
1

Digital Logic f -

and
Computer Design

M. MORRIS MANO

Professor of Engineering
California State University, Los Angeles

!

f

i

:

Prentice-Hall, Inc., Englewood Cliffs, N.J. 07632

Aisin Seiki Exhibit 1014
Page 1 of 20

-

Library of Congress Cataloging in Publication Data

MANO, M. MORRIS (dale)
Digital logic and computer design.

Bibliography: p.
Includes index.
1.-Electronic digital computers. 2.-Logic

circuits. 3.-Digital integrated circuits.
4.-Logic design. I.-Title.
TK7888.3.M345 621.3815,3 78-21462
ISBN 0-13-214510-3 m

•r.
"t .

©1979 by Prentice-Hall, Inc., Englewood Cliffs, N.J. 07632

All rights reserved. No part of this book
may be reproduced in any form or
by any means without permission in writing
from the publisher.

Printed in the United States of America

10 9 8 7

Editorial/ Production Supervision by Lynn S. Frankel
Cover Design by Edsal Enterprise
Manufacturing Buyer: Gordon Osbourne

M

W I

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney
PRENTICE-HALL OF CANADA, LTD., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo
PRENTICB-HALL OF SOUTHEAST ASIA PTE. LTD., Singapore
WHITEHALL BOOKS LIMITED, Wellington, New Zealand

I

1
.

? *

Aisin Seiki Exhibit 1014
Page 2 of 20

j l

j

Contents 11

n

•

:"V<

l • •

viii PREFACE

1 1 BINARY SYSTEMS

Digital Computers and Digital Systems I
Binary Numbers 4
Number Base Conversion 6
Octal and Hexadecimal Numbers 9
Complements 10
Binary Codes 16
Binary Storage and Registers 22
Binary Logic 25
Integrated Circuits 30
References 31
Problems 31

1-1
1-2

! 1-3
1-4
1-5
1-6
1-7
1-8 H
1-9

34 2 BOOLEAN ALGEBRA AND LOGIC GATES

Basic Definitions 34
Axiomatic Definition of Boolean Algebra 36
Basic Theorems and Properties
of Boolean Algebra 39
Boolean Functions 43
Canonical and Standard Forms 47
Other Logic Operations 53
Digital Logic Gates 56
IC Digital Logic Families 60
References 68
Problems 68

2-1
2-2
2-3

ii 2-4
2-5 1 i

2-6
2-7
2-8

i

Hi

liiPS

Aisin Seiki Exhibit 1014
Page 3 of 20

1

J H '•'•i
• .V'.;,'•

I 1 MEMORY UNIT

sum
0 0 0 0 0 0 0 0 0 0

u
operand 1

0 0 1 1 1 0 0 0 0 1
w.
m
m operand 2 i* 0 0 0 1 0 0 0 0 1 0

w
a

f 0 0 0 1 0 0 0 0 1 0 R 1

1 M (! 3fi
i. Digital logic

circuits for
binary addition

0 1 0 0 1 0 0 0 1 1 R 3
M

I 0 0 1 1 1 0 0 0 0 1 R 2
i . t
I]

PROCESSOR UNIT

' j

Figure 1-3 Example of binary information processing
;r

'• w processor registers can be transferred back into a memory register for storage until
needed again. The diagram shows the contents of two operands transferred from
two memory registers into R1 and R2. The digital logic circuits produce the sum,
which is transferred to register R3. The contents of R3 can now be transferred
back to one of the memory registers.

The last two examples demonstrated the information flow capabilities of a
digital system in a very simple manner. The registers of the system are the basic
elements for storing and holding the binary information. The digital logic circuits
process the information. Digital logic circuits and their manipulative capabilities
are introduced in the next section. The subject of registers and register transfer
operations is taken up again in Chapter 8.

o
ie

;r i
R

a-
•#5 it
V;,

o
•f ,

1-8 BINARY LOGIC • e
jpfef-h

Binary logic deals with variables that take on two discrete values and with
J|||S operations that assume logical meaning. The two values the variables take may be
"ll&r called by different names (e.g., true and false, yes and no, etc.), but for our purpose
Hlfeit .is' convenient to think in terms of bits and assign the values of 1 and 0. Binary

a
n
n

; .J 1

25

I

Aisin Seiki Exhibit 1014
Page 4 of 20

li

"ii, CH. 1 26 BINARY SYSTEMS

logic is used to describe, in a mathematical way, the manipulation and processing
of binary information. It is particularly suited for the analysis and design of digital
systems. For example, the digital logic circuits of Fig. 1-3 that perform the binary
arithmetic are circuits whose behavior is most conveniently expressed by means of
binary variables and logical operations. The binary logic to be introduced in this
section is equivalent to an algebra called Boolean algebra. The formal presentation
of a two-valued Boolean algebra is covered in more detail in Chapter 2. The
purpose of this section is to introduce Boolean algebra in a heuristic manner and
relate it to digital logic circuits and binary signals.

Definition of Binary Logic ope;
valu
opei Binary logic consists of binary variables and logical operations. The variables are

designated by letters of the alphabet such as A, B, C, x, y, z, etc., with each
variable having two and only two distinct possible values; 1 and 0. There are three
basic logical operations: AND, OR, and NOT.

for
the '

1. AND: This operation is represented by a dot or by the absence of an
operator. For example, x • y = z or xy = z is read "x AND y is equal to
z." The logical operation AND is interpreted to mean that z = 1 if and
only if JC = 1 and y = \ \ otherwise z = 0. (Remember that x, y, and z are
binary variables and can be equal either to 1 or 0, and nothing else.)

2. OR: This operation is represented by a plus sign. For example, x + y = z
is read "x OR 7 is equal to z," meaning that z = I if x = I or if y = I or if
both x = 1 and.y = 1. If both x = 0 and 7 = 0, then z = 0.

The

ii the
repr
whe
vari m the
on i
of b

3. NOT: This operation is represented by a prime (sometimes by a bar). For
example, JC' = z (or 3c = z) is read "x not is equal to z," meaining that z is
what x is not. In other words, if x = 1, then z = 0; but if x = 0, then
z = 1.

beh. Binary logic resembles binary arithmetic, and the operations AND and OR
have some similarities to multiplication and addition, respectively. In fact, the
symbols used for AND and OR are the same as those used for multiplication and
addition. However, binary logic should not be confused with binary arithmetic.
One should realize that an arithmetic variable designates a number that may
consist of many digits. A logic variable is always either a I or a 0. For example, in
binary arithmetic we have 1 + 1 = 10 (read: "one plus one is equal to 2"), while in
binary logic we have 1 + 1 = 1 (read: "one OR one is equal to one").

For each combination of the values of x and 7, there is a value of z specificed
by the definition of the logical operation. These definitions may be listed in a
compact form using truth tables. A truth table is a table of all possible combina­
tions of the variables showing the relation between the values that the variables
may take and the result of the operation. For example, the truth tables for the

(swi
mar
tion y-

4

is s

Aisin Seiki Exhibit 1014
Page 5 of 20

; v!

m

LHI
H 1

ill
TABLE 1-6 Truth tables of logical operations ng

ir tal
AND OR NOT try

of
x' x + y x y x-y x y lis

on
•if ! 0 0 0 0 0 0 0 he

0 1 0 0 I I 0 1
nd 1 0 0 0 I

1 1 I I 1

i ' operations AND and OR with variables x and_y are obtained by listing all possible
values that the variables may have when combined in pairs. The result of the
operation for each combination is then listed in a separate row. The truth tables
for AND, OR, and NOT are listed in Table 1-6. These tables clearly demonstrate
the definitions of the operations.

Switching Circuits and Binary Signals

Ifc • i re
:h o
ee

m
y:'v

in
to The use of binary variables and the application of binary logic are demonstrated by

the simple switching circuits of Fig. 1-4. Let the manual switches A and B
represent two binary variables with values equal to 0 when the switch is open and 1
when the switch is closed. Similarly, let the lamp L represent a third binary
variable equal to 1 when the light is on and 0 when off. For the switches in series,
the light turns on if A and B are closed. For the switches in parallel, the light turns
on if A or B is closed. It is obvious that the two circuits can be expressed by means
of binary logic with the AND and OR operations, respectively:

id i
re

z
if

)r
L = A • B for the circuit of Fig. l-4(a)

L = A + B for the circuit of Fig. l-4(b)

Electronic digital circuits are sometimes called switching circuits because they
behave like a switch, with the active element such as a transistor either conducting
(switch closed) or not conducting (switch open). Instead of changing the switch
manually, an electronic switching circuit uses binary signals to control the conduc­
tion or nonconduction state of the active element. Electrical signals such as

is
n

• i

v R
ie
d

y
A ' <@L n Mi n B A
B Voltage (O

source
Voltage
source d

a
(b) Switches in parallel —logic OR (a) Switches in series — logic AND

S
MS Figure 1-4 Switching circuits that demonstrate binary logic e

27

la-

^y. •

Aisin Seiki Exhibit 1014
Page 6 of 20

i Ts

"<i i

Volts

4

Tolerance
allowed
for logic-1

Nominal logic-1 3

2
f

Transition occurs
between these limits

0.5 - •

Tolerance
allowed
for logic- 0

Nominal logic-0 0

-0.5

Figure 1-5 Example of binary signals

voltages or currents exist throughout a digital system in either one of two recogniz­
able values (except during transition). Voltage-operated circuits, for example,
respond to two separate voltage levels which represent a binary variable equal to
logic-1 or logic-0. For example, a particular digital system may define logic-1 as a
signal with a nominal value of 3 volts, and logic-0 as a signal with a nominal value
of 0 volt. As shown in Fig, 1-5, each voltage level has an acceptable deviation from
the nominal. The intermediate region between the allowed regions is crossed only
during state transitions. The input terminals of digital circuits accept binary signals
within the allowable tolerances and respond at the output terminal with binary
signals that fall within the specified tolerances.

! ?

I

Logic Gates

Electronic digital circuits are also called logic circuits because, with the proper
input, they establish logical manipulation paths. Any desired information for
computing or control can be operated upon by passing binary signals through
various combinations of logic circuits, each signal, representing a variable and
carrying one bit of information. Logic circuits that perform the logical operations
of AND, OR, and NOT are shown with their symbols in Fig. 1-6. These circuits,
called gates, are blocks of hardware that produce a logic-1 or logic-0 output signal
if input logic requirements are satisfied. Note that four different names have been
used for the same type of circuits: digital circuits, switching circuits, logic circuits,
and gates. All four names are widely used, but we shall refer to the circuits as

V *

L - •
siLiMJi

28

I

Aisin Seiki Exhibit 1014
Page 7 of 20

u
n
t i
!i f i 11 i

l i
f •

; D = x y = x-y

i i x'

(a) Two- inpu t AND ga te (b) Two- inpu t OR ga te (c) NOT ga te o r i nve r te r
> B

r A
= ABC B G = A B C -\- D

c
D

(d) Three-input AND gate

Figure 1-6 Symbols for digital logic circuits

AND, OR, and NOT gates. The NOT gate is sometimes called an inverter circuit
since it inverts a binary signal.

The input signals x and y in the two-input gates of Fig. 1-6 may exist in one
of four possible states: 00, 10, 11, or 01. These input signals are shown in Fig. 1-7,
together with the output signals for the AND and OR gates. The liming diagrams
in Fig. 1-7 illustrate the response of each circuit to each of the four possible input
binary combinations. The reason for the name "inverter" for the NOT gate is
apparent from a comparison of the signal x (input of inverter) and that of x'
(output of inverter).

AND and OR gates may have more than two inputs. An AND gate with
three inputs and an OR gate with four inputs are shown in Fig. 1-6. The
three-input AND gate responds with a logic-1 output if all three input signals are
logic-1. The output produces a logic-0 signal if any input is logic 0. The four input
OR gate responds with a logic-1 when any input is a logic-1. Its output becomes
logic-0 if all input signals are logic-0.

The mathematical system of binaiy logic is better known as Boolean, or
switching, algebra. This algebra is conveniently used to describe the operation of
complex networks of digital circuits. Designers of digital systems use Boolean
algebra to transform circuit diagrams to algebraic expressions and vice versa.
Chapters 2 and 3 are devoted to the study of Boolean algebra, its properties, and
manipulative capabilities. Chapter 4 shows how Boolean algebra may be used to
express mathematically the interconnections among networks of gates.

T~l o o

(e) Fou r - i npu t OR ga te

i,
li 0

a
e
Q
y

It s
y

'it
f i ;
>

r g r o_r t: 1
r
i r~u oJ 0 I

I y 1

n_Q o oJ 0 AND: x • y I,;

/| 1 1_0_ Oj I I OR •. x + y

oj"! r~I o i
9

NOT: x'

•r , '
Figure 1-7 Input-output signals for gates (a), (b), and (c) of Fig. 1-6

ijW 29
'i ^

Aisin Seiki Exhibit 1014
Page 8 of 20

BASIC THEOREMS AND PROPERTIES OF BOOLEAN ALGEBRA 39 SEC 2-3

6. Postulate 6 is satisfied because the two-valued Boolean algebra has two
distinct elements 1 and 0 with 1 ^ 0.

We have just established a two-valued Boolean algebra having a set of two
elements, 1 and 0, two binary operators with operation rules equivalent to the
AND and OR operations, and a complement operator equivalent to the NOT
operator. Thus, Boolean algebra has been defined in a formal mathematical
manner and has been shown to be equivalent to the binary logic presented
heuristically in Section 1-8. The heuristic presentation is helpful in understanding
the application of Boolean algebra to gate-type circuits. The formal presentation is
necessary for developing the theorems and properties of the algebraic system. The
two-valued Boolean algebra defined in this section is also called "switching
algebra" by engineers. To emphasize the similarities between two-valued Boolean
algebra and other binary systems, this algebra was called "binary logic" in Section
1-8. From here on, we shall drop the adjective "two-valued" from Boolean algebra
in subsequent discussions.

2-3 BASIC THEOREMS AND PROPERTIES
OF BOOLEAN ALGEBRA

Duality

The Huntington postulates have been listed in pairs and designated by part (a) and
part (b). One part may be obtained from the other if the binary operators and the
identity elements are interchanged. This important property of Boolean algebra is
called the duality principle. It states that every algebraic expression deducible from
the postulates of Boolean algebra remains valid if the operators and identity
elements are interchanged. In a two-valued Boolean algebra, the identity elements
and the elements of the set B are the same: 1 and 0. The duality principle has
many applications. If the dual of an algebraic expression is desired, we simply
injprrli.ipof OR nnd AKi 11 operators and replace I's by O's and O's by I's.

Basic Theorems

I

/J

•ft il I Table 2-1 lists six theorems of Boolean algebra and four of its postulates. The
notation is simplified by omitting the • whenever this does not lead to confusion.
The theorems and postulates listed are the most basic relationships in Boolean
algebra. The reader is advised to become familiar with them as soon as possible.
The theorems, like the postulates, are listed in pairs; each relation is the dual of the
one paired with it. The postulates are basic axioms of the algebraic structure and
need no proof. The theorems must be proven from the postulates. The proofs of
the theorems with one variable are presented below. At the right is listed the
number of the postulate which justifies each step of the proof.

jjfi-

|.|

111
R firfKC
r-'T^vj;

! mm.
I

i

!'• I

M
• i

Aisin Seiki Exhibit 1014
Page 9 of 20

K /

TABLE 2-1 Postulates and theorems of Boolean algebra

Postulate 2
Postulate 5
Theorem 1
Theorem 2
Theorem 3, involution
Postulate 3, commutative
Theorem 4, associative
Postulate 4, distributive
Theorem 5, DeMorgan
Theorem 6, absorption

(a) ;c + 0 = JC

(a) x + x' = \
(a) x + x = x
(a) x + 1 = 1

(b) .x • 1 = x
(b) JC • x' = 0 .»•

W
(b) x • x = x
(b) JC • 0 = 0

L (x' y = x
(a) x + y = y + x
(a) x + (y + z) = (x + y) + z
(a) JC{>' + z) = xy + xz
(a) (JC + y)' = JC>'

(a) j.' t

r i (h) xy = yx
(b) x(yz) = (xy)z
(b) x + yz = (x + y)(x + z)
(b) (xy)' ~x'+y'
(b) X(JC + >>) = JC

THEOREM 1(a); x

by postulx + x = (x + x) • 1
= (x + x)(x + JC')
= x + xx'
= JC + 0
= JC

: ;1 5(a)
4(b)
5(b) jjj t

2(a)

r. THEOREM 1(b): JC JC = JC. i
x • JC = JCJC + 0

= XX + xx'
= JC(JC + JC')
= JC • 1

by postulate: 2(a)
5(b)
4{a)
5(a)
2(b)

Note that theorem 1(b) is the dual of theorem 1(a) and that each step of the
proof in part (b) is the dual of part (a). Any dual theorem can be similarly derived
from the proof of its corresponding pair.

THEOREM 2(a): JC + 1 = 1.

JC + 1 = 1 • (JC + 1)
= (JC +'JC')(JC + 1)

by postulate: 2(b) M

5(a)
= JC + JC' • 1 4(b)

; x v ^ = X + X' 2(b)
5(a)

; ku •

THEOREM 2(b): JC • 0 = 0 by duality. & II m
THEOREM 3: (JC')' = x. From postulate 5, we have x + x' = I and JC • JC'

= 0, which defines the complement of JC. The complement of JC' is JC and is also
(JC')'. Therefore, since the complement is unique, we have that (JC')' = x.

i .
40

Aisin Seiki Exhibit 1014
Page 10 of 20

BASIC THEOREMS AND PROPERTIES OF BOOLEAN ALGEBRA 41 SEC. 2-3

The theorems involving two or three variables may be proven algebraically from
the postulates and the theorems which have already been proven. Take, for
example, the absorption theorem.

THEOREM 6(a): x + xy = x.

x + xy = x • \ + xy
= x (\ + y)
= x(y + i)
= x- \

by postulate 2(b)
by postulate 4(a)
by postulate 3(a)
by theorem 2(a)
by postulate 2(b)

THEOREM 6(b): xix + j) = x by duality.

The theorems of Boolean algebra can be shown to hold true by means of
truth tables. In truth tables, both sides of the relation are checked to yield identical
results for all possible combinations of variables involved. The following truth
table verifies the first absorption theorem.

r
x + xy y xy x

0 0 0 0
0 0 0 1

0 1 0 1
1 1 1 1

The algebraic proofs of the associative law and De Morgan's theorem are long and
will not be shown here. However, their validity is easily shown with truth tables.
For example, the truth table for the first De Morgan's theorem {x + y)' = x'y' is
shown below.

•

the
/ t d

x'y' y' x' (x + y)' x + y x y
i i i 1 o o

0 1
1 0
1 1

0 ' '

0 0 1 0 1 ill 0 0 1 0 1 5 ;

, ,. 0 0 0 0 1
8

Operator Precedence

The operator precedence for evaluating Boolean expressions is (1) parentheses, (2)
NOT. C) AMP, and (<1) In other words, the expression inside the parentheses
must be evaluated before all other operations. The next operation that holds
precedence is the complement, then follows the AND, and finally the OR. As an
example, consider the truth table for De Morgan's theorem. The left side of the

•Mm
•••'vis-

• x ' jmngj-v
lso #r

iw,.

K SIS

y

Aisin Seiki Exhibit 1014
Page 11 of 20

LA

42 BOOLEAN ALGEBRA AND LOGIC GATES

expression is (x + /)'. Therefore, the expression inside the parentheses is evaluated
first and the result then complemented. The right side of the expression is x'y'.
Therefore, the complement of x and the complement of y are both evaluated first
and the result is then ANDed. Note that in ordinary arithmetic the same prece­
dence holds (except for the complement) when multiplication and addition are
replaced by AND and OR, respectively.

Venn Diagram

A helpful illustration that may be used to visualize the relationships among the
variables of a Boolean expression is the Venn diagram. This diagram consists of a
rectangle such as shown in Fig. 2-1, inside of which are drawn overlapping circles,
one for each variable. Each circle is labeled by a variable. We designate all points
inside a circle as belonging to the named variable and all points outside a circle as
not belonging to the variable. Take, for example, the circle labeled x. If we are
inside the circle, we say that x = I; when outside, we say x = 0. Now, with two
overlapping circles, there are four distinct areas inside the rectangle: the area not
belonging to either x or y (x'y1), the area inside circle y but outside x (x'y), the
area inside circle x but outside 7 (xy'), and the area inside both circles {xy).

Venn diagrams may be used to illustrate the postulates of Boolean algebra or
to show the validity of theorems. Figure 2-2, for example, illustrates that the area
belonging to xy is inside the circle x and therefore x + xy = x. Figure 2-3
illustrates the distributive law x(y + z) = xy + xz. In this diagram we have three
overlapping circles, one for each of the variables x, y, and z. It is possible to
distinguish eight distinct areas in a three-variable Venn diagram. For this particu­
lar example, the distributive law is demonstrated by noting that the area intersect­
ing the circle x with the area enclosing y or z is the same area belonging to xy
or xz.

f

f

1

r
a
/
fi

is
. c

f

0 xy' Ixy] x'y
tl

x'y'

Figure 2-1 Venn diagram for two variables • m 1
h-'.

T ; • • • m ,
i

m
1 T

C(Figure 2-2 Venn diagram illustration x = xy + x I

1
WL m

I i
P f

M | .«

k n

Aisin Seiki Exhibit 1014
Page 12 of 20

Aisin Seiki Exhibit 1014
Page 13 of 20

Aisin Seiki Exhibit 1014
Page 14 of 20

Aisin Seiki Exhibit 1014
Page 15 of 20

Aisin Seiki Exhibit 1014
Page 16 of 20

Aisin Seiki Exhibit 1014
Page 17 of 20

Aisin Seiki Exhibit 1014
Page 18 of 20

Aisin Seiki Exhibit 1014
Page 19 of 20

Aisin Seiki Exhibit 1014
Page 20 of 20

