throbber
Digital Logic
`and
`Computer Design
`
`M. MORRIS MANO
`
`Professor of Engineering
`California State University, Los Angeles
`
`f
`
`Prentice-Hall, Inc., Englewood Cliffs, N.J. 07632
`
`1
`
`f -
`
`!
`
`i
`
`:
`
`Aisin Seiki Exhibit 1014
`Page 1 of 20
`
`

`
`Library of Congress Cataloging in Publication Data
`
`(dale)
`MANO, M. MORRIS
`Digital logic and computer design.
`
`Bibliography: p.
`Includes index.
`1.-Electronic digital computers. 2.-Logic
`circuits. 3.-Digital integrated circuits.
`4.-Logic design.
`I.-Title.
`TK7888.3.M345
`621.3815,3
`ISBN 0-13-214510-3
`
`78-21462
`
`©1979 by Prentice-Hall, Inc., Englewood Cliffs, N.J. 07632
`
`All rights reserved. No part of this book
`may be reproduced in any form or
`by any means without permission in writing
`from the publisher.
`
`Printed in the United States of America
`
`10 9 8 7
`
`Editorial/ Production Supervision by Lynn S. Frankel
`Cover Design by Edsal Enterprise
`Manufacturing Buyer: Gordon Osbourne
`
`PRENTICE-HALL INTERNATIONAL, INC., London
`PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney
`PRENTICE-HALL OF CANADA, LTD., Toronto
`PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
`PRENTICE-HALL OF JAPAN, INC., Tokyo
`PRENTICB-HALL OF SOUTHEAST ASIA PTE. LTD., Singapore
`WHITEHALL BOOKS LIMITED, Wellington, New Zealand
`
`-
`
`m
`
`•r.
`
`"t .
`
`W I
`
`? *
`
`M
`
`I
`
`1
`
`.
`
`Aisin Seiki Exhibit 1014
`Page 2 of 20
`
`

`
`Contents
`
`PREFACE
`
`1
`
`BINARY SYSTEMS
`
`viii
`
`1
`
`1-1
`1-2
`1-3
`1-4
`1-5
`1 - 6
`1-7
`1-8
`1-9
`
`I
`
`Digital Computers and Digital Systems
`Binary Numbers 4
`Number Base Conversion 6
`Octal and Hexadecimal Numbers 9
`Complements 10
`Binary Codes 16
`Binary Storage and Registers 22
`Binary Logic 25
`Integrated Circuits 30
`References 31
`Problems 31
`
`2
`
`BOOLEAN ALGEBRA AND LOGIC GATES
`
`34
`
`2-1
`2-2
`2-3
`
`2-4
`2-5
`2-6
`2-7
`2-8
`
`Basic Definitions 34
`Axiomatic Definition of Boolean Algebra 36
`Basic Theorems and Properties
`of Boolean Algebra 39
`Boolean Functions 43
`Canonical and Standard Forms 47
`Other Logic Operations 53
`Digital Logic Gates 56
`IC Digital Logic Families 60
`References 68
`Problems 68
`
`jl
`
`j
`
`11
`
`n
`
`•
`
`:"V<
`
`l
`
`••
`
`!
`
`H
`
`ii
`1 i
`
`i
`
`liiPS
`
`Hi
`
`Aisin Seiki Exhibit 1014
`Page 3 of 20
`
`

`
`1 J H '•'•i
`
`.V'.;,'•
`
`•
`
`MEMORY UNIT
`
`0 0 0 0 0 0 0 0 0 0
`
`sum
`
`operand 1
`
`0 0 1 1 1 0 0 0 0 1
`
`operand 2
`
`0 0 0 1 0 0 0 0 1 0
`
`0 0 0 1 0 0 0 0 1 0 R 1
`
`Digital logic
`circuits for
`binary addition
`
`0 1 0 0 1 0 0 0 1 1 R 3
`
`0 0 1 1 1 0 0 0 0 1 R 2
`
`PROCESSOR UNIT
`
`;r
`w
`
`o
`ie
`
`;r
`
`a-
`it
`
`o
`•f
`e
`h
`a
`n
`n
`1
`
`'•
`
`Figure 1-3 Example of binary information processing
`
`processor registers can be transferred back into a memory register for storage until
`needed again. The diagram shows the contents of two operands transferred from
`two memory registers into R1 and R2. The digital logic circuits produce the sum,
`which is transferred to register R3. The contents of R3 can now be transferred
`back to one of the memory registers.
`The last two examples demonstrated the information flow capabilities of a
`digital system in a very simple manner. The registers of the system are the basic
`elements for storing and holding the binary information. The digital logic circuits
`process the information. Digital logic circuits and their manipulative capabilities
`are introduced in the next section. The subject of registers and register transfer
`operations is taken up again in Chapter 8.
`
`•
`
`1-8 BINARY LOGIC
`
`jpfef-
`
`Binary logic deals with variables that take on two discrete values and with
`J|||S operations that assume logical meaning. The two values the variables take may be
`"ll&r called by different names (e.g., true and false, yes and no, etc.), but for our purpose
`Hlfeit .is' convenient to think in terms of bits and assign the values of 1 and 0. Binary
`25
`
`I 1
`u
`
`w. m
`m
`i*
`
`w
`a
`
`f
`1 M ( !
`
`i.
`
`M
`
`I
`
`. t
`
`3fi
`
`i
`I ]
`
`' j
`
`i
`R
`
`•#5
`V;,
`
`,
`
`; .J
`
`I
`
`Aisin Seiki Exhibit 1014
`Page 4 of 20
`
`

`
`"ii,
`
`26
`
`BINARY SYSTEMS
`
`CH. 1
`
`li
`
`logic is used to describe, in a mathematical way, the manipulation and processing
`of binary information. It is particularly suited for the analysis and design of digital
`systems. For example, the digital logic circuits of Fig. 1-3 that perform the binary
`arithmetic are circuits whose behavior is most conveniently expressed by means of
`binary variables and logical operations. The binary logic to be introduced in this
`section is equivalent to an algebra called Boolean algebra. The formal presentation
`of a two-valued Boolean algebra is covered in more detail in Chapter 2. The
`purpose of this section is to introduce Boolean algebra in a heuristic manner and
`relate it to digital logic circuits and binary signals.
`
`Definition of Binary Logic
`
`Binary logic consists of binary variables and logical operations. The variables are
`designated by letters of the alphabet such as A, B, C, x, y, z, etc., with each
`variable having two and only two distinct possible values; 1 and 0. There are three
`basic logical operations: AND, OR, and NOT.
`
`1. AND: This operation is represented by a dot or by the absence of an
`operator. For example, x • y = z or xy = z is read "x AND y is equal to
`z." The logical operation AND is interpreted to mean that z = 1 if and
`only if JC = 1 and y = \ \ otherwise z = 0. (Remember that x, y, and z are
`binary variables and can be equal either to 1 or 0, and nothing else.)
`2. OR: This operation is represented by a plus sign. For example, x + y = z
`is read "x OR 7 is equal to z," meaning that z = I if x = I or if y = I or if
`both x = 1 and.y = 1. If both x = 0 and 7 = 0, then z = 0.
`
`3. NOT: This operation is represented by a prime (sometimes by a bar). For
`example, JC' = z (or 3c = z) is read "x not is equal to z," meaining that z is
`what x is not. In other words, if x = 1, then z = 0; but if x = 0, then
`z = 1.
`
`Binary logic resembles binary arithmetic, and the operations AND and OR
`have some similarities to multiplication and addition, respectively. In fact, the
`symbols used for AND and OR are the same as those used for multiplication and
`addition. However, binary logic should not be confused with binary arithmetic.
`One should realize that an arithmetic variable designates a number that may
`consist of many digits. A logic variable is always either a I or a 0. For example, in
`binary arithmetic we have 1 + 1 = 10 (read: "one plus one is equal to 2"), while in
`binary logic we have 1 + 1 = 1 (read: "one OR one is equal to one").
`For each combination of the values of x and 7, there is a value of z specificed
`by the definition of the logical operation. These definitions may be listed in a
`compact form using truth tables. A truth table is a table of all possible combina­
`tions of the variables showing the relation between the values that the variables
`may take and the result of the operation. For example, the truth tables for the
`
`is s
`
`ope;
`valu
`opei
`for
`the '
`
`The
`the
`repr
`whe
`vari
`the
`on i
`of b
`
`beh.
`(swi
`mar
`tion
`
`ii
`
`m
`
`y-
`
`4
`
`Aisin Seiki Exhibit 1014
`Page 5 of 20
`
`

`
`; v!
`
`m
`LHI
`ill
`
`ir
`
`•if !
`
`i '
`
`Ifc • i
`
`o
`
`m y:'v
`
`i
`
`• i
`
`v
`
`H 1
`
`ng
`tal
`try
`of
`lis
`on
`he
`nd
`
`re
`:h
`ee
`
`in
`to
`id
`re
`
`z
`if
`
`)r
`is
`n
`
`R
`ie
`d
`
`y
`n
`n
`
`d
`a
`
`S
`e
`
`TABLE 1-6 Truth tables of logical operations
`
`AND
`
`x y
`
`0 0
`0
`1
`1 0
`1
`1
`
`x-y
`
`0
`0
`0
`I
`
`OR
`
`x + y
`
`0
`I
`I
`1
`
`x y
`
`0 0
`0 I
`0
`
`I
`
`NOT
`
`x'
`
`0
`
`0
`1
`
`operations AND and OR with variables x and_y are obtained by listing all possible
`values that the variables may have when combined in pairs. The result of the
`operation for each combination is then listed in a separate row. The truth tables
`for AND, OR, and NOT are listed in Table 1-6. These tables clearly demonstrate
`the definitions of the operations.
`
`Switching Circuits and Binary Signals
`
`The use of binary variables and the application of binary logic are demonstrated by
`the simple switching circuits of Fig. 1-4. Let the manual switches A and B
`represent two binary variables with values equal to 0 when the switch is open and 1
`when the switch is closed. Similarly, let the lamp L represent a third binary
`variable equal to 1 when the light is on and 0 when off. For the switches in series,
`the light turns on if A and B are closed. For the switches in parallel, the light turns
`on if A or B is closed. It is obvious that the two circuits can be expressed by means
`of binary logic with the AND and OR operations, respectively:
`
`L = A • B
`L = A + B
`
`for the circuit of Fig. l-4(a)
`for the circuit of Fig. l-4(b)
`
`Electronic digital circuits are sometimes called switching circuits because they
`behave like a switch, with the active element such as a transistor either conducting
`(switch closed) or not conducting (switch open). Instead of changing the switch
`manually, an electronic switching circuit uses binary signals to control the conduc­
`tion or nonconduction state of the active element. Electrical signals such as
`
`A
`
`B
`
`Voltage (O
`source
`
`Mi
`
`Voltage
`source
`
`<@L
`
`A '
`
`B
`
`(a) Switches in series — logic AND
`
`(b) Switches in parallel —logic OR
`
`MS
`
`Figure 1-4 Switching circuits that demonstrate binary logic
`
`27
`
`la-
`Aisin Seiki Exhibit 1014
`Page 6 of 20
`
`^y.
`
`•
`
`

`
`i Ts
`
`"<i i
`
`! ?
`
`I
`
`Nominal logic-1
`
`Volts
`
`4
`
`3
`
`2
`
`f
`Transition occurs
`between these limits
`
`0.5 -
`
`•
`
`
`
`Nominal logic-0
`
`0
`
`-0.5
`
`Figure 1-5 Example of binary signals
`
`Tolerance
`allowed
`for logic-1
`
`Tolerance
`allowed
`for logic- 0
`
`voltages or currents exist throughout a digital system in either one of two recogniz­
`able values (except during transition). Voltage-operated circuits, for example,
`respond to two separate voltage levels which represent a binary variable equal to
`logic-1 or logic-0. For example, a particular digital system may define logic-1 as a
`signal with a nominal value of 3 volts, and logic-0 as a signal with a nominal value
`of 0 volt. As shown in Fig, 1-5, each voltage level has an acceptable deviation from
`the nominal. The intermediate region between the allowed regions is crossed only
`during state transitions. The input terminals of digital circuits accept binary signals
`within the allowable tolerances and respond at the output terminal with binary
`signals that fall within the specified tolerances.
`
`Logic Gates
`
`Electronic digital circuits are also called logic circuits because, with the proper
`input, they establish logical manipulation paths. Any desired information for
`computing or control can be operated upon by passing binary signals through
`various combinations of logic circuits, each signal, representing a variable and
`carrying one bit of information. Logic circuits that perform the logical operations
`of AND, OR, and NOT are shown with their symbols in Fig. 1-6. These circuits,
`called gates, are blocks of hardware that produce a logic-1 or logic-0 output signal
`if input logic requirements are satisfied. Note that four different names have been
`used for the same type of circuits: digital circuits, switching circuits, logic circuits,
`and gates. All four names are widely used, but we shall refer to the circuits as
`
`V *
`
`L -
`siLiMJi
`
`•
`
`28
`
`I
`
`Aisin Seiki Exhibit 1014
`Page 7 of 20
`
`

`
`u
`
`i,
`0
`a
`e
`Q
`y
`s
`y
`
`r
`r
`i
`1
`
`g
`t:
`
`I
`
`/|
`
`9
`
`ijW
`
`; D
`
`= x-y
`
`( a ) Two-input A N D gate
`
`= x
`
`y
`
`x'
`
`( b ) Two-input O R gate
`
`( c ) N O T gate or inverter
`
`A
`= ABC B
`c
`D
`( e ) Four-input O R gate
`
`G = A
`
`(d) Three-input AND gate
`
`B C -\- D
`
`Figure 1-6 Symbols for digital logic circuits
`
`AND, OR, and NOT gates. The NOT gate is sometimes called an inverter circuit
`since it inverts a binary signal.
`The input signals x and y in the two-input gates of Fig. 1-6 may exist in one
`of four possible states: 00, 10, 11, or 01. These input signals are shown in Fig. 1-7,
`together with the output signals for the AND and OR gates. The liming diagrams
`in Fig. 1-7 illustrate the response of each circuit to each of the four possible input
`binary combinations. The reason for the name "inverter" for the NOT gate is
`apparent from a comparison of the signal x (input of inverter) and that of x'
`(output of inverter).
`AND and OR gates may have more than two inputs. An AND gate with
`three inputs and an OR gate with four inputs are shown in Fig. 1-6. The
`three-input AND gate responds with a logic-1 output if all three input signals are
`logic-1. The output produces a logic-0 signal if any input is logic 0. The four input
`OR gate responds with a logic-1 when any input is a logic-1. Its output becomes
`logic-0 if all input signals are logic-0.
`The mathematical system of binaiy logic is better known as Boolean, or
`switching, algebra. This algebra is conveniently used to describe the operation of
`complex networks of digital circuits. Designers of digital systems use Boolean
`algebra to transform circuit diagrams to algebraic expressions and vice versa.
`Chapters 2 and 3 are devoted to the study of Boolean algebra, its properties, and
`manipulative capabilities. Chapter 4 shows how Boolean algebra may be used to
`express mathematically the interconnections among networks of gates.
`
`o_r
`
`0
`
`0
`
`1
`
`oJ
`
`oJ
`
`Oj I
`r~I o
`
`I
`
`T~l o
`o
`r~u
`n_Q
`o
`1_0_
`1
`I
`oj"!
`i
`
`y
`
`AND: x • y
`
`OR •. x + y
`
`NOT: x'
`
`•r , '
`
`Figure 1-7
`
`Input-output signals for gates (a), (b), and (c) of Fig. 1-6
`
`29
`
`n
`i !i
`t
`f i 11 i li
`i i
`
`f •
`
`> B
`r
`
`li
`
`It
`
`'it
`f i ;
`> r
`
`I,;
`
`'i ^
`
`Aisin Seiki Exhibit 1014
`Page 8 of 20
`
`

`
`SEC 2-3
`
`BASIC THEOREMS AND PROPERTIES OF BOOLEAN ALGEBRA
`
`39
`
`6. Postulate 6 is satisfied because the two-valued Boolean algebra has two
`distinct elements 1 and 0 with 1 ^ 0.
`
`We have just established a two-valued Boolean algebra having a set of two
`elements, 1 and 0, two binary operators with operation rules equivalent to the
`AND and OR operations, and a complement operator equivalent to the NOT
`operator. Thus, Boolean algebra has been defined in a formal mathematical
`manner and has been shown to be equivalent to the binary logic presented
`heuristically in Section 1-8. The heuristic presentation is helpful in understanding
`the application of Boolean algebra to gate-type circuits. The formal presentation is
`necessary for developing the theorems and properties of the algebraic system. The
`two-valued Boolean algebra defined in this section is also called "switching
`algebra" by engineers. To emphasize the similarities between two-valued Boolean
`algebra and other binary systems, this algebra was called "binary logic" in Section
`1-8. From here on, we shall drop the adjective "two-valued" from Boolean algebra
`in subsequent discussions.
`
`2-3 BASIC THEOREMS AND PROPERTIES
`OF BOOLEAN ALGEBRA
`
`Duality
`
`The Huntington postulates have been listed in pairs and designated by part (a) and
`part (b). One part may be obtained from the other if the binary operators and the
`identity elements are interchanged. This important property of Boolean algebra is
`called the duality principle. It states that every algebraic expression deducible from
`the postulates of Boolean algebra remains valid if the operators and identity
`elements are interchanged. In a two-valued Boolean algebra, the identity elements
`and the elements of the set B are the same: 1 and 0. The duality principle has
`many applications. If the dual of an algebraic expression is desired, we simply
`injprrli.ipof OR nnd AKi 11 operators and replace I's by O's and O's by I's.
`
`Basic Theorems
`
`jjfi-
`
`R firfKC
`r-'T^vj;
`
`mm.
`
`Table 2-1 lists six theorems of Boolean algebra and four of its postulates. The
`notation is simplified by omitting the • whenever this does not lead to confusion.
`The theorems and postulates listed are the most basic relationships in Boolean
`algebra. The reader is advised to become familiar with them as soon as possible.
`The theorems, like the postulates, are listed in pairs; each relation is the dual of the
`one paired with it. The postulates are basic axioms of the algebraic structure and
`need no proof. The theorems must be proven from the postulates. The proofs of
`the theorems with one variable are presented below. At the right is listed the
`number of the postulate which justifies each step of the proof.
`
`M
`
`I
`
`/J
`
`•ft il I
`|.|
`
`111
`
`!
`I
`
`i
`
`!'• I
`
`• i
`
`Aisin Seiki Exhibit 1014
`Page 9 of 20
`
`

`
`K /
`
`.»•
`
`W
`L
`
`TABLE 2-1 Postulates and theorems of Boolean algebra
`
`Postulate 2
`Postulate 5
`Theorem 1
`Theorem 2
`Theorem 3, involution
`Postulate 3, commutative
`Theorem 4, associative
`Postulate 4, distributive
`Theorem 5, DeMorgan
`Theorem 6, absorption
`
`(a) ;c + 0 = JC
`(a) x + x' = \
`(a) x + x = x
`(a) x + 1 = 1
`(x'y = x
`(a) x + y = y + x
`ri
`(a) x + (y + z) = (x + y) + z
`(a) JC{>' + z) = xy + xz
`(a) (JC + y)' = JC>'
`(a) j.' t
`
`(b) .x • 1 = x
`(b) JC • x' = 0
`(b) x • x = x
`(b) JC • 0 = 0
`
`(h) xy = yx
`(b) x(yz) = (xy)z
`(b) x + yz = (x + y)(x + z)
`(b) (xy)' ~x'+y'
`(b) X(JC + >>) = JC
`
`:
`
`;1
`
`jjj t
`
`r.
`i
`
`M
`
`;
`
`•
`
`;
`
`II
`
`i .
`
`THEOREM 1(a); x
`
`x + x = (x + x) • 1
`= (x + x)(x + JC')
`= x + xx'
`= JC + 0
`= JC
`
`by postul
`
`5(a)
`4(b)
`5(b)
`2(a)
`
`THEOREM 1(b): JC
`
`JC = JC.
`
`x • JC = JCJC + 0
`= XX + xx'
`= JC(JC + JC')
`= JC • 1
`
`by postulate: 2(a)
`5(b)
`4{a)
`5(a)
`2(b)
`
`Note that theorem 1(b) is the dual of theorem 1(a) and that each step of the
`proof in part (b) is the dual of part (a). Any dual theorem can be similarly derived
`from the proof of its corresponding pair.
`
`THEOREM 2(a): JC + 1 = 1.
`
`JC + 1 = 1 • (JC + 1)
`= (JC +'JC')(JC + 1)
`= JC + JC' • 1
`= X + X'
`
`x v ^
`
`by postulate: 2(b)
`5(a)
`4(b)
`2(b)
`5(a)
`
`THEOREM 2(b): JC • 0 = 0 by duality.
`
`THEOREM 3: (JC')' = x. From postulate 5, we have x + x' = I and JC • JC'
`= 0, which defines the complement of JC. The complement of JC' is JC and is also
`(JC')'. Therefore, since the complement is unique, we have that (JC')' = x.
`
`40
`
`ku
`m
`
`&
`
`Aisin Seiki Exhibit 1014
`Page 10 of 20
`
`

`
`SEC. 2-3
`
`BASIC THEOREMS AND PROPERTIES OF BOOLEAN ALGEBRA
`
`41
`
`The theorems involving two or three variables may be proven algebraically from
`the postulates and the theorems which have already been proven. Take, for
`example, the absorption theorem.
`
`THEOREM 6(a): x + xy = x.
`
`x + xy = x • \ + xy
`= x ( \ + y )
`= x(y + i)
`= x- \
`
`by postulate 2(b)
`by postulate 4(a)
`by postulate 3(a)
`by theorem 2(a)
`by postulate 2(b)
`
`THEOREM 6(b): xix + j) = x by duality.
`
`The theorems of Boolean algebra can be shown to hold true by means of
`truth tables. In truth tables, both sides of the relation are checked to yield identical
`results for all possible combinations of variables involved. The following truth
`table verifies the first absorption theorem.
`
`r
`x
`0
`0
`1
`1
`
`y
`0
`1
`0
`1
`
`xy
`0
`0
`0
`1
`
`x + xy
`0
`0
`1
`1
`
`the
`/td
`
`• x '
`lso
`
`, ,.
`
`•Mm
`•••'vis-
`jmngj-v
`#r
`iw,.
`
`K SIS
`
`The algebraic proofs of the associative law and De Morgan's theorem are long and
`will not be shown here. However, their validity is easily shown with truth tables.
`For example, the truth table for the first De Morgan's theorem {x + y)' = x'y' is
`shown below.
`
`x
`o
`0
`1
`1
`
`y
`o
`1
`0
`1
`
`x + y
`0
`1
`1
`1
`
`(x + y)'
`1
`0
`0
`0
`
`x'
`i
`1
`0
`0
`
`y'
`i
`0
`1
`0
`
`x'y'
`i
`0
`0
`0
`
`Operator Precedence
`
`The operator precedence for evaluating Boolean expressions is (1) parentheses, (2)
`NOT. C) AMP, and (<1)
`In other words, the expression inside the parentheses
`must be evaluated before all other operations. The next operation that holds
`precedence is the complement, then follows the AND, and finally the OR. As an
`example, consider the truth table for De Morgan's theorem. The left side of the
`
`•
`
`' '
`
`ill
`
`5
`
`;
`
`8
`
`y
`
`Aisin Seiki Exhibit 1014
`Page 11 of 20
`
`

`
`LA
`
`
`
`42
`
`BOOLEAN ALGEBRA AND LOGIC GATES
`
`expression is (x + /)'. Therefore, the expression inside the parentheses is evaluated
`first and the result then complemented. The right side of the expression is x'y'.
`Therefore, the complement of x and the complement of y are both evaluated first
`and the result is then ANDed. Note that in ordinary arithmetic the same prece­
`dence holds (except for the complement) when multiplication and addition are
`replaced by AND and OR, respectively.
`
`Venn Diagram
`
`A helpful illustration that may be used to visualize the relationships among the
`variables of a Boolean expression is the Venn diagram. This diagram consists of a
`rectangle such as shown in Fig. 2-1, inside of which are drawn overlapping circles,
`one for each variable. Each circle is labeled by a variable. We designate all points
`inside a circle as belonging to the named variable and all points outside a circle as
`not belonging to the variable. Take, for example, the circle labeled x. If we are
`inside the circle, we say that x = I; when outside, we say x = 0. Now, with two
`overlapping circles, there are four distinct areas inside the rectangle: the area not
`belonging to either x or y (x'y1), the area inside circle y but outside x (x'y), the
`area inside circle x but outside 7 (xy'), and the area inside both circles {xy).
`Venn diagrams may be used to illustrate the postulates of Boolean algebra or
`to show the validity of theorems. Figure 2-2, for example, illustrates that the area
`belonging to xy is inside the circle x and therefore x + xy = x. Figure 2-3
`illustrates the distributive law x(y + z) = xy + xz. In this diagram we have three
`overlapping circles, one for each of the variables x, y, and z. It is possible to
`distinguish eight distinct areas in a three-variable Venn diagram. For this particu­
`lar example, the distributive law is demonstrated by noting that the area intersect­
`ing the circle x with the area enclosing y or z is the same area belonging to xy
`or xz.
`
`xy'
`
`Ixy] x'y
`
`x'y'
`
`Figure 2-1 Venn diagram for two variables
`
`Figure 2-2 Venn diagram illustration x = xy + x
`
`f
`
`f
`
`1
`a
`/
`fi
`
`is
`c
`
`f
`0
`tl
`
`T
`
`,
`
`T
`C(
`
`• m 1
`m
`
`h-'.
`; • • •
`
`i
`
`m
`
`M
`
`Aisin Seiki Exhibit 1014
`Page 12 of 20
`
`r
`
`.
`
`1
`
`I
`1
`
`WL m I i P f
`| .«
`n
`k
`
`

`
`Aisin Seiki Exhibit 1014
`Page 13 of 20
`
`

`
`Aisin Seiki Exhibit 1014
`Page 14 of 20
`
`

`
`Aisin Seiki Exhibit 1014
`Page 15 of 20
`
`

`
`Aisin Seiki Exhibit 1014
`Page 16 of 20
`
`

`
`Aisin Seiki Exhibit 1014
`Page 17 of 20
`
`

`
`Aisin Seiki Exhibit 1014
`Page 18 of 20
`
`

`
`Aisin Seiki Exhibit 1014
`Page 19 of 20
`
`

`
`(cid:16131)(cid:16145)(cid:16142)(cid:16130)(cid:16155)(cid:16165)(cid:16141)(cid:16147)(cid:16145)(cid:16076)(cid:16126)(cid:16145)(cid:16143)(cid:16155)(cid:16158)(cid:16144)(cid:16076)(cid:16130)(cid:16149)(cid:16145)(cid:16163)(cid:16076)(cid:16093)
`
`(cid:16148)(cid:16160)(cid:16160)(cid:16156)(cid:16102)(cid:16091)(cid:16091)(cid:16143)(cid:16155)(cid:16143)(cid:16141)(cid:16160)(cid:16141)(cid:16152)(cid:16155)(cid:16147)(cid:16090)(cid:16152)(cid:16155)(cid:16143)(cid:16090)(cid:16147)(cid:16155)(cid:16162)(cid:16091)(cid:16143)(cid:16147)(cid:16149)(cid:16089)(cid:16142)(cid:16149)(cid:16154)(cid:16091)(cid:16124)(cid:16163)(cid:16145)(cid:16142)(cid:16158)(cid:16145)(cid:16143)(cid:16155)(cid:16154)(cid:16090)(cid:16143)(cid:16147)(cid:16149)(cid:16107)(cid:16162)(cid:16093)(cid:16105)(cid:16093)(cid:16082)(cid:16160)(cid:16149)(cid:16105)(cid:16093)(cid:16088)(cid:16093)(cid:16082)(cid:16127)(cid:16145)(cid:16141)(cid:16158)(cid:16143)(cid:16148)(cid:16139)(cid:16109)(cid:16158)(cid:16147)(cid:16105)(cid:16144)(cid:16149)(cid:16147)(cid:16149)(cid:16160)(cid:16141)(cid:16152)(cid:16076)(cid:16152)(cid:16155)(cid:16147)(cid:16149)(cid:16143)(cid:16076)(cid:16141)(cid:16154)(cid:16144)(cid:16076)(cid:16143)(cid:16155)(cid:16153)(cid:16156)(cid:16161)(cid:16160)(cid:16090)(cid:16090)(cid:16090)
`
`(cid:3)(cid:38)(cid:82)(cid:83)(cid:92)(cid:85)(cid:76)(cid:74)(cid:75)(cid:87)(cid:3)(cid:38)(cid:68)(cid:87)(cid:68)(cid:79)(cid:82)(cid:74)(cid:3)(cid:11)(cid:20)(cid:28)(cid:26)(cid:27)(cid:3)(cid:87)(cid:82)(cid:3)(cid:83)(cid:85)(cid:72)(cid:86)(cid:72)(cid:81)(cid:87)(cid:12)
`(cid:54)(cid:72)(cid:68)(cid:85)(cid:70)(cid:75)(cid:3)(cid:53)(cid:72)(cid:84)(cid:88)(cid:72)(cid:86)(cid:87)(cid:29)(cid:3)(cid:47)(cid:72)(cid:73)(cid:87)(cid:3)(cid:36)(cid:81)(cid:70)(cid:75)(cid:82)(cid:85)(cid:72)(cid:71)(cid:3)(cid:55)(cid:76)(cid:87)(cid:79)(cid:72)(cid:3)(cid:32)(cid:3)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:3)(cid:79)(cid:82)(cid:74)(cid:76)(cid:70)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:70)(cid:82)(cid:80)(cid:83)(cid:88)(cid:87)(cid:72)(cid:85)(cid:3)(cid:71)(cid:72)(cid:86)(cid:76)(cid:74)(cid:81)
`(cid:54)(cid:72)(cid:68)(cid:85)(cid:70)(cid:75)(cid:3)(cid:53)(cid:72)(cid:86)(cid:88)(cid:79)(cid:87)(cid:86)(cid:29)(cid:3)(cid:39)(cid:76)(cid:86)(cid:83)(cid:79)(cid:68)(cid:92)(cid:76)(cid:81)(cid:74)(cid:3)(cid:20)(cid:3)(cid:82)(cid:73)(cid:3)(cid:21)(cid:3)(cid:72)(cid:81)(cid:87)(cid:85)(cid:76)(cid:72)(cid:86)
`
`(cid:359)(cid:396)(cid:394)(cid:396)(cid:407)(cid:388)(cid:399)(cid:323)(cid:399)(cid:402)(cid:394)(cid:396)(cid:390)(cid:323)(cid:388)(cid:401)(cid:391)(cid:323)(cid:390)(cid:402)(cid:400)(cid:403)(cid:408)(cid:407)(cid:392)(cid:405)(cid:323)(cid:391)(cid:392)(cid:406)(cid:396)(cid:394)(cid:401)(cid:323)(cid:338)(cid:323)(cid:368)(cid:337)(cid:323)(cid:368)(cid:402)(cid:405)(cid:405)(cid:396)(cid:406)(cid:323)(cid:368)(cid:388)(cid:401)(cid:402)(cid:337)
`
`(cid:55)(cid:92)(cid:83)(cid:72)(cid:3)(cid:82)(cid:73)(cid:3)(cid:58)(cid:82)(cid:85)(cid:78)(cid:29) (cid:55)(cid:72)(cid:91)(cid:87)
`(cid:53)(cid:72)(cid:74)(cid:76)(cid:86)(cid:87)(cid:85)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3)(cid:49)(cid:88)(cid:80)(cid:69)(cid:72)(cid:85)(cid:3)(cid:18)(cid:3)(cid:39)(cid:68)(cid:87)(cid:72)(cid:29) (cid:55)(cid:59)(cid:19)(cid:19)(cid:19)(cid:19)(cid:21)(cid:24)(cid:27)(cid:27)(cid:26)(cid:19)(cid:3)(cid:18)(cid:3)(cid:20)(cid:28)(cid:26)(cid:28)(cid:16)(cid:19)(cid:25)(cid:16)(cid:19)(cid:20)
`(cid:55)(cid:76)(cid:87)(cid:79)(cid:72)(cid:29) (cid:39)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:3)(cid:79)(cid:82)(cid:74)(cid:76)(cid:70)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:70)(cid:82)(cid:80)(cid:83)(cid:88)(cid:87)(cid:72)(cid:85)(cid:3)(cid:71)(cid:72)(cid:86)(cid:76)(cid:74)(cid:81)(cid:3)(cid:18)(cid:3)(cid:48)(cid:17)(cid:3)(cid:48)(cid:82)(cid:85)(cid:85)(cid:76)(cid:86)(cid:3)(cid:48)(cid:68)(cid:81)(cid:82)(cid:17)
`(cid:44)(cid:80)(cid:83)(cid:85)(cid:76)(cid:81)(cid:87)(cid:29) (cid:40)(cid:81)(cid:74)(cid:79)(cid:72)(cid:90)(cid:82)(cid:82)(cid:71)(cid:3)(cid:38)(cid:79)(cid:76)(cid:237)(cid:86)(cid:15)(cid:3)(cid:49)(cid:17)(cid:3)(cid:45)(cid:17)(cid:3)(cid:29)(cid:3)(cid:51)(cid:85)(cid:72)(cid:81)(cid:87)(cid:76)(cid:70)(cid:72)(cid:16)(cid:43)(cid:68)(cid:79)(cid:79)(cid:15)(cid:3)(cid:70)(cid:20)(cid:28)(cid:26)(cid:28)(cid:17)
`(cid:39)(cid:72)(cid:86)(cid:70)(cid:85)(cid:76)(cid:83)(cid:87)(cid:76)(cid:82)(cid:81)(cid:29) (cid:25)(cid:20)(cid:21)(cid:3)(cid:83)(cid:17)
`(cid:38)(cid:82)(cid:83)(cid:92)(cid:85)(cid:76)(cid:74)(cid:75)(cid:87)(cid:3)(cid:38)(cid:79)(cid:68)(cid:76)(cid:80)(cid:68)(cid:81)(cid:87)(cid:29) (cid:51)(cid:85)(cid:72)(cid:81)(cid:87)(cid:76)(cid:70)(cid:72)(cid:16)(cid:43)(cid:68)(cid:79)(cid:79)(cid:15)(cid:3)(cid:44)(cid:81)(cid:70)(cid:17)
`(cid:39)(cid:68)(cid:87)(cid:72)(cid:3)(cid:82)(cid:73)(cid:3)(cid:38)(cid:85)(cid:72)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:29) (cid:20)(cid:28)(cid:26)(cid:27)
`(cid:39)(cid:68)(cid:87)(cid:72)(cid:3)(cid:82)(cid:73)(cid:3)(cid:51)(cid:88)(cid:69)(cid:79)(cid:76)(cid:70)(cid:68)(cid:87)(cid:76)(cid:82)(cid:81)(cid:29) (cid:20)(cid:28)(cid:26)(cid:28)(cid:16)(cid:19)(cid:22)(cid:16)(cid:20)(cid:21)
`(cid:44)(cid:54)(cid:37)(cid:49)(cid:29) (cid:19)(cid:20)(cid:22)(cid:21)(cid:20)(cid:23)(cid:24)(cid:20)(cid:19)(cid:22)
`(cid:49)(cid:68)(cid:80)(cid:72)(cid:86)(cid:29) (cid:48)(cid:68)(cid:81)(cid:82)(cid:15)(cid:3)(cid:48)(cid:17)(cid:3)(cid:48)(cid:82)(cid:85)(cid:85)(cid:76)(cid:86)
`(cid:51)(cid:85)(cid:72)(cid:81)(cid:87)(cid:76)(cid:70)(cid:72)(cid:16)(cid:43)(cid:68)(cid:79)(cid:79)(cid:15)(cid:3)(cid:44)(cid:81)(cid:70)(cid:17)
`
`(cid:54)(cid:68)(cid:89)(cid:72)(cid:15)(cid:3)(cid:51)(cid:85)(cid:76)(cid:81)(cid:87)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:40)(cid:80)(cid:68)(cid:76)(cid:79)(cid:3)(cid:11)(cid:43)(cid:72)(cid:79)(cid:83)(cid:3)(cid:51)(cid:68)(cid:74)(cid:72)(cid:12)
`(cid:54)(cid:72)(cid:79)(cid:72)(cid:70)(cid:87)(cid:3)(cid:39)(cid:82)(cid:90)(cid:81)(cid:79)(cid:82)(cid:68)(cid:71)(cid:3)(cid:41)(cid:82)(cid:85)(cid:80)(cid:68)(cid:87)(cid:3)
`(cid:40)(cid:81)(cid:87)(cid:72)(cid:85)(cid:3)(cid:92)(cid:82)(cid:88)(cid:85)(cid:3)(cid:72)(cid:80)(cid:68)(cid:76)(cid:79)(cid:3)(cid:68)(cid:71)(cid:71)(cid:85)(cid:72)(cid:86)(cid:86)(cid:29)(cid:3)
`
`(cid:43)(cid:72)(cid:79)(cid:83) (cid:54)(cid:72)(cid:68)(cid:85)(cid:70)(cid:75) (cid:43)(cid:76)(cid:86)(cid:87)(cid:82)(cid:85)(cid:92) (cid:55)(cid:76)(cid:87)(cid:79)(cid:72)(cid:86) (cid:54)(cid:87)(cid:68)(cid:85)(cid:87)(cid:3)(cid:50)(cid:89)(cid:72)(cid:85)
`
`(cid:38)(cid:82)(cid:81)(cid:87)(cid:68)(cid:70)(cid:87)(cid:3)(cid:56)(cid:86)(cid:3)(cid:3)(cid:101)(cid:3)(cid:3)(cid:53)(cid:72)(cid:84)(cid:88)(cid:72)(cid:86)(cid:87)(cid:3)(cid:38)(cid:82)(cid:83)(cid:76)(cid:72)(cid:86)(cid:3)(cid:3)(cid:101)(cid:3)(cid:3)(cid:42)(cid:72)(cid:87)(cid:3)(cid:68)(cid:3)(cid:54)(cid:72)(cid:68)(cid:85)(cid:70)(cid:75)(cid:3)(cid:40)(cid:86)(cid:87)(cid:76)(cid:80)(cid:68)(cid:87)(cid:72)(cid:3)(cid:3)(cid:101)(cid:3)(cid:3)(cid:41)(cid:85)(cid:72)(cid:84)(cid:88)(cid:72)(cid:81)(cid:87)(cid:79)(cid:92)(cid:3)(cid:36)(cid:86)(cid:78)(cid:72)(cid:71)(cid:3)(cid:52)(cid:88)(cid:72)(cid:86)(cid:87)(cid:76)(cid:82)(cid:81)(cid:86)(cid:3)(cid:11)(cid:41)(cid:36)(cid:52)(cid:86)(cid:12)(cid:3)(cid:68)(cid:69)(cid:82)(cid:88)(cid:87)(cid:3)(cid:38)(cid:82)(cid:83)(cid:92)(cid:85)(cid:76)(cid:74)(cid:75)(cid:87)(cid:3)(cid:3)(cid:101)(cid:3)
`(cid:38)(cid:82)(cid:83)(cid:92)(cid:85)(cid:76)(cid:74)(cid:75)(cid:87)(cid:3)(cid:50)(cid:238)(cid:70)(cid:72)(cid:3)(cid:43)(cid:82)(cid:80)(cid:72)(cid:3)(cid:51)(cid:68)(cid:74)(cid:72)(cid:3)(cid:3)(cid:101)(cid:3)(cid:3)(cid:47)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:3)(cid:82)(cid:73)(cid:3)(cid:38)(cid:82)(cid:81)(cid:74)(cid:85)(cid:72)(cid:86)(cid:86)(cid:3)(cid:43)(cid:82)(cid:80)(cid:72)(cid:3)(cid:51)(cid:68)(cid:74)(cid:72)
`
`(cid:16093)(cid:16076)(cid:16091)(cid:16076)(cid:16093)
`
`(cid:16094)(cid:16092)(cid:16093)(cid:16097)(cid:16091)(cid:16093)(cid:16094)(cid:16091)(cid:16093)(cid:16100)(cid:16076)(cid:16093)(cid:16099)(cid:16102)(cid:16095)(cid:16092)
`
`Aisin Seiki Exhibit 1014
`Page 20 of 20

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket