`‘Department of 9% :35;
`New Maxi-:9
`.
`L35 C¥’U’i?€S.
`
`
`. ..
`.
`
` edited
`
`»
`V
`:3?!
`Chemicai and Laser S<:ie{1::es.‘l3i'v%sion
`ms Mamas Nat4is3n*a,¥ ‘Lam-rattjrv»
`L03 Names, New Maxim
`
`MARCEL DEKKER, INC.
`
`New York" and Base!
`
`Energetiq EX. 2082, page 1 - |PR2015-01300, |PR2015-01303
`
`Energetiq Ex. 2082, page 1 - IPR2015-01300, IPR2015-01303
`
`
`
`
`
`
`
`Library of Congress iiiafaljgzfgi:1g4i§14}§1}3iit;ati<2n. Data. .,
`
`cixeinifiiil.» 3&6, ifiidlfiaiflai 3?.?fi<3af30n5Af %»£1i.f€'f3
`Laser.in¢Iu:<{:L£-ti 4,E&asm-as 1:
`by Leezi
`R§1:§3}zie:31s}(i, ’33avi:1 Ag. iiremers.
`V
`'
`
`-92%)
`,:V§f‘j;g}1’“§3;€:~:x$;reriasets.
`
`
`2;.
`
`’ 1." ¥§;a;izie:nsk.i., Leon 3...,
`
`’ §9;73.8:?{
`en?
`
`
`
`.
`
`:xz::1’,t;a:1es ‘
`8432.
`2?1}fg:;mg. 2.1
`$1..-Cre
`,.'Eias_:
`
`
`
`
`This baak is printad on miiiafrea ;p:e2;:«e,:'r'_.
`
`Copyrigh‘-t © 1989; MARC.BL.DEKI{ER. me. An Rights Reserved
`
`Neiiher this book no: any part: may ha repmduz:ed Q1‘ transnaitted in any form
`in by my means, eiectmnirz er mechanintai, in::Iuc¥i=ng plmtucopying, microfilming,
`and recording, or by any jnfexmation storage and retrieval systexn, without per
`miss.ion in writing from the publisher.
`
`MARCEL .DEK}{.B'R, INC‘
`270.Madis0n Avenue, Nexv York, New York 10016
`
`Current printing (last c¥i.gitA):
`109876543521
`
`PRINTED IN THE UNITED STATES OF AMERICA
`
`Energetiq EX. 2082, page 2 - |PR2015-01300, |PR2015-Q1303
`
`Energetiq Ex. 2082, page 2 - IPR2015-01300, IPR2015-01303
`
`
`
`iii
`-xii‘
`
`1
`
`1
`3
`8
`36
`
`6.}?
`
`6&3
`'33
`72
`75
`7’?
`88
`92
`93
`:95
`99.
`100
`101
`101
`
`105 ‘
`
`105
`110
`
`
`
`Céntents
`
`’*
`
`_
`
`’
`
`e;
`-A _i3f£.i.‘£i‘31iS
`
`
`
`Qflgasex‘-I¥xt111c=efl..Breaiaafiewxz: Au U‘§1sdate..
`
`
`
`;£;;;tradu»c't:i;1n
`" “ca of Emotions
`b
`Eiemran €§'r{::§v£E1 in -Gases
`Lasé:~I:z;&.u::x:w;2.'.Breziicssicmifz tzsf Snlids and. Liqzai;#:3.s
`fiiizzztaiuziizzg 'Rem_ar.is:s
`; »Rc:f<~x:en:aes
`
`Z
`
`*£m'ie’:Iin*g.43-f.P?os£—Br=eakti.own Phenomena
`
`Z’5:it.f:3»§i:;c3;iz:s:1
`Ciifizsatpifin 0f 21 ’P’mpagating flasma
`Absmrptian {Zhafanteristics Bf Heatsd Gases
`F;eat1t1m:s tif F*3:0pagati.n_g Plasmas
`.
`$3312.-~I}i1X1.Ensi0n.a} L:aser~S'u';3po1'1.ti:€3 ’CB1‘£fl3’H$1i0n Waves
`C3ne~I3i.m.ensio’naI ’La.se:r~$uppm*ted Detonzxtican Wave
`»One»13irj11.ans.ira’na} Laser~Suppi)rte-d Radiation "Wave
`j:'i.‘ransiéi'i:3'rx Regicms
`' Radial §:Cx;§a};1si£)n
`18 Theztmal Coyupiing.
`_ >13. O$:§1erFact0rs‘
`S’umn1a;fy
`References’
`
`,
`
`'
`
`
`
`
`
`3 {ntro»duc£ion to Laser Piasma. Diagnostics
`H _ Allan A. Hans; and Hector A. Baldis
`
`Introduction
`Introduction to Optical Diagnostics
`
`3.2
`
`ix
`
`Energetiq EX. 2082, page 3 - |PR2015-01300, |PR2015-01303
`
`Energetiq Ex. 2082, page 3 - IPR2015-01300, IPR2015-01303
`
`
`
`
`
`
`
`x
`
`’
`
`Canteniss
`
`3,3
`
`Intmduxetion to X—ray Diagnostics
`References
`
`4
`
`I;;;s’e':r;S1zst.aine§1'Piasinas
`Dennis R. Keefer
`
`‘
`
`4.1
`4.2
`4,3:
`4.4
`4.5
`
`I’ntr0z3.ucii0n
`Princigzicz; cf Qper2iti{2’n.
`Ar-u”z’1ytic,aI MQéie}.s
`Bxperimen.t:a1 Studies
`App1,i<;ati£3n.s of the LaS—€:r~SL:.s{a£ixl1ed Plasma»
`Rcferances
`.
`b_
`
`5
`
`i’nér~t.iz’:liy Confined. Fasimt
`Robert L. Mcflmry a_n_§..3nh::
`
`’S<)'u.res
`
`5.1
`5.2
`
`51,5
`
`5.5?
`5.8
`
`.
`
`V
`
`Isiistaricai Overview
`LasVer~*Fusi0n Szzaiing Laws
`Cor-anal Physics
`X~ray‘Gen€:’1"éitiG:i by L:ase'r~1?rad':3ced Plasmas
`1.as€:r—'Driven Abiatixiij
`i%Iydri:3:3y:za:x11:ic:Stabfiity»gfg&E:I§‘£i3*¢1y D1"7"i’Sii.€’:.I1_.:
`lz’°mc§.iaii,::sn U‘n’.iformi£yR&q_u§1:é:1§3.aI}.15
`Impiosiim Experiments
`Rflffiffifiéfifi
`
`‘
`
`-
`
`‘
`
`.
`
`b
`
`6 Laser-Bases!iS’;e.n1i<:un.:311;:£ar’filiariitziiixiil
`
`Iaseph ‘R. ’Wachte’r
`
`5.1 Aspects of Semicandtwtor Fabrication
`(3.2
`App1.i<:at.i0ns ef Lasers in-the Sem_ifc0nidu.ct0r I.ndu$t1'y
`6.3
`Research Areas T
`T
`_
`6.4 Outlook
`Refarences
`
`‘
`
`7 ; S-pectmchemical Anaiysis Using Laser ?1asma.Exéit.at:ia11
`L-eon J. Radziamski and David A. Cremers
`
`Review
`7.1
`-Methods. and Properties of Analysis Using Laser 1"-fiasmas
`7.2
`Analysis of Gases
`7.3
`7.4 Analysis of Bulk Liquids
`7.5 Analysix of.Particle.s
`7.6 Anaiysisbf Solids
`7.7 Advances in Instrunmxitzition
`
`133;.
`161
`
`169
`
`169
`1.'??.
`1182
`189
`19:6
`293
`
`2&7
`
`20?
`2.-:11
`21?
`224
`227
`239
`243
`251
`2&0
`
`269
`
`269
`276
`233
`290
`291
`
`295
`
`295
`296
`302
`306
`309
`313
`318
`
`Energetiq EX. 2082, page 4 - |PR2015-01300, |PR2015-01303
`
`Energetiq Ex. 2082, page 4 - IPR2015-01300, IPR2015-01303
`
`
`
`manta
`
`"
`
`xi
`
`'Fmgm::a.sis
`References
`
`»
`
`
`
`—
`
`’un‘t}a'n2enia¥;fi:)f 2%u.1;1:2’1y$is of Sniitis b;y Las-e1?—i’t‘oduc»ed
`3.:-15:13:13
`
`mg W. Kim
`
`=C§ia:pt:e'r C!:rga’niza'tio.n
`.I’12:ri:1»iii1c3:i{>:1
`’?ihe:m.m£:nalagy :’ai:' .1335: Heatring of Condense..d~Phase
`Targets.»
`
`‘
`
`’t%i_v.c:s:-Spa-ctrizsaszapy
`lhiteiisi y Zxicasnrements and Biemenia1..Ana3tysis
`’ .Summary*
`Refe:r::.nc=es
`
`321
`.323
`
`32?
`
`327
`3.27
`
`339
`335
`341
`344
`345
`
`34’?
`
`34'?
`35!}
`V
`353
`
`363
`365
`.369
`372 _
`376
`376
`
`385
`
`385
`
`386
`413
`
`
`
`Laser V-:«;ipu1'i.zaEtin11 far §.S 2t.’mp!_e Inirothxctian in Atolni-cimxd
`3.5133 »$1::¢’£:trat$;:a;}y
`aseph 3.l’I.€d.§3G13,, 133:5: Mitchell, and Nic'ho1a.:~: Negjar
`
`.:£'3t2nv§:n.fi1:in,3i Stiiirl »San1;3'ie’Intr-oii‘ucti0n fax A't:3mic
`Specirascfapy
`£;asa.r.13gi3Iai§‘i3n. rz2f’Se1i‘<':i Sazxipies
`'L:a.ser.A131a'tisn far =Smr11r;%3i?» Iixtriacinctica in Atcmie
`S'pectr:<>si:9py
`iigizztixrzz Marits af ’f;.as-at Abiatian for Sample Intmduction
`in Atomic Spectroscopy
`-
`Laser »SQ1If{2.»¥3.»S for ’Mass Spectrameiry
`Appiicatians of Laser ’M;icr=0pr»o¥3<3
`Appl.ieati(ms of Laser De:s»or_pti0n and Postionizaticm
`_=C0nc1usicm
`References
`
`Czxrreni New Applications of Laser Plasmas
`Allan A. Bauer, David W. Forsfund, Colin J. Mcléinstrie,
`Justin S; Wark, Philip J. Hargis, Jr., Roy A. Hamil, and Joseph
`M. Kindel
`
`10.1
`
`Introduction,
`
`18.2 Applications of Lassr~P‘1asma~Ge.nerated Xqays and
`Particles
`10.3 Las::r~P1’asma Acce1eratio11 of Particles
`
`Energetiq EX. 2082, page 5 - |PR2015-01300, |PR2015-01303
`
`Energetiq Ex. 2082, page 5 - IPR2015-01300, IPR2015-01303
`
`
`
`xii
`
`_
`
`b
`
`.
`
`=£3;:m'tar:{s
`
`Las¢::r—Pu}.svad Powésr Sxvitching
`B.e£er»ences
`
`
`
`b
`
`-
`
`424
`432
`
`4537
`
`153.4
`
`Intiezx‘
`
`
`
`Energetiq EX. 2082, page 6 - |PR2015-01300, |PR2015-01303
`
`Energetiq Ex. 2082, page 6 - IPR2015-01300, IPR2015-01303
`
`
`
`
`
`
`Laser»Sustaified Fiasmes
`
`iiemis FL. ifieeiet
`Center for ,£;:a£:er.g§ppfiee¥3Ce:z5
`ifiziversitgr Q?Iffiérszze.-me‘ 2_S§)z2z3xf? I%zszitz:!e
`'3’i:Z§::}z:2:“:é:z, Teiarzessee
`
`4.1 INTROBHCTION
`
`Plasmas created by the .ra¢§.ia§i0I1..i’.m1i.‘1 fa * :i.iase1+’beams ’£’?~€‘é!‘€% "first »t'3'bv
`served with the ativent‘ {sf “Egiani gaulse-’-’ Q=~
`t:cihe:<i, ruby» insets by Maker
`et at (1963). TI1ese";:jla§r{1éis
`"
`gas‘ bre:akdewn at
`. he
`._. ._
`L
`_
`the .fo-case of a lens and were six
`,5ti01'i: nf the’-Iaser
`puise. Plasmas were aim e¥:;serve=s:1:g.-era: oaths mrfaszées ef mat-eriéils ix»
`r2adiate—d by ’h=ig1a+;1:0wer pulseszi or »:<::e:ntinu;:ms Iaeers anti '.t}.<";§ pzr%:>§eg*a.tee into
`
`the in<:.i£3exIt ‘beam at .s’:.zh-.sea§::
`’
`vg‘
`"65..
`“"123. advent of
`'
`.’
`’
`:c.m;t:inuejns, high-pémver {:-az‘'b€}n
`¢€:%3I‘£is‘&§E%SS..
`. .13 ii? Siiffiffiiil
`a plasma in a s'te»a‘dy—st.ate £’:e:m£i.;t1e;n.,:::,.e;«.
`.,£3<z&2s cf .a.1as:er’beam,
`the
`first. experimental abservatieix -Of‘ a “e.Qnfi'nue1:3’*Qpti£:=a1 :i.§s::}m::#;ge’-’ was re-
`_parted by Generaitw. ex; .a1.. (37%). The eentinucms, }aser-sustained vpiasma
`(L8?) is mften referred to as 2: eeniixzumzs aptieai eiirzieizayge ((20113) and it.
`has a number of zmiqne pmperties» £1.13: make it an "i1rteresiing ca:nd.ida*te far
`a variety of appiications.
`,
`The laser-su.stained plasma shares many eharaeteristics with ‘ether gas
`discharges, as expiained in detail by Raizer (19813) in his I:-omprehensive re»
`view, but it is sustained through .at3s0rpt’ioI1 of ‘power from an optica1’beam
`by the p.r(3.cess.0f inverse brems’strah1ung.— Since the eptical frequency of the
`sxxsmining beam is greater than the plasma‘-frequency, t}1’ebeamis capable of
`propagating well into the interior ofthe. plasmawhere. it is absorbed at high
`intensity near the focus. This is in contrast to plasmas sustained by high»
`efrequency electrical fields (n1ic.rowave and e'lectrode1e:ss discharges) that
`operate at frequencies below the plasma frequency and sustain the plasxna
`thmugh absorption within 21 thin "layer near theplasma surface. This funda-
`mentzxl difference in the power ab.sor_pti0n mechanism makes it possible to
`
`
`
`
`
`"i 89
`
`Energetiq EX. 2082, page 7 - |PR2015-01300, |PR2015-01303
`
`Energetiq Ex. 2082, page 7 - IPR2015-01300, IPR2015-01303
`
`
`
`170
`
`V
`
`Keefer
`
`gcnc’;cz£e smgagclysstatcogllasznas, _h_a_vin:g .maxi2fnu*m temperatures of 1{¥,{}O0Ii or
`xnoroifx a small coining rgoar inc»-foexzs of a lens», far away from any co‘I1ifi>i3i.11g_
`str'nc£.m*c. A photo of.a.p'las1na. sustained. by ;a laser beam focused xvith a Ions
`is shown fin Fig.
`,- T»,
`{K} W Gaussian beam from :21. carbon dioxicic
`laser won in '
`bi’
`focal lmgth lens into 2 :atm nfi flowing an
`V "
`
`gen.
`4.. ( .).;s§io*;vs schen§,.aiicall.y how the: plasma forms within :l1c:fjo£;al'
`region,
`
`.
`
`e been ‘produced in a variety of
`' ‘boa t:ii,o,>':idc> lasers .op€-;rai;ing at
`
`'
`
`’
`
`
`
`{:3.‘§%3}, Wells "e1;a'1.. A{198'3).,,and..=CZrons»iand’
`-t the
`:::an be opeziateéd sn’f<:’£:'aS.S«
`dz“
`operaxei ca flowing
`J
`
`envisonmcnt“ have boon ’caI,ied ‘5plasm:.énr-ons” in the Soviet literature, anfi
`the lasar--.snst.a’ined ;)§:. is often rcfermd to as an ‘*opti.cnl plasmatrong’-”
`
`
`
`
`
`’
`
`tho./sn.si:aini:ng boom, and
`of”t““e pin" ‘ma.
`cwida» range of ézondi-tion3»1;s~
`i.§:i§i§?£;.i‘€3
`..
`lions of 135%: gjowcr, flow, and optica1:configur;a~
`
`
`
`
`
`{*3
`
`
`
`
`’ pi.-
`potao:t.:aI -3'
`hogan and inn» power can. be. beamcci rem.o_tely, it has.
`Gp£':‘;.r[at’,: in par
`been p::opnscti .t}‘1.a1: the
`=co1;z‘ld be us-ed for high specificaimpnlsn. Space’
`propxilsioni. A nunib-or of papers: '22aw: -d.e‘a1"tw.ith this 8p‘p1i£:~ati0n_,. and it was
`the subjoct of 8. reviexv by Glufrib anilklrier (1984). Thompsor; et a1. (19%)
`described oxporimcnis in Whikh "laser energy was converted into. el.eotri»$a}'
`‘energy using a -laser~.susitained argonxp}as3:£1a. Crcmers at :11. (’l9_8_5) have
`suggested tho
`as a source for sp-octrocllexnical analysis and given .s1omo
`experimental rcsulas. Cross and Cremexfs (1986) have s11stai11od plasmas in
`the throat of a small n»o.zz'le to produce atomic oxygen having a directed
`‘velocity of’sovcm1—.k.1n/sec for the laboratory study of surface interactions at
`energies and particle fluxes similar‘ to those experienced by satellites in’ low
`garth orbit. Other applications are sugges-ted by analogy to other plasma
`devices including light sources, plasma‘ chemistry, and materials processing.
`The physical procossns that detcrminc the uniq_ue characteristics of the
`LSP will be. discussed in Sec. 4.2, and the the.ore'tical analyses that have been
`used to describe the»LSP will be addressed in Sec. 4.3. Exper.imental results
`obtained will be presentod in Sec. 4.4 and compared with the t’heoretical
`predictions. Sec. 4.5 will consider some possible applications.
`
`-
`
`Energetiq EX. 2082, page 8 - |PR2015-01300, IPRZO1
`
`303
`
`Energetiq Ex. 2082, page 8 - IPR2015-01300, IPR2015-01303
`
`
`
`La~3?er—$us1ain‘e-£1 Piasmas
`
`‘
`
`1?‘?
`
`(1?)
`
`(3) Phattigfaph of a plasma sustained by a 600 W carbon dioxide laser?
`Figure 4.1
`bgam focused vmh a 191mm fecal length lens. (I2) Schematic mprelsentatien sh0w~
`ing how the pkzsma forms within. the focal volume.
`'
`
`
`
`Energetiq EX. 2082, page 9 - |PR2015-01300, |PR2015-01303
`
`Energetiq Ex. 2082, page 9 - IPR2015-01300, IPR2015-01303
`
`
`
`“£72
`
`Keefer‘
`
`4.2 FRIPICIPLES Q33" -{)1’ER!s.Ti{3N
`
`*
`
`i
`
`
`
`’
`
`.
`
`.
`
`Plasmas that are c.:'e.ai=e~d 01* sustained by iasers can be g=enerated_i_n a variety
`uf forms, depending?-<::n’:i ’
`iiiar-aivc:£c}:§s’£i::s cf the laser and optical ge£3me~
`try used ta generate 1:he::_f:;
`?§ifg21«’§:n%%1*_g§I”pu}3‘e»&. iassrs can igxmcrata plasma
`breakdawn .dira£:tiy wi_t}é'i_1: 21 gas {1}.at,r&snIi$ ii} ;a transient axpanding gsiasma‘
`similar to .2111 expi0si0r;.f
`Iawezi ’§a§.fi.r intensities aria} Iongsr puke iimes,
`plasmas may be}in.iti:ate-ii
`.suffa§:ve ” mi thézzn ;3r§paga:fi’.ifita the 5113»
`V
`’
`r~sz:s1;;;i:;s<:£¥ dets:3n.a3;i@;1 (LSD)
`mesczi éiézgabnstifin {LSO} Wave.
`sad by L ai;zer{1-989) and will net
`These tramient piasmas "hava ‘beef: £1
`
`be trsateéi here,» 1§s*;h_Je:¥ia;
`’
`“’
`”
`azzd tfae» uptiziai’
`-
`I
`.
`
`3:1 éiazs 1.5?
`._
`.
`.
`ai:«.____
`iggeonzatgg flaw, anxzi.
`.
`
`(ms of the: ‘beam. The
`$33 centinuxausijy 'm3ifitaifi§fi_:».at‘ ageszzizfiii Izstaz: tizan
`inifensity that is aXfE£i1a}3§§}iff{}fi1 a"¢t3x1t§tzuous;Iass’r -is insufficiem to cause
`braakdtnwn in tha gas, h1€¥‘£V€:%If::I‘, and an .auxiIim'_y‘ 3£m:rce musi be used. to ini-
`tiate thepiasma. A sketch {if 2*: sieady-s'£at‘r;.1a.se.r~=sus’tai'ne.d plasma is shown
`in Fig. 4.’i£(§). T116._p1as'ma:m.ay'ba»stz.s:ai::ied
`Ia azmfining c11’a;’:11b§rt%3
`ccmtérsl the flow and. prrcssixre 01‘ in -apex}. air wt ~21 large, chamber where the
`t_1ow‘i_.S idem-rm-i.ned by th:=::rm.ai:I. buzayancyz.
`V
`,
`in 131311)}? ways, t11::1asar~s’u:siain;eti. gléisrna is si’zzxi_}.ar ta direct current or
`Isa»-fzaq12anc}* -e1ec:r£>€I<fJ:a3 ' ‘a£s.:.s anii
`’xi3sva’-em» tiiisciifigfis ’t¥f'%.at am <3Z173’*°»1‘*
`ated in similar .gTa;~:e-3 an:
`£11’ gym m%:c:s, Eimyever, tits LS? W311. gamer»
`
`any has .m£m~: ’c:{iiftf1_§3=’€¢:::¥:: g
`hiigher _maxi.1*m2m. teinperature th.a:1.n-t}mr
`»§:.£3ntin1.20u.s am s:{:§m*.caf; 3’i1zii
`biz: :$u:~§'¥a:i11’€::é§ in 3 staady state well away from.
`containing boundaries. A .f3.z:n.d'an1ei£ii:a$ v:1iiffir’enCe:in'tha way in which en-
`-ergy is ahsorbeé by the plasma is 2‘:3$§:s9:3$i§3I.€:* £03: £12636-. 1}i?£3i.£}I}6» charactaristics
`-of the LSP.
`-
`
`4.2.1 Easic Physicai Frncesses
`
`In a £Ii1"B£‘:t current (dc) arc or in an in::¥uAct:§’ve}y cgauphzd p1asma‘(.ZCI’), en-
`ergy is 'ab.ss:>rbed thr0ug11 ohmic .heating produced by. the 10w~fr::quency or’
`direct currents flowing in the plasma. The eiecirical conductivity of an ideal
`plasma is. given by (Shka’mfsky at al., 1966)
`
`J
`
`neg
`== ---
`
`1/~—~iw
`
`in (z22+w3)
`
`4.1
`
`(
`
`)
`
`where it is this electron‘ density, 8 the electronic charge, m the electron mass,
`to the radian frequency of the applied electric 'fie1d,Au the effective collisicm
`frequency for electrons, andi thesquarc root of »»1. In the do arc (w 2 0),
`the currents are’ transmitted through the plasma bcztween electrodes and
`
`Energetiq EX. 2082, page 10 - |PR2015-01300, |PR2015
`
`303
`
`Energetiq Ex. 2082, page 10 - IPR2015-01300, IPR2015-01303
`
`
`
`Lasebfiustatned Plasmas
`
`'
`
`-.
`
`A 173
`
`the size of the plasma is determined by the ‘size and spacing of the electrode
`and the L;-onfi.23in’g boundaries.
`In the ICP, the curorants are irxducedo into
`the plasma from alternating»cu:1*entsfi<:swirxgin.a surroundi.ng.so1enoi:3a1
`c;oii.. The are is sage
`inogi xyibthin a container that determines the plasma
`dian1etor, 'wheI£:as fine Ian
`of the "plasma
`determined by t}:16}ength of
`H
`the soiemid.
`'IT,1€:‘-.3333? operates at. frequencies well below the Vpiasma frequemzy
`
`9
`
`-~--'-—--
`
`_»
`
`1.1}?
`
`=2
`
`W»
`
`4
`
`.
`
`7
`
`
`
`9
`< >
`~4.,2’
`
`w31e1'o..¢g i.s%’ti;o yiérmittiviity of fi?oe»spaae:.. In this frequonoy range, the 636:6’-
`3:romag‘oe1ie.’fie§I:i floss inoi projpagaie as :a wan: within the ,o'1.asma, but is
`.a:;u%3n;i:ate§i. aj.s{"ar.1’: ¢va.ne$i:;enti'wave (Holt and Hask-an, 1965) over dis-taznces
`of the orc3,a;r -of-fly: ;skfi;2’:'.1 iiepth ’
`’
`»
`
`
`
`(4-3}
`
`is 1¥_:h_e spa-3:1: of Iiivght.» ’}fhu.s, thapiasma is su.s~tai.ne::ii by azwgrgy-333*
`-where:
`sorbed within a..smoi1..ia;,:.é:r near its outfit surface. that produces‘ a r‘at.hor:fiaot
`temperature pyrofiio
`.the»p'Ioasm.a and limits the maximum tzmgaora.
`txxrsgas that ¢ai:7Beobtaines3.,
`V
`-
`The fréq"uoncy of tho .-optieai fields (28 'I‘_Hz for the 18:6 om ca;r'b*on_. tiiox»
`ide Zaaor) us:od.’ft;)r‘thfi
`is greater than the plasma frequency, and the1's~
`fore: fl1e»i'nGi’d’en't’ laser. imam nan -propagate well into thei'ntafio1‘ bsforo
`it is siibgoifioaniiy »a3i:>’$-Qtbod 't}11~”£}’3:Igfh the _proc:oss of .invorse ‘oremsstrah1u13,g
`(Shkatofsky at 211., 1966)‘ Sim:-e the focusing‘ of the laser beam producsd
`by a Zens or ‘mi.tm'r is e»ss.e'ntia31y preservod as the» "beam propagates into the
`plasma, very largofieio. strengths may beproduced within the piasma near
`the beam focus. 1?; is fl38S:B iargc field strengths that lead to p-oak tcinperay
`turos in the LSP that are genorally greater than those obtained with either‘
`dc arcs or fi1eICP and make it possible to sustain a small Voiilme ofp121.sm‘a
`[near the focus, ‘W511 away from any confining walls.
`Inverse bramsst.2'ahIung~ is a process in which the plasma electrons ab~
`sorts photons from the laser beam during inelastic collisions with ions, non»
`trals, and othor elosztrons. The collisions betwew electrons and ions are
`"the _dominant process for the LSP and the absorption coefficient is given by
`(Shkarofsky et al., 1966)
`
`0‘
`
`W 1rc'3n.S0G 1~—e'”“’”‘T
`(La) ”“;&:r
`(
`Fzw/kT
`
`>
`
`V
`(‘W
`
`
`
`Energetiq EX. 2082, page 11 - |PR2015-01300, |PR2015‘-01303
`
`Energetiq Ex. 2082, page 11 - IPR2015-01300, IPR2015-01303
`
`
`
`am
`
`’
`
`,§<.e»efer
`
`where ii is Planckfs constam ciivided by 271', k B0i:am.a:§.:1’s c»£3n»3-£31113 81153;?
`"the. tem§m.r.aiure of§:hee1::c:rons. The facmr G is the Gaunt factor and the
`fiactor 3235 ‘isgiven by
`
`
`as M 16.n.+nZ2 9&3
`
`3
`
`‘
`
`1/2
`
`
`
`35:? _.
`
`I
`
`I
`
`(4.5)
`’
`
`
`
`
`
`£acmr¥.is. a.
`T when 2.’ is the ionic cha:rge and :24. the ion -dezxsixy. ‘Th:
`mecfiaazmjaii carractioxz to the -::.1as.si.c.ai theary,-_’ami a:z;iensi¥ve z:£*xhies
`
`
`11’-ewabeen given by Karzais and Latter (1961),. 13:3:
`'11;s1;x3.£. case xvi:
`(ha phstoin energy i:s’much1assthan aha
`"
`»
`.
`g.
`
`
`bmzzketmzi term in
`(4.4) is zmarily .in<3e-psi: ..
`m=efii:eiant;'is essennaiiy »pr:3gmrti:ma2 -in the, ségnam :3? i
`size ca’? am-.*::,$‘1'+* wmf ggepand an sevciai
`_:g;;e;ao.n1et:y;, 1aser*pcs’wer«, and ai}sQrp.ti»0‘n cnefifieiant.
`sf. the-..1aser 'b::ain as it propagatas witmn the
`
`.
`
`Jar:
`
`«~+--~~aI
`
`%
`
`
`
`- where s is ‘the: distance alnng the Eocai ¢i_im<;zic::1 e:’f5_;3:*:::;3 agatigm.
`abagrgzy
`.
`:i;§ce;-» it
`ma-..s .
`tizankngth ifs: ix 3; .+*;iam.ii1’ant».§ength aegis f>c:N.}'.*:s‘.*..
`‘inf: £§'ist;anc’:je.-0335:: whigch th£3’p~{3wé£.,iS absc1x*bav:i fwm {?he’bai:am., Far 'tfiI1is‘r:§c23;a
`
`:59-n,»t"fi.¢ dimension Qftha fiigimampasaiizre ;’aTbsaib§.2z;‘
`2:2:
`n
`piiaatxza
`alcmg the: laser beam wfli he of the cider’ tai t}1:¢;»a¥3sar§:ztz»c:n ia_.:1gi33_.
`’iti':~:.ihe absorption 1em‘g.1:h that determines ‘tli1e91z=i:ngt}1§c2f
`’ ‘e.»;3}a2si21a.zz1::31:;g fize V
`Exam iixigs, :1. is the @1336; beam éiameter ;tha‘t. daie’:x:ii.aea piasma >dian:;g.-
`’I*£1e’;s1:zs::aa expixnds :9 ii}! ma begin eozre. .wh:¢re it
`gaze. is «*.~1?3$*Grb
`pawar, "then rapidiy c}s::z;re=a:ses in ’ten:peratur»e. m:tsi.:§rs the imam ti1rtm1_gTh
`thermai canciuction. and radiativs kiss .machan.isms..
`The pnsition‘ 9f the
`‘relative to the foca} paint is £:1‘i'tic.ai in ::ietermin~
`ing its structure andfiie range of para.mcters far which it ‘(-1313 be .maiI'itaine€I.
`when the plasma is initiated near thg beam foam, it pmpagatea intro. tha
`sustaining beam and seeks a stable. _position. The pasition c:fst.ai3iiitywiI1 be
`1ocated‘where the imam intensity is just stxjffisiant t11at.tha‘absai*be»ci power
`will baiance thalosses due to convection, thermal c<)n:3ucti{m, and the;rm.a1
`radiation. A _number of factors combine to determine this pcssition of sta-
`bilityjncluding the transverse pmfi1eTof’the incident beam, t.hefoca1.leng-th
`and aberrations of the focusing lens or mirror, the plasma bpressura, and the
`incident flow velocity (Keefer at 211., 1986; Walla at 211., 1987).
`The power per unit volume that is absorbedby the plasma is given by
`
`P := al
`
`V
`
`(4.7)
`
`Energetiq Ex. 2082, page 12 - |PR2015-01300, |PR2 I
`
`Energetiq Ex. 2082, page 12 - IPR2015-01300, IPR2015-01303
`
`
`
`La.ser~$usia’inet:: Plasmas‘
`
`3?5
`
`where I is the Icmai irzadiamze: of thfi iaser beam. S_im:e I depends can -the
`transv-ersi: profile 0ft}’1e'incitiBn‘t beam a’s.’-weii as iha focai Zength and abe’r~
`raticns of the lens, these -charaetermics wiii .:infiLuen<:-a £i1e’I.t:2ca’3:i0n within
`the focal rsagiion at
`:’:hewn1inim1:;£n.su3t3i.ni:t;g i’n.tan.sity is Icicatzzd. F01‘
`exampie, far a small ffzznmbfir} ' 'n;$,_ ’the.';i:1£cnsit3¥ dezzreasfis rapicily with im
`
`cmasing dist.a3:ixce fmztzn..1hia»’fz3cus*.’an€i»the piasma will .s’tabi.1i.ze.:’:1c:ar the focus.
`‘Fm -a larger [finumber system., ii1'si":».,§.I3£$.¥}S?ity’iiflflrfiitfifiéfi1685‘: rapidiy and the
`plasma wiil ;stabi.1i2e .ai.2r::p<3sijtian £21.
`,
`war ml. .. he was. Ind¥‘a=e:¥., for
`
`
`
`
`gxgsfiicieniiy fic:’rxg’=”fo.<,:.a?.1.1:::?;;g1£h,$-; :a:x;ci is
`11’
`p=awer3 §z1;.as:.:nas..}::ave ‘been ob«
`s:
`served to ;::rop:§ga3:i.e
`.
`.. R ziiarg. :1i§f8£:§) as “’I.a:s¢r«s;;ppqzted com-
`bustion wavefi’ .a,£. .s:x3:3s<3x‘:i.£::; “aicz
`Tha zimaiiexzi ;~r;;>.a.t.i,,2::.i 3
`.
`’Ia5tf0ns bemaeen. firm up 1:223? §?%:&::m:2;i'
`the gas, am! the fl0w:£.hr*cm:" '
`’
`the 'iempiet:’fatuf€» and fims:
`$}%:«aij’_
`from the las-er beam. with the -pa
`
`” smatis »§;,§’1tE*..;1;t§;t§n:t:§§1:i53s:_3.L".;é3?!’t{1,:tt3'i.n£€.rx§~
`-
`,3. z_t.'£g.$a"-,-,.£.‘
`€:p’1‘s?3is.sIé1i*:i:=r:;f
`-wiigiin
`piasma,
`
`
`
`
`
`
`.
`
`gzi
`
`.x..e<:§
`imh .
`
`. me .
`Mast mi xhaeariy exp. ..
`chamimm £51": in §2pi~;n»air, ’sI¥31ef$»t: ~
`by the effects mi therma} buoy
`éfefi ¥.‘3%’g§?(3$}:?5 inf ipnwer 3:16
`the pr-€:$§z’1ri?e.an§ Ease: power»-.
`’
`~ "
`vatieaiy of gas-es (Eisn-
`,.
`i1Yrit:s.si;.re w11.er:a»it»was pnsgsibieitz. ,
`Thfise. ~3x;:%erimn.nts.
`.
`eraiav et »ai., 1'9?2:; ’K<3z1¢;;‘v 4% at,» 1495
`f¥31P”§3£>3fih};aserAp6sver anti
`indicated] that iherf: were ’np;‘;:>’er anti ’i£:tx=¥£'-—E1‘
`.
`.
`pressure at which the LS? szmzsici be an:-ai:aineéi;.
`Generalov et 31.. (1972) suggested that the upyer iimit. fax: p-mare’: was a re~
`suit of forming’ the LS? .v¢:ith a horizontal beam. In this bgeemetry, thermal
`buoyancy ‘induces a flaw transxzers-e to the =0.;3¥;:it;ai axis. Tim intiuced fimv
`<:.an*ies. the plasma up and mat of the beam-w§1ve3::.h.igimr‘ Easier mpmver causas
`the plasma ta stabiiize‘ farther from the focus. They ware u‘nab1ayt0 estab-
`Iishan ’upp-en." pews: limit when the exper.iment was Gperatad with the: beam '
`pmpagating vverti.ca11y upward. Koziflv et,a'1. (1974) deys¥c3 pe.d a radiative
`model fer the LS? and explainn;-id the agape: power limit on the basis that
`the plasma must stabilize Class: emimgfh to-the’f0ca1‘p0int_ that the geonueb
`V ric increase of laser bean -intensity geing. inta the ‘plasma was greater than
`the loss of intensity due to absorpfion. They speculated that the faihxre of
`Generaiov at al. (1972) to observe this limit in a vertical beam was riue to
`rapid extinction and reignition of the plasma.
`It is clear from the experiments of Generalov at al. (1972) that flow can
`have a large effect on the range of Apxfsssure and lasar power that will support
`
`
`
`’
`
`Energetiq EX: 2082, page 13 - |PR2015-01300, |PR2015-01303
`
`Energetiq Ex. 2082, page 13 - IPR2015-01300, IPR2015-01303
`
`
`
`‘W6
`
`Keefer
`
`Fflastxnas gust-a.i.ned in the frat: jet issuing from 21 1102213 have
`a szabie
`been studied by Gerasimenko at 31. (198.3) who I’t1E<’:1'.5UI'€d
`the discharge 9
`atzciqtanbgtzs for the existenzzb bf a szea€ijg~st=ate
`’1:‘§£§€S’hi¥*§E; been ;:0:1{i2i»cted in c<mfi:ne:d't1:be.S
`mi'mité:s;‘t, we flow (weile at 211., 1987). it was i
`,:fo’umi ¥:h.a£:=i:n addititm. ‘tie piczwer and prassurb, both the flow and optibcai ge-
`’ "
`"
`b
`'
`M
`I””:diI’1fl3'.1€n'(:-3 on the <:haract1:ris£icsV of £113
`
`- «*3 {be b:1':g:isiAy is jusfr s“z3fiici€:
`ame.s»s..at1anaf’yeéxtépoxiztmglie
`_
`-
`.
`»
`_.
`
`
`asma béc
`at £112 ‘five? a$sc:§rb:é=c1"£:o::§ -‘t.
`’5_b_eam, gzvcn byfi
`4.?),"is balanced-’
`A
`111
`the: wnvectzsves-, cbncfuc-give,» .and radiation ’Ica:ss-es.
`.Smc»e:, in gemerai, "the
`r
`_
`the 13:33:12,. the piasma.wi11 a.cijust..§’r; 3529., 3; I
`'€zn!:&£va'£i£3n eif
`3:74:51. =z:-zzér”
`
`.
`
`-
`
`»
`
`Ia ;a3.i£>I1. iij: tbs ’g§IaS‘r:3a m3c.:2r$ bath.
`ans, resuiting in ling radiation and;.. absar
`:13}. efizb
`2; r.
`
`tibn, :>aI§fi:f»I.>:&&.t."fi:D’-tlnfi amzi fffifififffifi transfizians that I‘-éfiifli in .m-nizimzuzn ‘ta.
`“' ”
`"£'51 ajbsmfptimx. Qve.
`{iIza.:2pt’_i<:aIéi_y thin. portian at‘ the s_p>;-3=ct1‘nm,thi
`
`/
`.
`91:! W11! iIi;;i§'t b;aasi;f€>.I’1g1y §:fl£3_$fifb€ii by the piasnia 01‘ Sfli‘r0imt3ing tbifiéiifeii‘
`mgicms anti wii} simpiy esc;ap»c fram the plasma. Other {Martians cf the spec~
`mam will ha stribrxgiy absarbed, 1‘es'uking in a trzmspcart of energy within that:
`plasma. In the Ggixiisaiiy ihick1'i1n’it,_this resu1‘ts;in a diffusive energy transf
`p-or: that is simiiar ta thermal cnnéucziorg, but may be signific.ar1’t1y1arger.
`Dataiied ca1Acui.ati0:ns. of the LS? (Ieng and Keefer, 1986) indicate that this
`radiative tr.ansp01*: is a sziornmant factor in the determination cf the struc-
`ture and p0si.t.io.n of the LSP. In particular, it is the radiative transport that
`’ determinés the tbemperature gmdie7nt in the upstream .fmnt of thcplasma,
`thereby determining the pOSitiQI1 in the beam for which convection Iesses
`are balanced by -absorption.
`The positian of stability fax? the LSP also dapends on the plasma px'es~
`sure, The absorption coefiicientis a strong function of plasma density, as ‘
`seen from Eq. (4.4).. If the pmssure is i'nc:re:ased and the abs01'pti(3n <;Qeffi«
`cient increases, than the plasma can absorb more power from the beam and
`will move away from the focus to a lower intensity region in the beam. At the
`
`
`
`._
`
`._
`
`Energetiq EX. 2082, page 14 - |PR2015-01300, IPR20 M:
`
`303
`
`Energetiq Ex. 2082, page 14 - IPR2015-01300, IPR2015-01303
`
`
`
`
`
`§;=a»s.er~<S'usta’¥ne»d Ptasmas
`
`1 3??
`
`5211114‘: 'tin1e,, ihc'pia:m1a:1ength aiong the .beam »c1ccr-eases beziaus-e {if the de:~
`:;1f£:as’e in absargatinzx }s:}gti1., 13111 the d.imnet=e.r i.n<:re:ases ta fit} the _Im"»gar :¢:.m;s’s
`$e<;ti<}.n sf zhva beam, Thus, far the s.ama1ase.r b-3-am ma-é.itica::, a .’higher-
`
`px‘essur»e:
`wii} stziiiiiiiize
`a, Quint farther away fmm the ma: gixaint arzci
`have 3 :’s'm'a}1a:r.»}angth~'1o~d1ame1e’r ratio ’th.a.rz 3 I-awm*aprassu.rc
`.
`,i11cide21iiase’r p{3we3:, as wail as tihc f/munher and ab:srra¥i£3n.s cf the fa
`gusizzg Qpties,» will also .ir:.fiu.m1c»e the §_3;3si,£i£3’r:. at xvhich the
`Stzabifizcs
`3316 .2bsa’m., Fisam {me 'f0mg::}i’3:1g <3ii5<:us.si£3i}., it is cigar {hat as the?)-e.a.:r1
`puxvar is increased», the piasma will mauve up t11ehean1 away ifrbm the fixzai
`itsrslizztg. Tfha distsance 1.hatit'mi3ves.'is nistsrmineé by ‘the .f!n.um'b=e£ (ratiiz mi
`_
`.
`‘
`.
`fie
`
`
`
`'
`
`..€:£:§t {§3i.p¥asma 'p=0-aition (Kaefmf et :aL, 19%}. In part;ic11k::r, Wfh;E11'i an 83%
`2:11:33": E3e=a'm mam an.n.nst;aiaie1a_ser <.3:3i:.§}321ti)¥ifi}§ii1$=?€§i3. 133:3 sghericai I.e;:z.s.,
`r£:i<ii1,3ces an annu’iar’pmfecus region. befbre reaching {ha fist-:31 Dpiiintg
`
`
`» s::'1*3s;é:rvat:iA£).:1.s :E§is€:11.$se:.1 abave, it is £‘3.£i31“ that’ £heb:;:$£>sii.i£:i1x sf
`1 m; .131.
`{ha piasma relaiive in -the focai paint has a: pmftmnd effzézéi 133:: ‘:i§1£3’}§1§1;8II1a
`' _¢;;¥1.£x_£:a’::teri$ticS:. Atthe zzpjpar iimits Qf:$t3§§3*i§ity gfitsr bath ii.as§:r-I 'pmver< am»
`pm
`a}f;”§’=i§ar’s ;hat the pi£zsn1.a3:l::eci3mes x1x:ist;ab}.e sixhan ii; ixnavasma
`
`
`far‘ffeTm fi.1é: £063}. peirzt. This may 1236 due, to £116 afai-:1, as prQpQs6di.3yf’Kt§25i£3v
`at Vail. s(3§9?££}, ihmas ‘iihepiasma .mavas sufiicifently ’f.ar’awa5r
`113.,
`iha V1”..-iiite (sf in.c’mase of the beam .ime:1siiy in ihza fiiiraciiiqh. af‘ egzyopagiaticign
`’ aims smazisr. S’irzc.e tam tampareitura s::%:£ '=t}1:€f
`;2§.a;s.m,a .m3.3,st 5 ”
`a1a§,a;i,a {he
`
`
`i1eam>prppiag,ate-s into the npst:’eam edge Qfitixietpj-’Iasmai_ .:ifiien§i§§?‘i0f~£_I1e
`baaxn ’.n:'msi: 3515:: increase. At same paint, ii1e;dms’ra.as’e. -of f}1t’3 hli‘sE3.II1 in;wns.iiy
`due-ti: »a.i}si3rpti0n is greater than the incrieeases due: in f0c%::.s§:1g, SC! the piasnza
`Eséeomeéa unstable and extingui-s'hcs. Recent <:.a1cn}atit3ns by Sféng. gm :1, Keefm:
`(198’?a’},i1mv§:ve:r, iniiicatez that there may ex.ist1.oca! 're:gi»:s.;1s. =withi2: t}:1e’LS-EP
`»vhera.t}1e’b-mm .in1;ens:ity c}m;rAe.as-es ‘as it penetraisas the plasma.
`. Accmsidarabie degree of ecmtrol of the structurs am: position Bf ihe:’LS?
`can be gained through both optical geometry and flow, in Vaddiiian tc) Iasar
`p-zxwcr zmrzi. ’prcssure. Utilization of these aciditicmal parameters nmake-.5 it
`possible: to successfuliy op»c:ra'£e the LSP ever a wider range Of exptzriniemtal
`ccnesiiiiims, enabling 21 wider range of potantial appiications.
`
`13.2.2
`
`?1asn1a Characteristics
`
`Laser~sustaim=:d plasmas have been operated in 21 variety of molecular and
`rare gases at pressures from 1 to more than 200 atm. The resulting plasmas
`have characteristics that are similar to are plasmas operated at similar p1‘f3.S-
`
`Energetiq EX. 2082, page 15 - |PR2015-01300, |PR2015-01303
`
`Energetiq Ex. 2082, page 15 - IPR2015-01300, IPR2015-01303
`
`
`
`‘W8
`
`'
`
`-Keefer
`
`sures, but the peak tenaporaturcs in the LS? am usually somewhat higher
`than "those for the comparable am. Ratiianon from the plasxna can be 3 Sig-»~
`nificant fractio’n of the total power ,inpI12, a:n.~:.i .r21r3.iaiion '.tI’anspor‘!: plays a-
`major role in n‘etenn;inin_ ’*’§;l1e structure of the plasma. Continuum -absorp—
`tion processes are ofpaitifizfilar,1’3n“:po1*tanco in these plasmas since thopower
`to sustain the plasma is aiasorbnil -throngh, those. mo-chanisms,
`The» .con.tin1mm ansornzion pxnaess=inyn1ves both bo'on.d~fsrne trans.itio_n.s
`(p}1»oto’ioni;zation) and fi'.oo~.f£‘on transitions (invnrao l:n‘nmsst.fahlnng) in
`’which photonjs are absorbnd. from tl1o»l.a.sorlf3eam. This .free—-iron; transitions
`involve nlectron colfisions with Zions, ’otl3er éeloctrons, and Inoutral particles"
`(ShIl;aIi3f$l£y $1 .31.,
`3;’S*i5?6};;; £3r.i:e:2n, ’19fi.4}..
`:éiomi'nan:t absorption process
`
`for than is fi3."1fDiIi_g}i ;:n'lllfa_ion.§ ihoiwnen
`.
`..
`.113 3-nciions, and the a_b3o:p~
`-don cooificient for ibis procosa: is» given by
`For the usual Case in
`the 'LSP.‘, kw «ea: 3:? and {lie absnrpiion in app1‘oximatoly'nrngsortional to the
`sq’na’r=:: of tin: la$.er- xvavolnngtjlgl
`to
`Strong.-xvavelnngill cinpencienco,
`all of .t.h6. rwnrteé. e7i_Pe:i.n:nn'tn1 :%iz:s'nil.£:s.for’1n.e LS,P”hav'e» been obtained us«
`ing tho 1-9.6 gm w.avol::ngth carbon ciiflxiado laser; Sim: the length scale
`for the plasnza is of the order of the absorption .lenj'gtIh;, tho length of -the
`bplasma and .1113 power mqnlrod to ’s*us'to1“:n it iwonld be nxpezztccl éo increase
`dr.a:nun.icany fnr'shnrtfer an-’veln:ngth_ lasers £;‘ur:rentIy, -thé. only other lasers:
`flizit are ’fil<;t=:ly eanciidatns to sustain nnzmn-anus gzlzxsnxasv-aria» the hyfirognn
`or :ien.‘£eri‘um.fiuo.rid.e ah::zrxical¥ase1ts,ti1’at opnrato at waval.eng:Lhs of 3’ -to
`4 ;.&m..
`l
`'
`'
`.
`Tlznrnzal radiationyis iniilie of this :n2ns..tI.i:n§or’tan’1 c'ha;~;acterisiics of the
`LSF. Thermal -md_.i.a1:io1n l'o3t.ffo1i1.‘£li¢’;3Ia§§'ii13 can ai:co‘nnt for nearly all
`the ;;=ow::1' absoribed by tine ';'3la,s.;na whnn tlzo flow through the plasma is
`small anti. will account for :a s.ign.ifioant f:aoiio'n of absorbed pews: even
`when the convective. losses are large. The thermal :rad.iation. consists of
`continumn radiation resulting from _rec0x1il3ination (free-bound transitions)
`and bramsstrahln’ng (iron-fr-an tr-anlsitionfl) as wall as lino radiation (bo1..1nci-
`bound transitions). Calculaxinn of this racfiatiozi is straightforwar-d, al~
`though rather tctiioos, when the plasma is in local thermodynamic equi~
`librimm (LTE) (Grimm, 1964).
`‘Local tlzernloclynamic equilibriutm is as-~
`tablished when the electron collisional rate. procosses dominate the pro-
`cesses of radiative decay and recombinafion. When LTE is e~st.ab.lishod
`in the plasma, the density -in specific quantum states is the same as a sys~
`tom in complete thermal -equilibrium having the same total density, tam»
`perature, ancl chomicalv.c_omp~o3ition.
`It should be emphasized that this
`does not imply that the radiation is similar to a blackbody at the plasma
`temperature. In general, the spectrum of the radiation from the plasma
`will have a complex structura consisting of the superposition of relatively
`narrow spectral lines and a continuum having a complex. spectral struc-
`ture.
`‘
`
`V Energetiq EX. 2082, page 16 - |PR2015-01300, |PR2015%
`
`Energetiq Ex. 2082, page 16 - IPR2015-01300, IPR2015-01303
`
`
`
`Laser~8ustairie-ti Piasmas
`
`"179
`
`
`
`.
`
`_
`
`The sbscrptifiszn: c-cicifi cient in thc plasma‘ depends on the waveicngtli, and
`far thc u'i:r.svi.t31si."portiQn cf thc spccuum bslciw the wavelength {if thc rcso»
`nanceiimss ('£}."ai1.Siti
`:13 in 'ivii1g the grmimi state), the r.ac:iia2_ie.n is stmrzgiy
`
`absciriicd by tiiii pia ’
`;
`the cca1cr.su.:muxicii.ng gas. This rcsniis in a
`szrazijg raciiativss 'ira,:is{3Qrt“mecha’nis’m th at is imgiartszii in :ietcm1.i.iiin_g the:
`st:mc.:ii:i::'e ifithe pias’ma.. Qitsn, 'rz;d;iative tr-anspcri. for stIQng1y.ai3££