throbber
%Le~e%n J. *Rafi2£e msE<a4
`‘Department of 9% :35;
`New Maxi-:9
`.
`L35 C¥’U’i?€S.
`
`
`. ..
`.
`
` edited
`

`V
`:3?!
`Chemicai and Laser S<:ie{1::es.‘l3i'v%sion
`ms Mamas Nat4is3n*a,¥ ‘Lam-rattjrv»
`L03 Names, New Maxim
`
`MARCEL DEKKER, INC.
`
`New York" and Base!
`
`Energetiq EX. 2082, page 1 - |PR2015-01300, |PR2015-01303
`
`Energetiq Ex. 2082, page 1 - IPR2015-01300, IPR2015-01303
`
`

`
`
`
`
`
`Library of Congress iiiafaljgzfgi:1g4i§14}§1}3iit;ati<2n. Data. .,
`
`cixeinifiiil.» 3&6, ifiidlfiaiflai 3?.?fi<3af30n5Af %»£1i.f€'f3
`Laser.in¢Iu:<{:L£-ti 4,E&asm-as 1:
`by Leezi
`R§1:§3}zie:31s}(i, ’33avi:1 Ag. iiremers.
`V
`'
`
`-92%)
`,:V§f‘j;g}1’“§3;€:~:x$;reriasets.
`
`
`2;.
`
`’ 1." ¥§;a;izie:nsk.i., Leon 3...,
`
`’ §9;73.8:?{
`en?
`
`
`
`.
`
`:xz::1’,t;a:1es ‘
`8432.
`2?1}fg:;mg. 2.1
`$1..-Cre
`,.'Eias_:
`
`
`
`
`This baak is printad on miiiafrea ;p:e2;:«e,:'r'_.
`
`Copyrigh‘-t © 1989; MARC.BL.DEKI{ER. me. An Rights Reserved
`
`Neiiher this book no: any part: may ha repmduz:ed Q1‘ transnaitted in any form
`in by my means, eiectmnirz er mechanintai, in::Iuc¥i=ng plmtucopying, microfilming,
`and recording, or by any jnfexmation storage and retrieval systexn, without per
`miss.ion in writing from the publisher.
`
`MARCEL .DEK}{.B'R, INC‘
`270.Madis0n Avenue, Nexv York, New York 10016
`
`Current printing (last c¥i.gitA):
`109876543521
`
`PRINTED IN THE UNITED STATES OF AMERICA
`
`Energetiq EX. 2082, page 2 - |PR2015-01300, |PR2015-Q1303
`
`Energetiq Ex. 2082, page 2 - IPR2015-01300, IPR2015-01303
`
`

`
`iii
`-xii‘
`
`1
`
`1
`3
`8
`36
`
`6.}?
`
`6&3
`'33
`72
`75
`7’?
`88
`92
`93
`:95
`99.
`100
`101
`101
`
`105 ‘
`
`105
`110
`
`
`
`Céntents
`
`’*
`
`_
`
`’
`
`e;
`-A _i3f£.i.‘£i‘31iS
`
`
`
`Qflgasex‘-I¥xt111c=efl..Breaiaafiewxz: Au U‘§1sdate..
`
`
`
`;£;;;tradu»c't:i;1n
`" “ca of Emotions
`b
`Eiemran €§'r{::§v£E1 in -Gases
`Lasé:~I:z;&.u::x:w;2.'.Breziicssicmifz tzsf Snlids and. Liqzai;#:3.s
`fiiizzztaiuziizzg 'Rem_ar.is:s
`; »Rc:f<~x:en:aes
`
`Z
`
`*£m'ie’:Iin*g.43-f.P?os£—Br=eakti.own Phenomena
`
`Z’5:it.f:3»§i:;c3;iz:s:1
`Ciifizsatpifin 0f 21 ’P’mpagating flasma
`Absmrptian {Zhafanteristics Bf Heatsd Gases
`F;eat1t1m:s tif F*3:0pagati.n_g Plasmas
`.
`$3312.-~I}i1X1.Ensi0n.a} L:aser~S'u';3po1'1.ti:€3 ’CB1‘£fl3’H$1i0n Waves
`C3ne~I3i.m.ensio’naI ’La.se:r~$uppm*ted Detonzxtican Wave
`»One»13irj11.ans.ira’na} Laser~Suppi)rte-d Radiation "Wave
`j:'i.‘ransiéi'i:3'rx Regicms
`' Radial §:Cx;§a};1si£)n
`18 Theztmal Coyupiing.
`_ >13. O$:§1erFact0rs‘
`S’umn1a;fy
`References’
`
`,
`
`'
`
`
`
`
`
`3 {ntro»duc£ion to Laser Piasma. Diagnostics
`H _ Allan A. Hans; and Hector A. Baldis
`
`Introduction
`Introduction to Optical Diagnostics
`
`3.2
`
`ix
`
`Energetiq EX. 2082, page 3 - |PR2015-01300, |PR2015-01303
`
`Energetiq Ex. 2082, page 3 - IPR2015-01300, IPR2015-01303
`
`

`
`
`
`
`
`x
`
`’
`
`Canteniss
`
`3,3
`
`Intmduxetion to X—ray Diagnostics
`References
`
`4
`
`I;;;s’e':r;S1zst.aine§1'Piasinas
`Dennis R. Keefer
`
`‘
`
`4.1
`4.2
`4,3:
`4.4
`4.5
`
`I’ntr0z3.ucii0n
`Princigzicz; cf Qper2iti{2’n.
`Ar-u”z’1ytic,aI MQéie}.s
`Bxperimen.t:a1 Studies
`App1,i<;ati£3n.s of the LaS—€:r~SL:.s{a£ixl1ed Plasma»
`Rcferances
`.
`b_
`
`5
`
`i’nér~t.iz’:liy Confined. Fasimt
`Robert L. Mcflmry a_n_§..3nh::
`
`’S<)'u.res
`
`5.1
`5.2
`
`51,5
`
`5.5?
`5.8
`
`.
`
`V
`
`Isiistaricai Overview
`LasVer~*Fusi0n Szzaiing Laws
`Cor-anal Physics
`X~ray‘Gen€:’1"éitiG:i by L:ase'r~1?rad':3ced Plasmas
`1.as€:r—'Driven Abiatixiij
`i%Iydri:3:3y:za:x11:ic:Stabfiity»gfg&E:I§‘£i3*¢1y D1"7"i’Sii.€’:.I1_.:
`lz’°mc§.iaii,::sn U‘n’.iformi£yR&q_u§1:é:1§3.aI}.15
`Impiosiim Experiments
`Rflffiffifiéfifi
`
`‘
`
`-
`
`‘
`
`.
`
`b
`
`6 Laser-Bases!iS’;e.n1i<:un.:311;:£ar’filiariitziiixiil
`
`Iaseph ‘R. ’Wachte’r
`
`5.1 Aspects of Semicandtwtor Fabrication
`(3.2
`App1.i<:at.i0ns ef Lasers in-the Sem_ifc0nidu.ct0r I.ndu$t1'y
`6.3
`Research Areas T
`T
`_
`6.4 Outlook
`Refarences
`
`‘
`
`7 ; S-pectmchemical Anaiysis Using Laser ?1asma.Exéit.at:ia11
`L-eon J. Radziamski and David A. Cremers
`
`Review
`7.1
`-Methods. and Properties of Analysis Using Laser 1"-fiasmas
`7.2
`Analysis of Gases
`7.3
`7.4 Analysis of Bulk Liquids
`7.5 Analysix of.Particle.s
`7.6 Anaiysisbf Solids
`7.7 Advances in Instrunmxitzition
`
`133;.
`161
`
`169
`
`169
`1.'??.
`1182
`189
`19:6
`293
`
`2&7
`
`20?
`2.-:11
`21?
`224
`227
`239
`243
`251
`2&0
`
`269
`
`269
`276
`233
`290
`291
`
`295
`
`295
`296
`302
`306
`309
`313
`318
`
`Energetiq EX. 2082, page 4 - |PR2015-01300, |PR2015-01303
`
`Energetiq Ex. 2082, page 4 - IPR2015-01300, IPR2015-01303
`
`

`
`manta
`
`"
`
`xi
`
`'Fmgm::a.sis
`References
`

`
`
`
`—
`
`’un‘t}a'n2enia¥;fi:)f 2%u.1;1:2’1y$is of Sniitis b;y Las-e1?—i’t‘oduc»ed
`3.:-15:13:13
`
`mg W. Kim
`
`=C§ia:pt:e'r C!:rga’niza'tio.n
`.I’12:ri:1»iii1c3:i{>:1
`’?ihe:m.m£:nalagy :’ai:' .1335: Heatring of Condense..d~Phase
`Targets.»
`
`‘
`
`’t%i_v.c:s:-Spa-ctrizsaszapy
`lhiteiisi y Zxicasnrements and Biemenia1..Ana3tysis
`’ .Summary*
`Refe:r::.nc=es
`
`321
`.323
`
`32?
`
`327
`3.27
`
`339
`335
`341
`344
`345
`
`34’?
`
`34'?
`35!}
`V
`353
`
`363
`365
`.369
`372 _
`376
`376
`
`385
`
`385
`
`386
`413
`
`
`
`Laser V-:«;ipu1'i.zaEtin11 far §.S 2t.’mp!_e Inirothxctian in Atolni-cimxd
`3.5133 »$1::¢’£:trat$;:a;}y
`aseph 3.l’I.€d.§3G13,, 133:5: Mitchell, and Nic'ho1a.:~: Negjar
`
`.:£'3t2nv§:n.fi1:in,3i Stiiirl »San1;3'ie’Intr-oii‘ucti0n fax A't:3mic
`Specirascfapy
`£;asa.r.13gi3Iai§‘i3n. rz2f’Se1i‘<':i Sazxipies
`'L:a.ser.A131a'tisn far =Smr11r;%3i?» Iixtriacinctica in Atcmie
`S'pectr:<>si:9py
`iigizztixrzz Marits af ’f;.as-at Abiatian for Sample Intmduction
`in Atomic Spectroscopy
`-
`Laser »SQ1If{2.»¥3.»S for ’Mass Spectrameiry
`Appiicatians of Laser ’M;icr=0pr»o¥3<3
`Appl.ieati(ms of Laser De:s»or_pti0n and Postionizaticm
`_=C0nc1usicm
`References
`
`Czxrreni New Applications of Laser Plasmas
`Allan A. Bauer, David W. Forsfund, Colin J. Mcléinstrie,
`Justin S; Wark, Philip J. Hargis, Jr., Roy A. Hamil, and Joseph
`M. Kindel
`
`10.1
`
`Introduction,
`
`18.2 Applications of Lassr~P‘1asma~Ge.nerated Xqays and
`Particles
`10.3 Las::r~P1’asma Acce1eratio11 of Particles
`
`Energetiq EX. 2082, page 5 - |PR2015-01300, |PR2015-01303
`
`Energetiq Ex. 2082, page 5 - IPR2015-01300, IPR2015-01303
`
`

`
`xii
`
`_
`
`b
`
`.
`
`=£3;:m'tar:{s
`
`Las¢::r—Pu}.svad Powésr Sxvitching
`B.e£er»ences
`
`
`
`b
`
`-
`
`424
`432
`
`4537
`
`153.4
`
`Intiezx‘
`
`
`
`Energetiq EX. 2082, page 6 - |PR2015-01300, |PR2015-01303
`
`Energetiq Ex. 2082, page 6 - IPR2015-01300, IPR2015-01303
`
`

`
`
`
`
`Laser»Sustaified Fiasmes
`
`iiemis FL. ifieeiet
`Center for ,£;:a£:er.g§ppfiee¥3Ce:z5
`ifiziversitgr Q?Iffiérszze.-me‘ 2_S§)z2z3xf? I%zszitz:!e
`'3’i:Z§::}z:2:“:é:z, Teiarzessee
`
`4.1 INTROBHCTION
`
`Plasmas created by the .ra¢§.ia§i0I1..i’.m1i.‘1 fa * :i.iase1+’beams ’£’?~€‘é!‘€% "first »t'3'bv
`served with the ativent‘ {sf “Egiani gaulse-’-’ Q=~
`t:cihe:<i, ruby» insets by Maker
`et at (1963). TI1ese";:jla§r{1éis
`"
`gas‘ bre:akdewn at
`. he
`._. ._
`L
`_
`the .fo-case of a lens and were six
`,5ti01'i: nf the’-Iaser
`puise. Plasmas were aim e¥:;serve=s:1:g.-era: oaths mrfaszées ef mat-eriéils ix»
`r2adiate—d by ’h=ig1a+;1:0wer pulseszi or »:<::e:ntinu;:ms Iaeers anti '.t}.<";§ pzr%:>§eg*a.tee into
`
`the in<:.i£3exIt ‘beam at .s’:.zh-.sea§::
`’
`vg‘
`"65..
`“"123. advent of
`'
`.’
`’
`:c.m;t:inuejns, high-pémver {:-az‘'b€}n
`¢€:%3I‘£is‘&§E%SS..
`. .13 ii? Siiffiffiiil
`a plasma in a s'te»a‘dy—st.ate £’:e:m£i.;t1e;n.,:::,.e;«.
`.,£3<z&2s cf .a.1as:er’beam,
`the
`first. experimental abservatieix -Of‘ a “e.Qnfi'nue1:3’*Qpti£:=a1 :i.§s::}m::#;ge’-’ was re-
`_parted by Generaitw. ex; .a1.. (37%). The eentinucms, }aser-sustained vpiasma
`(L8?) is mften referred to as 2: eeniixzumzs aptieai eiirzieizayge ((20113) and it.
`has a number of zmiqne pmperties» £1.13: make it an "i1rteresiing ca:nd.ida*te far
`a variety of appiications.
`,
`The laser-su.stained plasma shares many eharaeteristics with ‘ether gas
`discharges, as expiained in detail by Raizer (19813) in his I:-omprehensive re»
`view, but it is sustained through .at3s0rpt’ioI1 of ‘power from an optica1’beam
`by the p.r(3.cess.0f inverse brems’strah1ung.— Since the eptical frequency of the
`sxxsmining beam is greater than the plasma‘-frequency, t}1’ebeamis capable of
`propagating well into the interior ofthe. plasmawhere. it is absorbed at high
`intensity near the focus. This is in contrast to plasmas sustained by high»
`efrequency electrical fields (n1ic.rowave and e'lectrode1e:ss discharges) that
`operate at frequencies below the plasma frequency and sustain the plasxna
`thmugh absorption within 21 thin "layer near theplasma surface. This funda-
`mentzxl difference in the power ab.sor_pti0n mechanism makes it possible to
`
`
`
`
`
`"i 89
`
`Energetiq EX. 2082, page 7 - |PR2015-01300, |PR2015-01303
`
`Energetiq Ex. 2082, page 7 - IPR2015-01300, IPR2015-01303
`
`

`
`170
`
`V
`
`Keefer
`
`gcnc’;cz£e smgagclysstatcogllasznas, _h_a_vin:g .maxi2fnu*m temperatures of 1{¥,{}O0Ii or
`xnoroifx a small coining rgoar inc»-foexzs of a lens», far away from any co‘I1ifi>i3i.11g_
`str'nc£.m*c. A photo of.a.p'las1na. sustained. by ;a laser beam focused xvith a Ions
`is shown fin Fig.
`,- T»,
`{K} W Gaussian beam from :21. carbon dioxicic
`laser won in '
`bi’
`focal lmgth lens into 2 :atm nfi flowing an
`V "
`
`gen.
`4.. ( .).;s§io*;vs schen§,.aiicall.y how the: plasma forms within :l1c:fjo£;al'
`region,
`
`.
`
`e been ‘produced in a variety of
`' ‘boa t:ii,o,>':idc> lasers .op€-;rai;ing at
`
`'
`
`’
`
`
`
`{:3.‘§%3}, Wells "e1;a'1.. A{198'3).,,and..=CZrons»iand’
`-t the
`:::an be opeziateéd sn’f<:’£:'aS.S«
`dz“
`operaxei ca flowing
`J
`
`envisonmcnt“ have boon ’caI,ied ‘5plasm:.énr-ons” in the Soviet literature, anfi
`the lasar--.snst.a’ined ;)§:. is often rcfermd to as an ‘*opti.cnl plasmatrong’-”
`
`
`
`
`
`’
`
`tho./sn.si:aini:ng boom, and
`of”t““e pin" ‘ma.
`cwida» range of ézondi-tion3»1;s~
`i.§:i§i§?£;.i‘€3
`..
`lions of 135%: gjowcr, flow, and optica1:configur;a~
`
`
`
`
`
`{*3
`
`
`
`
`’ pi.-
`potao:t.:aI -3'
`hogan and inn» power can. be. beamcci rem.o_tely, it has.
`Gp£':‘;.r[at’,: in par
`been p::opnscti .t}‘1.a1: the
`=co1;z‘ld be us-ed for high specificaimpnlsn. Space’
`propxilsioni. A nunib-or of papers: '22aw: -d.e‘a1"tw.ith this 8p‘p1i£:~ati0n_,. and it was
`the subjoct of 8. reviexv by Glufrib anilklrier (1984). Thompsor; et a1. (19%)
`described oxporimcnis in Whikh "laser energy was converted into. el.eotri»$a}'
`‘energy using a -laser~.susitained argonxp}as3:£1a. Crcmers at :11. (’l9_8_5) have
`suggested tho
`as a source for sp-octrocllexnical analysis and given .s1omo
`experimental rcsulas. Cross and Cremexfs (1986) have s11stai11od plasmas in
`the throat of a small n»o.zz'le to produce atomic oxygen having a directed
`‘velocity of’sovcm1—.k.1n/sec for the laboratory study of surface interactions at
`energies and particle fluxes similar‘ to those experienced by satellites in’ low
`garth orbit. Other applications are sugges-ted by analogy to other plasma
`devices including light sources, plasma‘ chemistry, and materials processing.
`The physical procossns that detcrminc the uniq_ue characteristics of the
`LSP will be. discussed in Sec. 4.2, and the the.ore'tical analyses that have been
`used to describe the»LSP will be addressed in Sec. 4.3. Exper.imental results
`obtained will be presentod in Sec. 4.4 and compared with the t’heoretical
`predictions. Sec. 4.5 will consider some possible applications.
`
`-
`
`Energetiq EX. 2082, page 8 - |PR2015-01300, IPRZO1
`
`303
`
`Energetiq Ex. 2082, page 8 - IPR2015-01300, IPR2015-01303
`
`

`
`La~3?er—$us1ain‘e-£1 Piasmas
`
`‘
`
`1?‘?
`
`(1?)
`
`(3) Phattigfaph of a plasma sustained by a 600 W carbon dioxide laser?
`Figure 4.1
`bgam focused vmh a 191mm fecal length lens. (I2) Schematic mprelsentatien sh0w~
`ing how the pkzsma forms within. the focal volume.
`'
`
`
`
`Energetiq EX. 2082, page 9 - |PR2015-01300, |PR2015-01303
`
`Energetiq Ex. 2082, page 9 - IPR2015-01300, IPR2015-01303
`
`

`
`“£72
`
`Keefer‘
`
`4.2 FRIPICIPLES Q33" -{)1’ER!s.Ti{3N
`
`*
`
`i
`
`
`
`’
`
`.
`
`.
`
`Plasmas that are c.:'e.ai=e~d 01* sustained by iasers can be g=enerated_i_n a variety
`uf forms, depending?-<::n’:i ’
`iiiar-aivc:£c}:§s’£i::s cf the laser and optical ge£3me~
`try used ta generate 1:he::_f:;
`?§ifg21«’§:n%%1*_g§I”pu}3‘e»&. iassrs can igxmcrata plasma
`breakdawn .dira£:tiy wi_t}é'i_1: 21 gas {1}.at,r&snIi$ ii} ;a transient axpanding gsiasma‘
`similar to .2111 expi0si0r;.f
`Iawezi ’§a§.fi.r intensities aria} Iongsr puke iimes,
`plasmas may be}in.iti:ate-ii
`.suffa§:ve ” mi thézzn ;3r§paga:fi’.ifita the 5113»
`V
`’
`r~sz:s1;;;i:;s<:£¥ dets:3n.a3;i@;1 (LSD)
`mesczi éiézgabnstifin {LSO} Wave.
`sad by L ai;zer{1-989) and will net
`These tramient piasmas "hava ‘beef: £1
`
`be trsateéi here,» 1§s*;h_Je:¥ia;
`’
`“’
`”
`azzd tfae» uptiziai’
`-
`I
`.
`
`3:1 éiazs 1.5?
`._
`.
`.
`ai:«.____
`iggeonzatgg flaw, anxzi.
`.
`
`(ms of the: ‘beam. The
`$33 centinuxausijy 'm3ifitaifi§fi_:».at‘ ageszzizfiii Izstaz: tizan
`inifensity that is aXfE£i1a}3§§}iff{}fi1 a"¢t3x1t§tzuous;Iass’r -is insufficiem to cause
`braakdtnwn in tha gas, h1€¥‘£V€:%If::I‘, and an .auxiIim'_y‘ 3£m:rce musi be used. to ini-
`tiate thepiasma. A sketch {if 2*: sieady-s'£at‘r;.1a.se.r~=sus’tai'ne.d plasma is shown
`in Fig. 4.’i£(§). T116._p1as'ma:m.ay'ba»stz.s:ai::ied
`Ia azmfining c11’a;’:11b§rt%3
`ccmtérsl the flow and. prrcssixre 01‘ in -apex}. air wt ~21 large, chamber where the
`t_1ow‘i_.S idem-rm-i.ned by th:=::rm.ai:I. buzayancyz.
`V
`,
`in 131311)}? ways, t11::1asar~s’u:siain;eti. gléisrna is si’zzxi_}.ar ta direct current or
`Isa»-fzaq12anc}* -e1ec:r£>€I<fJ:a3 ' ‘a£s.:.s anii
`’xi3sva’-em» tiiisciifigfis ’t¥f'%.at am <3Z173’*°»1‘*
`ated in similar .gTa;~:e-3 an:
`£11’ gym m%:c:s, Eimyever, tits LS? W311. gamer»
`
`any has .m£m~: ’c:{iiftf1_§3=’€¢:::¥:: g
`hiigher _maxi.1*m2m. teinperature th.a:1.n-t}mr
`»§:.£3ntin1.20u.s am s:{:§m*.caf; 3’i1zii
`biz: :$u:~§'¥a:i11’€::é§ in 3 staady state well away from.
`containing boundaries. A .f3.z:n.d'an1ei£ii:a$ v:1iiffir’enCe:in'tha way in which en-
`-ergy is ahsorbeé by the plasma is 2‘:3$§:s9:3$i§3I.€:* £03: £12636-. 1}i?£3i.£}I}6» charactaristics
`-of the LSP.
`-
`
`4.2.1 Easic Physicai Frncesses
`
`In a £Ii1"B£‘:t current (dc) arc or in an in::¥uAct:§’ve}y cgauphzd p1asma‘(.ZCI’), en-
`ergy is 'ab.ss:>rbed thr0ug11 ohmic .heating produced by. the 10w~fr::quency or’
`direct currents flowing in the plasma. The eiecirical conductivity of an ideal
`plasma is. given by (Shka’mfsky at al., 1966)
`
`J
`
`neg
`== ---
`
`1/~—~iw
`
`in (z22+w3)
`
`4.1
`
`(
`
`)
`
`where it is this electron‘ density, 8 the electronic charge, m the electron mass,
`to the radian frequency of the applied electric 'fie1d,Au the effective collisicm
`frequency for electrons, andi thesquarc root of »»1. In the do arc (w 2 0),
`the currents are’ transmitted through the plasma bcztween electrodes and
`
`Energetiq EX. 2082, page 10 - |PR2015-01300, |PR2015
`
`303
`
`Energetiq Ex. 2082, page 10 - IPR2015-01300, IPR2015-01303
`
`

`
`Lasebfiustatned Plasmas
`
`'
`
`-.
`
`A 173
`
`the size of the plasma is determined by the ‘size and spacing of the electrode
`and the L;-onfi.23in’g boundaries.
`In the ICP, the curorants are irxducedo into
`the plasma from alternating»cu:1*entsfi<:swirxgin.a surroundi.ng.so1enoi:3a1
`c;oii.. The are is sage
`inogi xyibthin a container that determines the plasma
`dian1etor, 'wheI£:as fine Ian
`of the "plasma
`determined by t}:16}ength of
`H
`the soiemid.
`'IT,1€:‘-.3333? operates at. frequencies well below the Vpiasma frequemzy
`
`9
`
`-~--'-—--
`
`_»
`
`1.1}?
`
`=2
`
`W»
`
`4
`
`.
`
`7
`
`
`
`9
`< >
`~4.,2’
`
`w31e1'o..¢g i.s%’ti;o yiérmittiviity of fi?oe»spaae:.. In this frequonoy range, the 636:6’-
`3:romag‘oe1ie.’fie§I:i floss inoi projpagaie as :a wan: within the ,o'1.asma, but is
`.a:;u%3n;i:ate§i. aj.s{"ar.1’: ¢va.ne$i:;enti'wave (Holt and Hask-an, 1965) over dis-taznces
`of the orc3,a;r -of-fly: ;skfi;2’:'.1 iiepth ’
`’

`
`
`
`(4-3}
`
`is 1¥_:h_e spa-3:1: of Iiivght.» ’}fhu.s, thapiasma is su.s~tai.ne::ii by azwgrgy-333*
`-where:
`sorbed within a..smoi1..ia;,:.é:r near its outfit surface. that produces‘ a r‘at.hor:fiaot
`temperature pyrofiio
`.the»p'Ioasm.a and limits the maximum tzmgaora.
`txxrsgas that ¢ai:7Beobtaines3.,
`V
`-
`The fréq"uoncy of tho .-optieai fields (28 'I‘_Hz for the 18:6 om ca;r'b*on_. tiiox»
`ide Zaaor) us:od.’ft;)r‘thfi
`is greater than the plasma frequency, and the1's~
`fore: fl1e»i'nGi’d’en't’ laser. imam nan -propagate well into thei'ntafio1‘ bsforo
`it is siibgoifioaniiy »a3i:>’$-Qtbod 't}11~”£}’3:Igfh the _proc:oss of .invorse ‘oremsstrah1u13,g
`(Shkatofsky at 211., 1966)‘ Sim:-e the focusing‘ of the laser beam producsd
`by a Zens or ‘mi.tm'r is e»ss.e'ntia31y preservod as the» "beam propagates into the
`plasma, very largofieio. strengths may beproduced within the piasma near
`the beam focus. 1?; is fl38S:B iargc field strengths that lead to p-oak tcinperay
`turos in the LSP that are genorally greater than those obtained with either‘
`dc arcs or fi1eICP and make it possible to sustain a small Voiilme ofp121.sm‘a
`[near the focus, ‘W511 away from any confining walls.
`Inverse bramsst.2'ahIung~ is a process in which the plasma electrons ab~
`sorts photons from the laser beam during inelastic collisions with ions, non»
`trals, and othor elosztrons. The collisions betwew electrons and ions are
`"the _dominant process for the LSP and the absorption coefficient is given by
`(Shkarofsky et al., 1966)
`
`0‘
`
`W 1rc'3n.S0G 1~—e'”“’”‘T
`(La) ”“;&:r
`(
`Fzw/kT
`
`>
`
`V
`(‘W
`
`
`
`Energetiq EX. 2082, page 11 - |PR2015-01300, |PR2015‘-01303
`
`Energetiq Ex. 2082, page 11 - IPR2015-01300, IPR2015-01303
`
`

`
`am
`
`’
`
`,§<.e»efer
`
`where ii is Planckfs constam ciivided by 271', k B0i:am.a:§.:1’s c»£3n»3-£31113 81153;?
`"the. tem§m.r.aiure of§:hee1::c:rons. The facmr G is the Gaunt factor and the
`fiactor 3235 ‘isgiven by
`
`
`as M 16.n.+nZ2 9&3
`
`3
`
`‘
`
`1/2
`
`
`
`35:? _.
`
`I
`
`I
`
`(4.5)
`’
`
`
`
`
`
`£acmr¥.is. a.
`T when 2.’ is the ionic cha:rge and :24. the ion -dezxsixy. ‘Th:
`mecfiaazmjaii carractioxz to the -::.1as.si.c.ai theary,-_’ami a:z;iensi¥ve z:£*xhies
`
`
`11’-ewabeen given by Karzais and Latter (1961),. 13:3:
`'11;s1;x3.£. case xvi:
`(ha phstoin energy i:s’much1assthan aha
`"

`.
`g.
`
`
`bmzzketmzi term in
`(4.4) is zmarily .in<3e-psi: ..
`m=efii:eiant;'is essennaiiy »pr:3gmrti:ma2 -in the, ségnam :3? i
`size ca’? am-.*::,$‘1'+* wmf ggepand an sevciai
`_:g;;e;ao.n1et:y;, 1aser*pcs’wer«, and ai}sQrp.ti»0‘n cnefifieiant.
`sf. the-..1aser 'b::ain as it propagatas witmn the
`
`.
`
`Jar:
`
`«~+--~~aI
`
`%
`
`
`
`- where s is ‘the: distance alnng the Eocai ¢i_im<;zic::1 e:’f5_;3:*:::;3 agatigm.
`abagrgzy
`.
`:i;§ce;-» it
`ma-..s .
`tizankngth ifs: ix 3; .+*;iam.ii1’ant».§ength aegis f>c:N.}'.*:s‘.*..
`‘inf: £§'ist;anc’:je.-0335:: whigch th£3’p~{3wé£.,iS absc1x*bav:i fwm {?he’bai:am., Far 'tfiI1is‘r:§c23;a
`
`:59-n,»t"fi.¢ dimension Qftha fiigimampasaiizre ;’aTbsaib§.2z;‘
`2:2:
`n
`piiaatxza
`alcmg the: laser beam wfli he of the cider’ tai t}1:¢;»a¥3sar§:ztz»c:n ia_.:1gi33_.
`’iti':~:.ihe absorption 1em‘g.1:h that determines ‘tli1e91z=i:ngt}1§c2f
`’ ‘e.»;3}a2si21a.zz1::31:;g fize V
`Exam iixigs, :1. is the @1336; beam éiameter ;tha‘t. daie’:x:ii.aea piasma >dian:;g.-
`’I*£1e’;s1:zs::aa expixnds :9 ii}! ma begin eozre. .wh:¢re it
`gaze. is «*.~1?3$*Grb
`pawar, "then rapidiy c}s::z;re=a:ses in ’ten:peratur»e. m:tsi.:§rs the imam ti1rtm1_gTh
`thermai canciuction. and radiativs kiss .machan.isms..
`The pnsition‘ 9f the
`‘relative to the foca} paint is £:1‘i'tic.ai in ::ietermin~
`ing its structure andfiie range of para.mcters far which it ‘(-1313 be .maiI'itaine€I.
`when the plasma is initiated near thg beam foam, it pmpagatea intro. tha
`sustaining beam and seeks a stable. _position. The pasition c:fst.ai3iiitywiI1 be
`1ocated‘where the imam intensity is just stxjffisiant t11at.tha‘absai*be»ci power
`will baiance thalosses due to convection, thermal c<)n:3ucti{m, and the;rm.a1
`radiation. A _number of factors combine to determine this pcssition of sta-
`bilityjncluding the transverse pmfi1eTof’the incident beam, t.hefoca1.leng-th
`and aberrations of the focusing lens or mirror, the plasma bpressura, and the
`incident flow velocity (Keefer at 211., 1986; Walla at 211., 1987).
`The power per unit volume that is absorbedby the plasma is given by
`
`P := al
`
`V
`
`(4.7)
`
`Energetiq Ex. 2082, page 12 - |PR2015-01300, |PR2 I
`
`Energetiq Ex. 2082, page 12 - IPR2015-01300, IPR2015-01303
`
`

`
`La.ser~$usia’inet:: Plasmas‘
`
`3?5
`
`where I is the Icmai irzadiamze: of thfi iaser beam. S_im:e I depends can -the
`transv-ersi: profile 0ft}’1e'incitiBn‘t beam a’s.’-weii as iha focai Zength and abe’r~
`raticns of the lens, these -charaetermics wiii .:infiLuen<:-a £i1e’I.t:2ca’3:i0n within
`the focal rsagiion at
`:’:hewn1inim1:;£n.su3t3i.ni:t;g i’n.tan.sity is Icicatzzd. F01‘
`exampie, far a small ffzznmbfir} ' 'n;$,_ ’the.';i:1£cnsit3¥ dezzreasfis rapicily with im
`
`cmasing dist.a3:ixce fmztzn..1hia»’fz3cus*.’an€i»the piasma will .s’tabi.1i.ze.:’:1c:ar the focus.
`‘Fm -a larger [finumber system., ii1'si":».,§.I3£$.¥}S?ity’iiflflrfiitfifiéfi1685‘: rapidiy and the
`plasma wiil ;stabi.1i2e .ai.2r::p<3sijtian £21.
`,
`war ml. .. he was. Ind¥‘a=e:¥., for
`
`
`
`
`gxgsfiicieniiy fic:’rxg’=”fo.<,:.a?.1.1:::?;;g1£h,$-; :a:x;ci is
`11’
`p=awer3 §z1;.as:.:nas..}::ave ‘been ob«
`s:
`served to ;::rop:§ga3:i.e
`.
`.. R ziiarg. :1i§f8£:§) as “’I.a:s¢r«s;;ppqzted com-
`bustion wavefi’ .a,£. .s:x3:3s<3x‘:i.£::; “aicz
`Tha zimaiiexzi ;~r;;>.a.t.i,,2::.i 3
`.
`’Ia5tf0ns bemaeen. firm up 1:223? §?%:&::m:2;i'
`the gas, am! the fl0w:£.hr*cm:" '
`’
`the 'iempiet:’fatuf€» and fims:
`$}%:«aij’_
`from the las-er beam. with the -pa
`
`” smatis »§;,§’1tE*..;1;t§;t§n:t:§§1:i53s:_3.L".;é3?!’t{1,:tt3'i.n£€.rx§~
`-
`,3. z_t.'£g.$a"-,-,.£.‘
`€:p’1‘s?3is.sIé1i*:i:=r:;f
`-wiigiin
`piasma,
`
`
`
`
`
`
`.
`
`gzi
`
`.x..e<:§
`imh .
`
`. me .
`Mast mi xhaeariy exp. ..
`chamimm £51": in §2pi~;n»air, ’sI¥31ef$»t: ~
`by the effects mi therma} buoy
`éfefi ¥.‘3%’g§?(3$}:?5 inf ipnwer 3:16
`the pr-€:$§z’1ri?e.an§ Ease: power»-.
`’
`~ "
`vatieaiy of gas-es (Eisn-
`,.
`i1Yrit:s.si;.re w11.er:a»it»was pnsgsibieitz. ,
`Thfise. ~3x;:%erimn.nts.
`.
`eraiav et »ai., 1'9?2:; ’K<3z1¢;;‘v 4% at,» 1495
`f¥31P”§3£>3fih};aserAp6sver anti
`indicated] that iherf: were ’np;‘;:>’er anti ’i£:tx=¥£'-—E1‘
`.
`.
`pressure at which the LS? szmzsici be an:-ai:aineéi;.
`Generalov et 31.. (1972) suggested that the upyer iimit. fax: p-mare’: was a re~
`suit of forming’ the LS? .v¢:ith a horizontal beam. In this bgeemetry, thermal
`buoyancy ‘induces a flaw transxzers-e to the =0.;3¥;:it;ai axis. Tim intiuced fimv
`<:.an*ies. the plasma up and mat of the beam-w§1ve3::.h.igimr‘ Easier mpmver causas
`the plasma ta stabiiize‘ farther from the focus. They ware u‘nab1ayt0 estab-
`Iishan ’upp-en." pews: limit when the exper.iment was Gperatad with the: beam '
`pmpagating vverti.ca11y upward. Koziflv et,a'1. (1974) deys¥c3 pe.d a radiative
`model fer the LS? and explainn;-id the agape: power limit on the basis that
`the plasma must stabilize Class: emimgfh to-the’f0ca1‘p0int_ that the geonueb
`V ric increase of laser bean -intensity geing. inta the ‘plasma was greater than
`the loss of intensity due to absorpfion. They speculated that the faihxre of
`Generaiov at al. (1972) to observe this limit in a vertical beam was riue to
`rapid extinction and reignition of the plasma.
`It is clear from the experiments of Generalov at al. (1972) that flow can
`have a large effect on the range of Apxfsssure and lasar power that will support
`
`
`
`’
`
`Energetiq EX: 2082, page 13 - |PR2015-01300, |PR2015-01303
`
`Energetiq Ex. 2082, page 13 - IPR2015-01300, IPR2015-01303
`
`

`
`‘W6
`
`Keefer
`
`Fflastxnas gust-a.i.ned in the frat: jet issuing from 21 1102213 have
`a szabie
`been studied by Gerasimenko at 31. (198.3) who I’t1E<’:1'.5UI'€d
`the discharge 9
`atzciqtanbgtzs for the existenzzb bf a szea€ijg~st=ate
`’1:‘§£§€S’hi¥*§E; been ;:0:1{i2i»cted in c<mfi:ne:d't1:be.S
`mi'mité:s;‘t, we flow (weile at 211., 1987). it was i
`,:fo’umi ¥:h.a£:=i:n addititm. ‘tie piczwer and prassurb, both the flow and optibcai ge-
`’ "
`"
`b
`'
`M
`I””:diI’1fl3'.1€n'(:-3 on the <:haract1:ris£icsV of £113
`
`- «*3 {be b:1':g:isiAy is jusfr s“z3fiici€:
`ame.s»s..at1anaf’yeéxtépoxiztmglie
`_
`-
`.

`_.
`
`
`asma béc
`at £112 ‘five? a$sc:§rb:é=c1"£:o::§ -‘t.
`’5_b_eam, gzvcn byfi
`4.?),"is balanced-’
`A
`111
`the: wnvectzsves-, cbncfuc-give,» .and radiation ’Ica:ss-es.
`.Smc»e:, in gemerai, "the
`r
`_
`the 13:33:12,. the piasma.wi11 a.cijust..§’r; 3529., 3; I
`'€zn!:&£va'£i£3n eif
`3:74:51. =z:-zzér”
`
`.
`
`-
`

`
`Ia ;a3.i£>I1. iij: tbs ’g§IaS‘r:3a m3c.:2r$ bath.
`ans, resuiting in ling radiation and;.. absar
`:13}. efizb
`2; r.
`
`tibn, :>aI§fi:f»I.>:&&.t."fi:D’-tlnfi amzi fffifififffifi transfizians that I‘-éfiifli in .m-nizimzuzn ‘ta.
`“' ”
`"£'51 ajbsmfptimx. Qve.
`{iIza.:2pt’_i<:aIéi_y thin. portian at‘ the s_p>;-3=ct1‘nm,thi
`
`/
`.
`91:! W11! iIi;;i§'t b;aasi;f€>.I’1g1y §:fl£3_$fifb€ii by the piasnia 01‘ Sfli‘r0imt3ing tbifiéiifeii‘
`mgicms anti wii} simpiy esc;ap»c fram the plasma. Other {Martians cf the spec~
`mam will ha stribrxgiy absarbed, 1‘es'uking in a trzmspcart of energy within that:
`plasma. In the Ggixiisaiiy ihick1'i1n’it,_this resu1‘ts;in a diffusive energy transf
`p-or: that is simiiar ta thermal cnnéucziorg, but may be signific.ar1’t1y1arger.
`Dataiied ca1Acui.ati0:ns. of the LS? (Ieng and Keefer, 1986) indicate that this
`radiative tr.ansp01*: is a sziornmant factor in the determination cf the struc-
`ture and p0si.t.io.n of the LSP. In particular, it is the radiative transport that
`’ determinés the tbemperature gmdie7nt in the upstream .fmnt of thcplasma,
`thereby determining the pOSitiQI1 in the beam for which convection Iesses
`are balanced by -absorption.
`The positian of stability fax? the LSP also dapends on the plasma px'es~
`sure, The absorption coefiicientis a strong function of plasma density, as ‘
`seen from Eq. (4.4).. If the pmssure is i'nc:re:ased and the abs01'pti(3n <;Qeffi«
`cient increases, than the plasma can absorb more power from the beam and
`will move away from the focus to a lower intensity region in the beam. At the
`
`
`
`._
`
`._
`
`Energetiq EX. 2082, page 14 - |PR2015-01300, IPR20 M:
`
`303
`
`Energetiq Ex. 2082, page 14 - IPR2015-01300, IPR2015-01303
`
`

`
`
`
`§;=a»s.er~<S'usta’¥ne»d Ptasmas
`
`1 3??
`
`5211114‘: 'tin1e,, ihc'pia:m1a:1ength aiong the .beam »c1ccr-eases beziaus-e {if the de:~
`:;1f£:as’e in absargatinzx }s:}gti1., 13111 the d.imnet=e.r i.n<:re:ases ta fit} the _Im"»gar :¢:.m;s’s
`$e<;ti<}.n sf zhva beam, Thus, far the s.ama1ase.r b-3-am ma-é.itica::, a .’higher-
`
`px‘essur»e:
`wii} stziiiiiiiize
`a, Quint farther away fmm the ma: gixaint arzci
`have 3 :’s'm'a}1a:r.»}angth~'1o~d1ame1e’r ratio ’th.a.rz 3 I-awm*aprassu.rc
`.
`,i11cide21iiase’r p{3we3:, as wail as tihc f/munher and ab:srra¥i£3n.s cf the fa
`gusizzg Qpties,» will also .ir:.fiu.m1c»e the §_3;3si,£i£3’r:. at xvhich the
`Stzabifizcs
`3316 .2bsa’m., Fisam {me 'f0mg::}i’3:1g <3ii5<:us.si£3i}., it is cigar {hat as the?)-e.a.:r1
`puxvar is increased», the piasma will mauve up t11ehean1 away ifrbm the fixzai
`itsrslizztg. Tfha distsance 1.hatit'mi3ves.'is nistsrmineé by ‘the .f!n.um'b=e£ (ratiiz mi
`_
`.
`‘
`.
`fie
`
`
`
`'
`
`..€:£:§t {§3i.p¥asma 'p=0-aition (Kaefmf et :aL, 19%}. In part;ic11k::r, Wfh;E11'i an 83%
`2:11:33": E3e=a'm mam an.n.nst;aiaie1a_ser <.3:3i:.§}321ti)¥ifi}§ii1$=?€§i3. 133:3 sghericai I.e;:z.s.,
`r£:i<ii1,3ces an annu’iar’pmfecus region. befbre reaching {ha fist-:31 Dpiiintg
`
`
`» s::'1*3s;é:rvat:iA£).:1.s :E§is€:11.$se:.1 abave, it is £‘3.£i31“ that’ £heb:;:$£>sii.i£:i1x sf
`1 m; .131.
`{ha piasma relaiive in -the focai paint has a: pmftmnd effzézéi 133:: ‘:i§1£3’}§1§1;8II1a
`' _¢;;¥1.£x_£:a’::teri$ticS:. Atthe zzpjpar iimits Qf:$t3§§3*i§ity gfitsr bath ii.as§:r-I 'pmver< am»
`pm
`a}f;”§’=i§ar’s ;hat the pi£zsn1.a3:l::eci3mes x1x:ist;ab}.e sixhan ii; ixnavasma
`
`
`far‘ffeTm fi.1é: £063}. peirzt. This may 1236 due, to £116 afai-:1, as prQpQs6di.3yf’Kt§25i£3v
`at Vail. s(3§9?££}, ihmas ‘iihepiasma .mavas sufiicifently ’f.ar’awa5r
`113.,
`iha V1”..-iiite (sf in.c’mase of the beam .ime:1siiy in ihza fiiiraciiiqh. af‘ egzyopagiaticign
`’ aims smazisr. S’irzc.e tam tampareitura s::%:£ '=t}1:€f
`;2§.a;s.m,a .m3.3,st 5 ”
`a1a§,a;i,a {he
`
`
`i1eam>prppiag,ate-s into the npst:’eam edge Qfitixietpj-’Iasmai_ .:ifiien§i§§?‘i0f~£_I1e
`baaxn ’.n:'msi: 3515:: increase. At same paint, ii1e;dms’ra.as’e. -of f}1t’3 hli‘sE3.II1 in;wns.iiy
`due-ti: »a.i}si3rpti0n is greater than the incrieeases due: in f0c%::.s§:1g, SC! the piasnza
`Eséeomeéa unstable and extingui-s'hcs. Recent <:.a1cn}atit3ns by Sféng. gm :1, Keefm:
`(198’?a’},i1mv§:ve:r, iniiicatez that there may ex.ist1.oca! 're:gi»:s.;1s. =withi2: t}:1e’LS-EP
`»vhera.t}1e’b-mm .in1;ens:ity c}m;rAe.as-es ‘as it penetraisas the plasma.
`. Accmsidarabie degree of ecmtrol of the structurs am: position Bf ihe:’LS?
`can be gained through both optical geometry and flow, in Vaddiiian tc) Iasar
`p-zxwcr zmrzi. ’prcssure. Utilization of these aciditicmal parameters nmake-.5 it
`possible: to successfuliy op»c:ra'£e the LSP ever a wider range Of exptzriniemtal
`ccnesiiiiims, enabling 21 wider range of potantial appiications.
`
`13.2.2
`
`?1asn1a Characteristics
`
`Laser~sustaim=:d plasmas have been operated in 21 variety of molecular and
`rare gases at pressures from 1 to more than 200 atm. The resulting plasmas
`have characteristics that are similar to are plasmas operated at similar p1‘f3.S-
`
`Energetiq EX. 2082, page 15 - |PR2015-01300, |PR2015-01303
`
`Energetiq Ex. 2082, page 15 - IPR2015-01300, IPR2015-01303
`
`

`
`‘W8
`
`'
`
`-Keefer
`
`sures, but the peak tenaporaturcs in the LS? am usually somewhat higher
`than "those for the comparable am. Ratiianon from the plasxna can be 3 Sig-»~
`nificant fractio’n of the total power ,inpI12, a:n.~:.i .r21r3.iaiion '.tI’anspor‘!: plays a-
`major role in n‘etenn;inin_ ’*’§;l1e structure of the plasma. Continuum -absorp—
`tion processes are ofpaitifizfilar,1’3n“:po1*tanco in these plasmas since thopower
`to sustain the plasma is aiasorbnil -throngh, those. mo-chanisms,
`The» .con.tin1mm ansornzion pxnaess=inyn1ves both bo'on.d~fsrne trans.itio_n.s
`(p}1»oto’ioni;zation) and fi'.oo~.f£‘on transitions (invnrao l:n‘nmsst.fahlnng) in
`’which photonjs are absorbnd. from tl1o»l.a.sorlf3eam. This .free—-iron; transitions
`involve nlectron colfisions with Zions, ’otl3er éeloctrons, and Inoutral particles"
`(ShIl;aIi3f$l£y $1 .31.,
`3;’S*i5?6};;; £3r.i:e:2n, ’19fi.4}..
`:éiomi'nan:t absorption process
`
`for than is fi3."1fDiIi_g}i ;:n'lllfa_ion.§ ihoiwnen
`.
`..
`.113 3-nciions, and the a_b3o:p~
`-don cooificient for ibis procosa: is» given by
`For the usual Case in
`the 'LSP.‘, kw «ea: 3:? and {lie absnrpiion in app1‘oximatoly'nrngsortional to the
`sq’na’r=:: of tin: la$.er- xvavolnngtjlgl
`to
`Strong.-xvavelnngill cinpencienco,
`all of .t.h6. rwnrteé. e7i_Pe:i.n:nn'tn1 :%iz:s'nil.£:s.for’1n.e LS,P”hav'e» been obtained us«
`ing tho 1-9.6 gm w.avol::ngth carbon ciiflxiado laser; Sim: the length scale
`for the plasnza is of the order of the absorption .lenj'gtIh;, tho length of -the
`bplasma and .1113 power mqnlrod to ’s*us'to1“:n it iwonld be nxpezztccl éo increase
`dr.a:nun.icany fnr'shnrtfer an-’veln:ngth_ lasers £;‘ur:rentIy, -thé. only other lasers:
`flizit are ’fil<;t=:ly eanciidatns to sustain nnzmn-anus gzlzxsnxasv-aria» the hyfirognn
`or :ien.‘£eri‘um.fiuo.rid.e ah::zrxical¥ase1ts,ti1’at opnrato at waval.eng:Lhs of 3’ -to
`4 ;.&m..
`l
`'
`'
`.
`Tlznrnzal radiationyis iniilie of this :n2ns..tI.i:n§or’tan’1 c'ha;~;acterisiics of the
`LSF. Thermal -md_.i.a1:io1n l'o3t.ffo1i1.‘£li¢’;3Ia§§'ii13 can ai:co‘nnt for nearly all
`the ;;=ow::1' absoribed by tine ';'3la,s.;na whnn tlzo flow through the plasma is
`small anti. will account for :a s.ign.ifioant f:aoiio'n of absorbed pews: even
`when the convective. losses are large. The thermal :rad.iation. consists of
`continumn radiation resulting from _rec0x1il3ination (free-bound transitions)
`and bramsstrahln’ng (iron-fr-an tr-anlsitionfl) as wall as lino radiation (bo1..1nci-
`bound transitions). Calculaxinn of this racfiatiozi is straightforwar-d, al~
`though rather tctiioos, when the plasma is in local thermodynamic equi~
`librimm (LTE) (Grimm, 1964).
`‘Local tlzernloclynamic equilibriutm is as-~
`tablished when the electron collisional rate. procosses dominate the pro-
`cesses of radiative decay and recombinafion. When LTE is e~st.ab.lishod
`in the plasma, the density -in specific quantum states is the same as a sys~
`tom in complete thermal -equilibrium having the same total density, tam»
`perature, ancl chomicalv.c_omp~o3ition.
`It should be emphasized that this
`does not imply that the radiation is similar to a blackbody at the plasma
`temperature. In general, the spectrum of the radiation from the plasma
`will have a complex structura consisting of the superposition of relatively
`narrow spectral lines and a continuum having a complex. spectral struc-
`ture.
`‘
`
`V Energetiq EX. 2082, page 16 - |PR2015-01300, |PR2015%
`
`Energetiq Ex. 2082, page 16 - IPR2015-01300, IPR2015-01303
`
`

`
`Laser~8ustairie-ti Piasmas
`
`"179
`
`
`
`.
`
`_
`
`The sbscrptifiszn: c-cicifi cient in thc plasma‘ depends on the waveicngtli, and
`far thc u'i:r.svi.t31si."portiQn cf thc spccuum bslciw the wavelength {if thc rcso»
`nanceiimss ('£}."ai1.Siti
`:13 in 'ivii1g the grmimi state), the r.ac:iia2_ie.n is stmrzgiy
`
`absciriicd by tiiii pia ’
`;
`the cca1cr.su.:muxicii.ng gas. This rcsniis in a
`szrazijg raciiativss 'ira,:is{3Qrt“mecha’nis’m th at is imgiartszii in :ietcm1.i.iiin_g the:
`st:mc.:ii:i::'e ifithe pias’ma.. Qitsn, 'rz;d;iative tr-anspcri. for stIQng1y.ai3££

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket