3p4), ... , (pk-1pk) we get a set of
`exactly k/2 unconnected edges.
`
`Figure 1
`
`neighbors of p but pairwise not neighbors. Then we take the ET transformation to be:
`
`(3) ET-1: (cid:299)n,k (cid:314) (cid:299)n-1 = (P’, E’), P’ = P \ {p}
`
`
`
` E’ = E \ { (pp1), (pp2), …, (ppk) (cid:137) { (p1p2),(p3p4), …,(pk-1pk) }
`
`Then we take the subgraph of (cid:299)n generated by p (designate this Gp = (P’, E’) ), and it turns out this is the
`
`Definition 3. Let (cid:299)n,k = (P,E) (cid:1488)(cid:3)PRk, p(cid:3)(cid:1488)(cid:3)P, and we take the vertex pairs p1p2, p3p4, ..., pk-1pk to be
`Definition 4. Let (cid:299)n,k = (P, E) be a graph on n vertices, p(cid:3)(cid:1488)(cid:3)P, and q1, q2, ... , qr be neighbors of p in (cid:299)n.
`subgraph where P’ = {q1, q2, ..., qr} and (qi, qj)(cid:1488) E(cid:397) (cid:1103) (qi, qj)(cid:1488) E .
`Definition 5. Let (cid:299)n(cid:1488) PR and p (cid:1488) (cid:299)n . Then the vertex p is T-characterized if the complement of the
`Theorem 2. The ET-1 transformation can be applied to a graph (cid:299)n,k = (P,K) (cid:1488)(cid:3)PRk if and only if there
`exists a T-characterized vertex p (cid:1488)(cid:3)(cid:299)n,k .
`
`subgraph on (cid:299)n generated by it contains a 1-factor.
`
`PROOF. Necessity: From the definition of ET-1 it follows that there exists p(cid:1134) (cid:299)n,k from which we can
`select neighbors p1p2, p3p4, ... , pk-1pk which are pairwise not neighbors. In the complement of the
`subgraph on (cid:299)n constructed on p1, p2, ... , pk they will be neighbors, and they comprise a 1-factor, as any
`two vertex pairs have no common vertex. This is precisely what it means for the vertex p to be
`T-characterized.(cid:850)
`
`Sufficiency: The proof in this direction is the exactly the reverse of the above necessity proof.
`
`Theorem 3. For every even k (cid:149) 4 there is a graph (cid:299)n,k(cid:1488)(cid:3)PRk which has no vertex p which is
`Equivalent formulation: For every even k (cid:149) 4 there exists a graph (cid:299)n,k(cid:1488) PRk for which no graph
`k+1,k = (P2, E2). Let (pi1, pj1)(cid:1488) E1 and (pi2, pj2)(cid:1488) E. Then we construct the following
`
`ROOF. Let k be an arbitrary even number, k (cid:149) 4. Let us examine two complete graphs on k+1 vertices
`(cid:299)1
`k+1,k = (P1, E2) and (cid:299)2
`
`T-characterized.
`
`(cid:299)n-1,k (cid:1134) PRk can be constructed with the ET transformation.
`
`(cid:3)P
`
`(cid:44)(cid:51)(cid:53)(cid:21)(cid:19)(cid:20)(cid:25)(cid:16)(cid:19)(cid:19)(cid:26)(cid:21)(cid:25)(cid:16)(cid:36)(cid:38)(cid:55)(cid:44)(cid:57)(cid:44)(cid:54)(cid:44)(cid:50)(cid:49)(cid:15)(cid:3)(cid:40)(cid:36)(cid:15)(cid:3)(cid:55)(cid:36)(cid:46)(cid:40)(cid:16)(cid:55)(cid:58)(cid:50)(cid:15)(cid:3)(cid:21)(cid:46)(cid:15)(cid:3)(cid:53)(cid:50)(cid:38)(cid:46)(cid:54)(cid:55)(cid:36)(cid:53)(cid:15)(cid:3)(cid:40)(cid:91)(cid:17)(cid:3)(cid:20)(cid:19)(cid:20)(cid:25)(cid:3)(cid:15)(cid:3)(cid:83)(cid:17)(cid:3)(cid:20)(cid:22)(cid:3)(cid:82)(cid:73)(cid:3)(cid:21)(cid:23)
`
`

`
`graph (cid:299)n,k = (P , E)
`
`
`(4)
`(5)
`
`
`
`
`
`
`
`
`
`
`
`P = P1 (cid:137) P2
`E = E1 (cid:137) E2 \ { (pi1, pj1), (pi2, pj2) } (cid:137) { (pi1, pi2), (pj1, pj2) }}
`
`
`
`
`
`
`
`
`
` [page 366]
`
`The graph (cid:299)n,k where for k = 4 is illustrated in figure 2.
`
`(cid:3)
`
`Figure 2
`
`(cid:3)
`
`(cid:3)W
`
`e will demonstrate that (cid:299)n,k constructed in this way has does not have a T-characterized vertex.
`As every graph (cid:299)n,k constructed in this way is symmetric, for the proof it is enough to
`demonstrate for each vertex of the subgraph (for example (cid:299)1
`k+1,k). Here we can differentiate between two
`cases of selected pairs of vertices:
`
`a) pi1, pj1
`b) any other pair(cid:850)(cid:3)
`
`or the case in a), we take G1 = (A1, B1) to be the subgraph constructed on neighbors of p i1. Then:
`
`(cid:3)F
`
`(6)
`(7)
`
`(8)
`(9)
`
`A1 = P1 (cid:137) {pi2} \ {pi1}
`B1 = E1 \ { (pi2pr) | (cid:1126) pr (cid:1134) P1 \ {pi1} }
`
`A’1 = A1
`B’1 = E1 \ { (pi2ps) | (cid:1126)ps (cid:1134)(cid:3)P1 \{pi1} }
`
`So the complement (cid:10)(cid:3365)1 = (A’1, B’1) is therefore the following:
`So(cid:10)(cid:3365)1 does not contain a 1-factor, that is, p is not T-characterized (and similarly pi2, pj1, … , pj2). For the
`Then (cid:10)(cid:3365)2 = (A’, B’) will be the following:
`So(cid:10)(cid:3365)2 does not contain a 1-factor, that is, no vertex in case b) is T-characterized. And so the 2 theorem is
`
`case in b), let p (cid:1134)P1, p (cid:122) pi1 (cid:122) pj1, and G2 = (A2, B2) be the subgraph constructed on the neighbors of p:
`
`(10) A2 = P1 \ {p}
`(11) B2 = E2 \ { ( pi1pj1), (ppr) | (cid:1126) pr (cid:1134) P1 \ { p } }
`
`A’2 = A2
`(12)
`(13) B’2 = { ( pi1pj1 ) }
`
`proved.(cid:850)(cid:3)
`(cid:3)
`
`(cid:44)(cid:51)(cid:53)(cid:21)(cid:19)(cid:20)(cid:25)(cid:16)(cid:19)(cid:19)(cid:26)(cid:21)(cid:25)(cid:16)(cid:36)(cid:38)(cid:55)(cid:44)(cid:57)(cid:44)(cid:54)(cid:44)(cid:50)(cid:49)(cid:15)(cid:3)(cid:40)(cid:36)(cid:15)(cid:3)(cid:55)(cid:36)(cid:46)(cid:40)(cid:16)(cid:55)(cid:58)(cid:50)(cid:15)(cid:3)(cid:21)(cid:46)(cid:15)(cid:3)(cid:53)(cid:50)(cid:38)(cid:46)(cid:54)(cid:55)(cid:36)(cid:53)(cid:15)(cid:3)(cid:40)(cid:91)(cid:17)(cid:3)(cid:20)(cid:19)(cid:20)(cid:25)(cid:3)(cid:15)(cid:3)(cid:83)(cid:17)(cid:3)(cid:20)(cid:23)(cid:3)(cid:82)(cid:73)(cid:3)(cid:21)(cid:23)
`
`

`
`In figure 3/a-d the graphs G1,(cid:10)(cid:3365)1, G2,(cid:3)(cid:10)(cid:3365)2 are illustrated for k = 4. (The bolded edges and vertices
`
`belong to the corresponding graphs.)
`
`Figure 3
`
`6. Definition. We define a Vertex Prime (VP) graph as a graph in PR which contains T-characterized
`vertex.
`
`Then Theorem 3 can be formulated as follows: Each of the classes of graphs PR4, PR6, ... , PRk, ...
`contains a VP graph.
`
`In the following we examine the cases under which a vertex is not T-characterized. We take advantage of
`the following well-known result [1].
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
` [page 367]
`
`Lemma 1. A complete graph (cid:299)n (where n is even) can be expanded into n-1 one-degree factors. (cid:850)
`
`(cid:3)T
`
`heorem 4. Let (cid:299)n,k (cid:1134)(cid:3)PRk and p (cid:1134) (cid:299)n,k = (P, E) . If p is not T-characterized, then there exist at least
`k-1 cycles of length 3 which contain p.
`
`PROOF. If p is not T-characterized, then the complement of the subgraph of (cid:299)n,k generated by it (G =
`
`least k-1. As it is the case in G that every edge endpoint is a neighbor of p, a 3-cycle containing p is thus
`constructed. And hence the theorem is proved.
`
`For k = 4, the following illustrations in figure 4/a-h depict cases where the vertex p is not T-characterized
`
`(A,B)) does not contain 1-factor. By Lemma 1, (cid:10)(cid:3365)(cid:3)(cid:133)ontains n-1 edge-independent 1-factors, and in G from
`these factors an edge must exist such that in (cid:10)(cid:3365) they are not a 1-factor. So the number of edges in G is at
`(bold edges indicate (cid:10)(cid:3365) ).
`(cid:4672)(cid:2924)(cid:2870)(cid:4673)(cid:4672)(cid:2924)(cid:2879)(cid:2870)(cid:2870) (cid:4673)(cid:485)(cid:4672)(cid:2870)(cid:2870)(cid:4673)
`(cid:4672)(cid:2924)(cid:2870)(cid:4673)(cid:488)
`
`Lemma 2. Let (cid:299)n be an n-vertex complete graph (n an even number) and we denote the number of all
`1-factors of (cid:299)n as F. Then
`
`(14)
`
`Fn =
`
`PROOF. It is easy to see that the assertion is true for the case n = 2. Suppose it also holds for any
`
`(cid:44)(cid:51)(cid:53)(cid:21)(cid:19)(cid:20)(cid:25)(cid:16)(cid:19)(cid:19)(cid:26)(cid:21)(cid:25)(cid:16)(cid:36)(cid:38)(cid:55)(cid:44)(cid:57)(cid:44)(cid:54)(cid:44)(cid:50)(cid:49)(cid:15)(cid:3)(cid:40)(cid:36)(cid:15)(cid:3)(cid:55)(cid:36)(cid:46)(cid:40)(cid:16)(cid:55)(cid:58)(cid:50)(cid:15)(cid:3)(cid:21)(cid:46)(cid:15)(cid:3)(cid:53)(cid:50)(cid:38)(cid:46)(cid:54)(cid:55)(cid:36)(cid:53)(cid:15)(cid:3)(cid:40)(cid:91)(cid:17)(cid:3)(cid:20)(cid:19)(cid:20)(cid:25)(cid:3)(cid:15)(cid:3)(cid:83)(cid:17)(cid:3)(cid:20)(cid:24)(cid:3)(cid:82)(cid:73)(cid:3)(cid:21)(cid:23)
`
`

`
`k(cid:3409) n – 2, that is:
`(cid:4672)(cid:2921)(cid:2870)(cid:4673)(cid:4672)(cid:2921)(cid:2879)(cid:2870)(cid:2870) (cid:4673)(cid:485)(cid:4672)(cid:2870)(cid:2870)(cid:4673)
`(cid:4672)(cid:2921)(cid:2870)(cid:4673)(cid:488)
`
`Fk =
`
`(15)
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
` [page 368]
`
`Figure 4
`
`has two vertices beyond which k+1 new vertex pairs can be selected (we don’t take note of the
`Then (cid:299)
`k
`ordering of the two points), each of which has an F
` numbered 1-factor which each share exactly one
`edge, so
`
`k
`
`(16) F
`k+2
`
`= ( k + 1 ) (cid:194) F k
`
`Recalling that
`
`(cid:4672)(cid:2921)(cid:2878)(cid:2870)(cid:2870) (cid:4673)
`(cid:3169)(cid:3126)(cid:3118)(cid:3118)
`
`(17)
`
`So thus
`
`(18) Fk+2 =
`
` *
`
` =
`
`(cid:2870)(cid:1499)(cid:4666)(cid:2921)(cid:2878)(cid:2870)(cid:4667)(cid:488)
`(cid:2870)(cid:488)(cid:3)(cid:2921)(cid:488)(cid:4666)(cid:2921)(cid:2878)(cid:2870)(cid:4667) = k + 1
`(cid:4672)(cid:2921)(cid:2870)(cid:4673)(cid:4672)(cid:2921)(cid:2879)(cid:2870)(cid:2870) (cid:4673)(cid:485)(cid:4672)(cid:2870)(cid:2870)(cid:4673)
`(cid:4672)(cid:2921)(cid:2878)(cid:2870)(cid:2870) (cid:4673)
`(cid:3169)(cid:3118)(cid:488)
`(cid:3169)(cid:3126)(cid:3118)(cid:3118)
`
`(cid:4672)(cid:2921)(cid:2878)(cid:2870)(cid:2870) (cid:4673)(cid:4672)(cid:2921)(cid:2870)(cid:4673)(cid:485)(cid:4672)(cid:2870)(cid:2870)(cid:4673)
`(cid:3169)(cid:3126)(cid:3118)(cid:3118) (cid:488)
`
` =
`
`This concludes the proof of the theorem.(cid:850)(cid:3)
`
`orollary.
`
`(cid:3)C
`
`4.
`
`In the context of (16) we can write Fn recursively as follows:
`
`(19) Fn = (n - 1) (cid:194) Fn-2(cid:850)(cid:3)
`
`2. The proof of Lemma 2 shows that if e is an edge contained in an E 1-factor of (cid:299)n, then exactly Fn-2 such
`
`(cid:44)(cid:51)(cid:53)(cid:21)(cid:19)(cid:20)(cid:25)(cid:16)(cid:19)(cid:19)(cid:26)(cid:21)(cid:25)(cid:16)(cid:36)(cid:38)(cid:55)(cid:44)(cid:57)(cid:44)(cid:54)(cid:44)(cid:50)(cid:49)(cid:15)(cid:3)(cid:40)(cid:36)(cid:15)(cid:3)(cid:55)(cid:36)(cid:46)(cid:40)(cid:16)(cid:55)(cid:58)(cid:50)(cid:15)(cid:3)(cid:21)(cid:46)(cid:15)(cid:3)(cid:53)(cid:50)(cid:38)(cid:46)(cid:54)(cid:55)(cid:36)(cid:53)(cid:15)(cid:3)(cid:40)(cid:91)(cid:17)(cid:3)(cid:20)(cid:19)(cid:20)(cid:25)(cid:3)(cid:15)(cid:3)(cid:83)(cid:17)(cid:3)(cid:20)(cid:25)(cid:3)(cid:82)(cid:73)(cid:3)(cid:21)(cid:23)
`
`

`
`1-factors are in (cid:299)n which with E contain exactly the ei shared edges.
`
`3.If the number of distinct 1-factors in (cid:299)n is denoted FDn, then based on Lemma 1 and (19) we have:
`
`FDn = Fn (cid:1103)(cid:3)n-1 = (n-1) (cid:194)Fn-2 (cid:1101)(cid:3)1=Fn-2 (cid:1101)(cid:3) n=4
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
` [page 369]
`
`4. The correspondence to (14) can be simplified by hiding the numerator as follows:
`
` = (cid:2924)(cid:488)(cid:2870)(cid:3172)(cid:512)(cid:3118)(cid:3)(cid:3172)(cid:3118)(cid:488)
`(cid:3118)(cid:488)(cid:4666)(cid:3172)(cid:3127)(cid:3118)(cid:4667)(cid:488)(cid:3)(cid:4666)(cid:3172)(cid:3127)(cid:3118)(cid:4667)(cid:488)
`(cid:3118)(cid:488)(cid:4666)(cid:3172)(cid:3127)(cid:3120)(cid:4667)(cid:488)(cid:485)(cid:3118)(cid:488)(cid:3118)(cid:488)(cid:3116)(cid:488)
`(cid:3172)(cid:488)
`(cid:3172)(cid:3118)(cid:488)
`
`
`
`Fn =
`
`Definition 7. Let (cid:299)n be a graph with n vertices and let
`
`(20)
`
`E = { E1, E2, … , Em }
`
`be a set of 1-factors of (cid:299)n and e1, e2 , …, ep be edges of (cid:299)n.
`
`We say the edges e1, e2 , …, ep are a representation of E if every 1-factor of E shares at least one
`edge with { e1, e2 , …, ep }.
`
`Lemma 3. Let (cid:299)n be a complete graph (n even). Denote the set of all 1-factors of (cid:299)n as
`
`(21) E = { E1, E2, ... , Er} where r = Fn and (cid:850)
`
`Ek(cid:1488)E for which ei(cid:1488)E and ej(cid:1488)E .
`PROOF. Necessity: Suppose that R is a representation of E and there exist ei (cid:122) ej and Ek where ei(cid:1488) Ek and
`
`ej (cid:1134) Ek . On the basis of Lemma 2, Corollary 2, ei represents an Fn-2 1-factor of E, and ej does also. As
`both edges are in Ek, it is the case that the for the 1-factor Kij represented by the two edges, it holds that(cid:850)(cid:3)
`
`(23) Kij < 2 (cid:194) Fn-2(cid:3)
`
`(cid:3)I
`
`f we suppose that the remaining n-3 edges in R represent the maximum n-1 1-factors, then it is the case
`that for the K E, the elements of E represented by R, it holds that
`
`(24) KE < (n-1) (cid:194) Fn-2
`
`which is a contradiction, as the number of elements in E is (n - 1) (cid:194) Fn-2 and R is a representation
`of E, so for KE the equality must hold.
`
`Sufficiency: As every Ek(cid:1488)(cid:3)E 1-factor contains only one edge ei(cid:1488)R, and on the basis of Lemma 2,
`
`Corollary 2, an edge ei represents an Fn-2 1-factor of E, since there are n-1 of R numbering (n - 1) (cid:194) Fn-2,
`this is all of the edges of E.
`We have proved the theorem.
`
`(cid:3)
`
`(cid:44)(cid:51)(cid:53)(cid:21)(cid:19)(cid:20)(cid:25)(cid:16)(cid:19)(cid:19)(cid:26)(cid:21)(cid:25)(cid:16)(cid:36)(cid:38)(cid:55)(cid:44)(cid:57)(cid:44)(cid:54)(cid:44)(cid:50)(cid:49)(cid:15)(cid:3)(cid:40)(cid:36)(cid:15)(cid:3)(cid:55)(cid:36)(cid:46)(cid:40)(cid:16)(cid:55)(cid:58)(cid:50)(cid:15)(cid:3)(cid:21)(cid:46)(cid:15)(cid:3)(cid:53)(cid:50)(cid:38)(cid:46)(cid:54)(cid:55)(cid:36)(cid:53)(cid:15)(cid:3)(cid:40)(cid:91)(cid:17)(cid:3)(cid:20)(cid:19)(cid:20)(cid:25)(cid:3)(cid:15)(cid:3)(cid:83)(cid:17)(cid:3)(cid:20)(cid:26)(cid:3)(cid:82)(cid:73)(cid:3)(cid:21)(cid:23)
`
`(22) R = { e1, e2 , …, en-1} (cid:850)
`
`a set of edges of (cid:299)n. Then R is a representation of E if and only if for any two ei (cid:122) ej , there does not exist
`
`

`
`Theorem 5. For a complete graph (cid:299)n (n > 4, even), all 1-factors can be represented by exactly n-1 edges if
`and only if those edges are joined by a vertex.
`
`PROOF. Necessity: Let p (cid:1134) (cid:299)n be such a vertex. As every 1-factor of (cid:299)n is contained by an edge attached
`to p, it follows that all such edges are indeed an n-1 element representation of all 1-factors of (cid:299)n .
`
`Sufficiency: Let us examine an arbitrary edge (p1p2) (cid:1134) (cid:299)n (p1 and p2 are the endpoints of edge ei). Let this
`be the first element of the n-1 element representation. By Lemma 3, the second element can only be
`selected from amongst such ej for which the only 1-factor containing ei does not also appear.
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
` [page 370]
`
`It is easy to see that such an edge can only be selected from those which have p1 or p2 as an endpoint. (See
`figure 5.) (The dark thick lines are edges that may be chosen.)
`Suppose that we choose (p1p3) = ej as the second element of the representation (see figure 6.)
`Continuing according to Lemma 3, we may choose from amongst p1 and p2 for attaching (that
`which can still be chosen), and immediately for the e1 edge we can also take advantage of Lemma 3,
`
`
`
` Figure 5
`
`
`
`
`
` Figure 6
`
`thus the desired representation for p3 must attach. Such an edge could only be (p2p3). With this, the edges
`which can be chosen have been consumed. Thus this selection constitutes a representation if and only if
`n=4; for all other cases the n-1 edges which can be selected as the elements of the representation are
`attached to p1 (thus necessitating the condition that n>4). We have thus proved the theorem. For n=4 the
`entire representation is depicted in figure 4.
`
`In the remainder of the paper we introduce a type of graph which under a certain set of assumptions
`proves to be a VP graph. We will examine, for a given even number k, what the smallest number n is such
`
`that (cid:299)n,k(cid:1488) PRk is a VP graph.
`
`Denote by C the set of all complete graphs where the elements are C1, C2, ... , Cn. (Cn is the
`complete graph of n vertices.)
`
`Definition 8. Let Ci1, Ci2, ... , Cit be (not necessarily distinct) graphs in C where Cij = (Pj, Ej) and
`j= 1, 2, ..., t. The t-composition of graphs Ci1, Ci2, ... , Cit (indicated by “t”) is a graph (cid:299) = (P , E) where
`the following are true:
`
`(b)(cid:3)
`
`(a)
`
`(c)
`
`P = P1(cid:1515) P2(cid:1515) ...(cid:1515)(cid:3) Pt , (cid:1126)i (cid:122) j: Pi (cid:136) Pj = (cid:1486)
`E = E1(cid:1515) E2(cid:1515)...(cid:1515) Et(cid:1515) E’, (cid:1126)I (cid:122) j: Ei (cid:136) Ej = (cid:1486) where E’ is the set of so-called connector edges.
`
`(cid:299) is a regular graph
`
`(cid:44)(cid:51)(cid:53)(cid:21)(cid:19)(cid:20)(cid:25)(cid:16)(cid:19)(cid:19)(cid:26)(cid:21)(cid:25)(cid:16)(cid:36)(cid:38)(cid:55)(cid:44)(cid:57)(cid:44)(cid:54)(cid:44)(cid:50)(cid:49)(cid:15)(cid:3)(cid:40)(cid:36)(cid:15)(cid:3)(cid:55)(cid:36)(cid:46)(cid:40)(cid:16)(cid:55)(cid:58)(cid:50)(cid:15)(cid:3)(cid:21)(cid:46)(cid:15)(cid:3)(cid:53)(cid:50)(cid:38)(cid:46)(cid:54)(cid:55)(cid:36)(cid:53)(cid:15)(cid:3)(cid:40)(cid:91)(cid:17)(cid:3)(cid:20)(cid:19)(cid:20)(cid:25)(cid:3)(cid:15)(cid:3)(cid:83)(cid:17)(cid:3)(cid:20)(cid:27)(cid:3)(cid:82)(cid:73)(cid:3)(cid:21)(cid:23)
`
`

`
`COMMENTS.
`1. The set E’ of edges is not easily determined.
`
`graph from complete subgraphs and i1 = i2 = .... = it.
`3. If (cid:299) = (cid:299)n,k and max(i1, i2, ..., it ) = L, then L (cid:148) k+1.(cid:850)
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
` [page 371]
`
`if n odd or
`
`vertex which has no pair in P \ P’, that is, (cid:299)n does not contain a 1-factor.
`
`2. E’ determines the connectedness of the graph (cid:299). That is, if E’ = (cid:1486), then (cid:299) is a t-component regular
`Theorem 6. Let (cid:299)n = (P, E) be a connected graph on n vertices. If in (cid:542)(cid:3364)n there exists a complete subgraph
`on [(cid:2924)(cid:2870)]+ 1 vertices, then in (cid:299)n there is no 1-factor. (We will use (cid:542)(cid:3364)n to indicate the graph complement of (cid:299)n.)
`PROOF. Let G = (P’, E’) be an [(cid:2924)(cid:2870)] + 1 vertex complete subgraph. Then
`|P(cid:397)| = [(cid:2924)(cid:2870)] + 1 (cid:1101) |P (cid:1148)(cid:3)P(cid:397)| = [(cid:2924)(cid:2870)]
` = [(cid:2924)(cid:2870)]-1 if n even.
`In (cid:542)(cid:3364)n the vertices of P’ can only be connected to vertices of P \ P’, so certainly in P’ there is at least one
`Theorem 7. Let (cid:299)n,k(cid:1488)(cid:3)PR and k (cid:149) 4. Further suppose the following:
`1. Cij(cid:1488)(cid:3)C , j=1,2,...,t (cid:149)2.
`3. (cid:2921)(cid:2878)(cid:2872)(cid:2870) (cid:148) ij (cid:148) k j =1,2,...,t (cid:149) 2
`conditions for Theorem 6 because (cid:2921)(cid:2878)(cid:2872)(cid:2870) (cid:148) i (cid:148) k. That is, the complement of the subgraph generated by p
`
`2. (cid:299)n,k is the t-composition of Ci1, Ci2, ..., Cit
`
`Then (cid:299)n,k is a VP graph.
`
`PROOF. We shall examine an arbitrary vertex p in (cid:299)n,k . Then from property b) of the t-composition, it
`follows that there exists Cij in (cid:299) where p (cid:1134) Cij and ij fulfills the conditions of Theorem 3. If we now
`examine the subgraph of (cid:299)n,k generated by p, there are k vertices and it contains Cij, which fulfills the
`
`does not contain a 1-factor. This means that p is not T-characterized. As we did not connect an edge to p,
`it can be done to any vertex in (cid:299)n,k , so (cid:299)n,k is a VP graph.
`
`A graph meeting conditions 1, 2, and 3 is shown in Figure 7.
`
`Figure 7
`
`(cid:44)(cid:51)(cid:53)(cid:21)(cid:19)(cid:20)(cid:25)(cid:16)(cid:19)(cid:19)(cid:26)(cid:21)(cid:25)(cid:16)(cid:36)(cid:38)(cid:55)(cid:44)(cid:57)(cid:44)(cid:54)(cid:44)(cid:50)(cid:49)(cid:15)(cid:3)(cid:40)(cid:36)(cid:15)(cid:3)(cid:55)(cid:36)(cid:46)(cid:40)(cid:16)(cid:55)(cid:58)(cid:50)(cid:15)(cid:3)(cid:21)(cid:46)(cid:15)(cid:3)(cid:53)(cid:50)(cid:38)(cid:46)(cid:54)(cid:55)(cid:36)(cid:53)(cid:15)(cid:3)(cid:40)(cid:91)(cid:17)(cid:3)(cid:20)(cid:19)(cid:20)(cid:25)(cid:3)(cid:15)(cid:3)(cid:83)(cid:17)(cid:3)(cid:20)(cid:28)(cid:3)(cid:82)(cid:73)(cid:3)(cid:21)(cid:23)
`
`

`
`COMMENTS.(cid:850)(cid:3)
`1. From the proof of Theorem 7 it easily follows that to the extent that in (cid:299)n,k there are
`
`2. Theorem 7 also addresses the statement of Theorem 3, thus we now know that the VP graphs
`constructed in Theorem 3 are not the only to exist for any even number k.
`3. If we examine for the minimum case the first and third suppositions for Theorem 7, then we have t=2
`
`subgraphs Cij (cid:1134) C, where ij = (cid:2921)(cid:2870) + 1, then (cid:299) is not a VP graph. Such a graph is shown in figure 8.
`and i1 = i2 = .(cid:2921)(cid:2878)(cid:2872)(cid:2870) , and we get that the number of vertices is n = k + 4 for the t-composition of Ci1 and Ci2
`
`= (cid:299)n,k VP graph.
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
` [page 372]
`
`From this follows the following theorem: (cid:850)
`
`(cid:3)
`
`Figure 8
`
`(cid:3)
`
`heorem 8. For any even number k (cid:149) 4 there exists a (cid:299)n,k VP graph where n = k + 4.
`
`(cid:3)T
`
`1 and (cid:299)k+1.k is complete there is no VP graph, so the question arises, for the given k cases, what is the
`
`As an example, in figure 9 we can see a (cid:299)8,4 graph. As we know, for any (cid:299)n,k(cid:1488) PR where n (cid:149) k +
`smallest nmin number for which there exists (cid:299)n,k(cid:1488) PR a VP graph.
`9.Theorem. If (cid:299) (cid:1488)(cid:3)PR and n = k+2, then (cid:299) is not a VP graph.
`
`Taking into account Theorem 8, it follows that
`
`(25)
`
`k+2 (cid:148) mmin (cid:148) k + 4
`
`PROOF. The proof can be completed using total induction on the degree. In figure 10 the case of k=2 is
`depicted, for which explanation can be seen clearly.
`
`(cid:3)
`
`(cid:44)(cid:51)(cid:53)(cid:21)(cid:19)(cid:20)(cid:25)(cid:16)(cid:19)(cid:19)(cid:26)(cid:21)(cid:25)(cid:16)(cid:36)(cid:38)(cid:55)(cid:44)(cid:57)(cid:44)(cid:54)(cid:44)(cid:50)(cid:49)(cid:15)(cid:3)(cid:40)(cid:36)(cid:15)(cid:3)(cid:55)(cid:36)(cid:46)(cid:40)(cid:16)(cid

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket