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Figure 1-3 Example of binary information processing 
;r 

'• w processor registers can be transferred back into a memory register for storage until 
needed again. The diagram shows the contents of two operands transferred from 
two memory registers into R1 and R2. The digital logic circuits produce the sum, 
which is transferred to register R3. The contents of R3 can now be transferred 
back to one of the memory registers. 

The last two examples demonstrated the information flow capabilities of a 
digital system in a very simple manner. The registers of the system are the basic 
elements for storing and holding the binary information. The digital logic circuits 
process the information. Digital logic circuits and their manipulative capabilities 
are introduced in the next section. The subject of registers and register transfer 
operations is taken up again in Chapter 8. 

o 
ie 

;r i 
R 

a-
•#5 it 
V;, 

o 
•f , 

1-8 BINARY LOGIC • e 
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Binary logic deals with variables that take on two discrete values and with 
J|||S operations that assume logical meaning. The two values the variables take may be 
"ll&r called by different names (e.g., true and false, yes and no, etc.), but for our purpose 
Hlfeit .is' convenient to think in terms of bits and assign the values of 1 and 0. Binary 

a 
n 
n 

; .J 1 

25 

I 

Aisin Seiki Exhibit 1014
Page 4 of 20



li 

"ii, CH. 1 26 BINARY SYSTEMS 

logic is used to describe, in a mathematical way, the manipulation and processing 
of binary information. It is particularly suited for the analysis and design of digital 
systems. For example, the digital logic circuits of Fig. 1-3 that perform the binary 
arithmetic are circuits whose behavior is most conveniently expressed by means of 
binary variables and logical operations. The binary logic to be introduced in this 
section is equivalent to an algebra called Boolean algebra. The formal presentation 
of a two-valued Boolean algebra is covered in more detail in Chapter 2. The 
purpose of this section is to introduce Boolean algebra in a heuristic manner and 
relate it to digital logic circuits and binary signals. 

Definition of Binary Logic ope; 
valu 
opei Binary logic consists of binary variables and logical operations. The variables are 

designated by letters of the alphabet such as A, B, C, x, y, z, etc., with each 
variable having two and only two distinct possible values; 1 and 0. There are three 
basic logical operations: AND, OR, and NOT. 

for 
the ' 

1. AND: This operation is represented by a dot or by the absence of an 
operator. For example, x • y = z or xy = z is read "x AND y is equal to 
z." The logical operation AND is interpreted to mean that z = 1 if and 
only if JC = 1 and y = \ \ otherwise z = 0. (Remember that x, y, and z are 
binary variables and can be equal either to 1 or 0, and nothing else.) 

2. OR: This operation is represented by a plus sign. For example, x + y = z 
is read "x OR 7 is equal to z," meaning that z = I if x = I or if y = I or if 
both x = 1 and.y = 1. If both x = 0 and 7 = 0, then z = 0. 

The 
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3. NOT: This operation is represented by a prime (sometimes by a bar). For 
example, JC' = z (or 3c = z) is read "x not is equal to z," meaining that z is 
what x is not. In other words, if x = 1, then z = 0; but if x = 0, then 
z = 1. 

beh. Binary logic resembles binary arithmetic, and the operations AND and OR 
have some similarities to multiplication and addition, respectively. In fact, the 
symbols used for AND and OR are the same as those used for multiplication and 
addition. However, binary logic should not be confused with binary arithmetic. 
One should realize that an arithmetic variable designates a number that may 
consist of many digits. A logic variable is always either a I or a 0. For example, in 
binary arithmetic we have 1 + 1 = 10 (read: "one plus one is equal to 2"), while in 
binary logic we have 1 + 1 = 1 (read: "one OR one is equal to one"). 

For each combination of the values of x and 7, there is a value of z specificed 
by the definition of the logical operation. These definitions may be listed in a 
compact form using truth tables. A truth table is a table of all possible combina­
tions of the variables showing the relation between the values that the variables 
may take and the result of the operation. For example, the truth tables for the 
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TABLE 1-6 Truth tables of logical operations ng 
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i ' operations AND and OR with variables x and_y are obtained by listing all possible 
values that the variables may have when combined in pairs. The result of the 
operation for each combination is then listed in a separate row. The truth tables 
for AND, OR, and NOT are listed in Table 1-6. These tables clearly demonstrate 
the definitions of the operations. 

Switching Circuits and Binary Signals 

Ifc • i re 
:h o 
ee 

m 
y:'v 

in 
to The use of binary variables and the application of binary logic are demonstrated by 

the simple switching circuits of Fig. 1-4. Let the manual switches A and B 
represent two binary variables with values equal to 0 when the switch is open and 1 
when the switch is closed. Similarly, let the lamp L represent a third binary 
variable equal to 1 when the light is on and 0 when off. For the switches in series, 
the light turns on if A and B are closed. For the switches in parallel, the light turns 
on if A or B is closed. It is obvious that the two circuits can be expressed by means 
of binary logic with the AND and OR operations, respectively: 

id i 
re 

z 
if 

)r 
L = A • B for the circuit of Fig. l-4(a) 

L = A + B for the circuit of Fig. l-4(b) 

Electronic digital circuits are sometimes called switching circuits because they 
behave like a switch, with the active element such as a transistor either conducting 
(switch closed) or not conducting (switch open). Instead of changing the switch 
manually, an electronic switching circuit uses binary signals to control the conduc­
tion or nonconduction state of the active element. Electrical signals such as 
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Figure 1-5 Example of binary signals 

voltages or currents exist throughout a digital system in either one of two recogniz­
able values (except during transition). Voltage-operated circuits, for example, 
respond to two separate voltage levels which represent a binary variable equal to 
logic-1 or logic-0. For example, a particular digital system may define logic-1 as a 
signal with a nominal value of 3 volts, and logic-0 as a signal with a nominal value 
of 0 volt. As shown in Fig, 1-5, each voltage level has an acceptable deviation from 
the nominal. The intermediate region between the allowed regions is crossed only 
during state transitions. The input terminals of digital circuits accept binary signals 
within the allowable tolerances and respond at the output terminal with binary 
signals that fall within the specified tolerances. 

! ? 

I 

Logic Gates 

Electronic digital circuits are also called logic circuits because, with the proper 
input, they establish logical manipulation paths. Any desired information for 
computing or control can be operated upon by passing binary signals through 
various combinations of logic circuits, each signal, representing a variable and 
carrying one bit of information. Logic circuits that perform the logical operations 
of AND, OR, and NOT are shown with their symbols in Fig. 1-6. These circuits, 
called gates, are blocks of hardware that produce a logic-1 or logic-0 output signal 
if input logic requirements are satisfied. Note that four different names have been 
used for the same type of circuits: digital circuits, switching circuits, logic circuits, 
and gates. All four names are widely used, but we shall refer to the circuits as 
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(a )  Two- inpu t  AND ga te  ( b )  Two- inpu t  OR ga te  ( c )  NOT ga te  o r  i nve r te r  
> B 

r A 
= ABC B G = A B C -\- D 

c 
D 

(d) Three-input AND gate 

Figure 1-6 Symbols for digital logic circuits 

AND, OR, and NOT gates. The NOT gate is sometimes called an inverter circuit 
since it inverts a binary signal. 

The input signals x and y in the two-input gates of Fig. 1-6 may exist in one 
of four possible states: 00, 10, 11, or 01. These input signals are shown in Fig. 1-7, 
together with the output signals for the AND and OR gates. The liming diagrams 
in Fig. 1-7 illustrate the response of each circuit to each of the four possible input 
binary combinations. The reason for the name "inverter" for the NOT gate is 
apparent from a comparison of the signal x (input of inverter) and that of x' 
(output of inverter). 

AND and OR gates may have more than two inputs. An AND gate with 
three inputs and an OR gate with four inputs are shown in Fig. 1-6. The 
three-input AND gate responds with a logic-1 output if all three input signals are 
logic-1. The output produces a logic-0 signal if any input is logic 0. The four input 
OR gate responds with a logic-1 when any input is a logic-1. Its output becomes 
logic-0 if all input signals are logic-0. 

The mathematical system of binaiy logic is better known as Boolean, or 
switching, algebra. This algebra is conveniently used to describe the operation of 
complex networks of digital circuits. Designers of digital systems use Boolean 
algebra to transform circuit diagrams to algebraic expressions and vice versa. 
Chapters 2 and 3 are devoted to the study of Boolean algebra, its properties, and 
manipulative capabilities. Chapter 4 shows how Boolean algebra may be used to 
express mathematically the interconnections among networks of gates. 
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BASIC THEOREMS AND PROPERTIES OF BOOLEAN ALGEBRA 39 SEC 2-3 

6. Postulate 6 is satisfied because the two-valued Boolean algebra has two 
distinct elements 1 and 0 with 1 ^ 0. 

We have just established a two-valued Boolean algebra having a set of two 
elements, 1 and 0, two binary operators with operation rules equivalent to the 
AND and OR operations, and a complement operator equivalent to the NOT 
operator. Thus, Boolean algebra has been defined in a formal mathematical 
manner and has been shown to be equivalent to the binary logic presented 
heuristically in Section 1-8. The heuristic presentation is helpful in understanding 
the application of Boolean algebra to gate-type circuits. The formal presentation is 
necessary for developing the theorems and properties of the algebraic system. The 
two-valued Boolean algebra defined in this section is also called "switching 
algebra" by engineers. To emphasize the similarities between two-valued Boolean 
algebra and other binary systems, this algebra was called "binary logic" in Section 
1-8. From here on, we shall drop the adjective "two-valued" from Boolean algebra 
in subsequent discussions. 

2-3 BASIC THEOREMS AND PROPERTIES 
OF BOOLEAN ALGEBRA 

Duality 

The Huntington postulates have been listed in pairs and designated by part (a) and 
part (b). One part may be obtained from the other if the binary operators and the 
identity elements are interchanged. This important property of Boolean algebra is 
called the duality principle. It states that every algebraic expression deducible from 
the postulates of Boolean algebra remains valid if the operators and identity 
elements are interchanged. In a two-valued Boolean algebra, the identity elements 
and the elements of the set B are the same: 1 and 0. The duality principle has 
many applications. If the dual of an algebraic expression is desired, we simply 
injprrli.ipof OR nnd AKi 11 operators and replace I's by O's and O's by I's. 

Basic Theorems 

I 

/J 

•ft il I Table 2-1 lists six theorems of Boolean algebra and four of its postulates. The 
notation is simplified by omitting the • whenever this does not lead to confusion. 
The theorems and postulates listed are the most basic relationships in Boolean 
algebra. The reader is advised to become familiar with them as soon as possible. 
The theorems, like the postulates, are listed in pairs; each relation is the dual of the 
one paired with it. The postulates are basic axioms of the algebraic structure and 
need no proof. The theorems must be proven from the postulates. The proofs of 
the theorems with one variable are presented below. At the right is listed the 
number of the postulate which justifies each step of the proof. 
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TABLE 2-1 Postulates and theorems of Boolean algebra 

Postulate 2 
Postulate 5 
Theorem 1 
Theorem 2 
Theorem 3, involution 
Postulate 3, commutative 
Theorem 4, associative 
Postulate 4, distributive 
Theorem 5, DeMorgan 
Theorem 6, absorption 

(a) ;c + 0 = JC 

(a) x + x' = \ 
(a) x + x = x 
(a) x + 1 = 1 

(b) .x • 1 = x 
(b) JC • x' = 0 .»• 

W 
(b) x • x = x 
(b) JC • 0 = 0 

L (x' y  = x 
(a) x + y = y + x 
(a) x + (y + z) = (x + y) + z 
(a) JC{>' + z) = xy + xz 
(a) (JC + y)' = JC>' 

(a) j.' t 

r i  (h) xy = yx 
(b) x(yz) = (xy)z 
(b) x + yz = (x + y)(x + z) 
(b) (xy)' ~x'+y' 
(b) X(JC + >>) = JC 

THEOREM 1(a); x 

by postulx + x = (x + x) • 1 
= (x + x)(x + JC') 
= x + xx' 
= JC + 0 
= JC 

:  ;1 5(a) 
4(b) 
5(b) jjj t 

2(a) 

r. THEOREM 1(b): JC JC = JC. i 
x • JC = JCJC + 0 

= XX + xx' 
= JC(JC + JC') 
= JC • 1 

by postulate: 2(a) 
5(b) 
4{a) 
5(a) 
2(b) 

Note that theorem 1(b) is the dual of theorem 1(a) and that each step of the 
proof in part (b) is the dual of part (a). Any dual theorem can be similarly derived 
from the proof of its corresponding pair. 

THEOREM 2(a): JC + 1 = 1. 

JC + 1 = 1 • (JC + 1) 
= (JC +'JC')(JC + 1) 

by postulate: 2(b) M 

5(a) 
= JC + JC' • 1 4(b) 

; x v ^ = X + X' 2(b) 
5(a) 

; ku • 

THEOREM 2(b): JC • 0 = 0 by duality. & II m 
THEOREM 3: (JC')' = x. From postulate 5, we have x + x' = I and JC • JC' 

= 0, which defines the complement of JC. The complement of JC' is JC and is also 
(JC')'. Therefore, since the complement is unique, we have that (JC')' = x. 

i . 
40 
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BASIC THEOREMS AND PROPERTIES OF BOOLEAN ALGEBRA 41 SEC. 2-3 

The theorems involving two or three variables may be proven algebraically from 
the postulates and the theorems which have already been proven. Take, for 
example, the absorption theorem. 

THEOREM 6(a): x + xy = x. 

x + xy = x • \ + xy 
=  x ( \  + y )  
= x(y + i) 
= x- \ 

by postulate 2(b) 
by postulate 4(a) 
by postulate 3(a) 
by theorem 2(a) 
by postulate 2(b) 

THEOREM 6(b): xix + j) = x by duality. 

The theorems of Boolean algebra can be shown to hold true by means of 
truth tables. In truth tables, both sides of the relation are checked to yield identical 
results for all possible combinations of variables involved. The following truth 
table verifies the first absorption theorem. 

r 
x + xy y xy x 

0 0 0 0 
0 0 0 1 

0 1 0 1 
1 1 1 1 

The algebraic proofs of the associative law and De Morgan's theorem are long and 
will not be shown here. However, their validity is easily shown with truth tables. 
For example, the truth table for the first De Morgan's theorem {x + y)' = x'y' is 
shown below. 

• 

the 
/ t d  

x'y' y' x' (x + y)' x + y x y 
i i i 1 o o 

0 1 
1 0 
1 1 

0 ' '  

0 0 1 0 1 ill 0 0 1 0 1 5 ; 

, ,. 0 0 0 0 1 
8 

Operator Precedence 

The operator precedence for evaluating Boolean expressions is (1) parentheses, (2) 
NOT. C) AMP, and (<1) In other words, the expression inside the parentheses 
must be evaluated before all other operations. The next operation that holds 
precedence is the complement, then follows the AND, and finally the OR. As an 
example, consider the truth table for De Morgan's theorem. The left side of the 
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42 BOOLEAN ALGEBRA AND LOGIC GATES 

expression is (x + /)'. Therefore, the expression inside the parentheses is evaluated 
first and the result then complemented. The right side of the expression is x'y'. 
Therefore, the complement of x and the complement of y are both evaluated first 
and the result is then ANDed. Note that in ordinary arithmetic the same prece­
dence holds (except for the complement) when multiplication and addition are 
replaced by AND and OR, respectively. 

Venn Diagram 

A helpful illustration that may be used to visualize the relationships among the 
variables of a Boolean expression is the Venn diagram. This diagram consists of a 
rectangle such as shown in Fig. 2-1, inside of which are drawn overlapping circles, 
one for each variable. Each circle is labeled by a variable. We designate all points 
inside a circle as belonging to the named variable and all points outside a circle as 
not belonging to the variable. Take, for example, the circle labeled x. If we are 
inside the circle, we say that x = I; when outside, we say x = 0. Now, with two 
overlapping circles, there are four distinct areas inside the rectangle: the area not 
belonging to either x or y (x'y1), the area inside circle y but outside x (x'y), the 
area inside circle x but outside 7 (xy'), and the area inside both circles {xy). 

Venn diagrams may be used to illustrate the postulates of Boolean algebra or 
to show the validity of theorems. Figure 2-2, for example, illustrates that the area 
belonging to xy is inside the circle x and therefore x + xy = x. Figure 2-3 
illustrates the distributive law x(y + z) = xy + xz. In this diagram we have three 
overlapping circles, one for each of the variables x, y, and z. It is possible to 
distinguish eight distinct areas in a three-variable Venn diagram. For this particu­
lar example, the distributive law is demonstrated by noting that the area intersect­
ing the circle x with the area enclosing y or z is the same area belonging to xy 
or xz. 
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