Laser-Induced Plasmas and Applications edited by ## Leon J. Radziemski Department of Physics New Mexico State University Las Cruces, New Mexico #### David A. Cremers Chemical and Laser Sciences Division Los Alamos National Laboratory Los Alamos, New Mexico MARCEL DEKKER, INC. New York and Basel Library of Congress Cataloging-in-Publication Data Laser-induced plasmas: physical, chemical, and biological applications / edited by Leon J. Radziemski, David A. Cremers. p. cm. Includes bibliographies. ISBN 0-8247-8078-7 (alk. paper) 1. Plasma engineering. 2. High power lasers. I. Radziemski, Leon J., II. Cremers, David A. TA2020.L.37 1989 620.044-dc20 39-7883 CIP This book is printed on acid-free paper. Copyright © 1989 MARCEL DEKKER. INC. All Rights Reserved Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage and retrieval system, without permission in writing from the publisher. MARCEL DEKKER, INC. 270 Madison Avenue, New York, New York 10016 Current printing (last digit): 10 9 8 7 6 5 4 3 2 1 PRINTED IN THE UNITED STATES OF AMERICA # Contents | Prefa | ce · | iii | |--------------|---|------------| | Contributors | | хi | | 222222222 | nysics of Laser-Induced Breakdown: An Update
uy M. Weyl | i | | 1.1 | Introduction | 1 | | 1.2 | Creation of Initial Electrons | 3 | | 1.3 | Electron Growth in Gases | 3
8 | | 1.4 | Laser-Induced Breakdown of Solids and Liquids | 36 | | 1.5 | Concluding Remarks | 58 | | | References | 59 | | | odeling of Post-Breakdown Phenomena
obert G. Root | 69 | | 2.1 | Introduction | 69 | | 2.2 | Creation of a Propagating Plasma | 70 | | 2.3 | Absorption Characteristics of Heated Gases | 72 | | 2.4 | Features of Propagating Plasmas | 75 | | 2.5 | One-Dimensional Laser-Supported Combustion Waves | 77 | | 2.6 | One-Dimensional Laser-Supported Detonation Wave | 88 | | 2.7 | One-Dimensional Laser-Supported Radiation Wave | 92 | | 2.8 | Transition Regions | 93 | | 2.9 | | 95 | | 2.10 | Thermal Coupling | 99 | | 2.11 | Other Factors | 100 | | | Summary | 101 | | • | References | 101 | | | | | | | atroduction to Laser Plasma Diagnostics Illan A. Hauer and Hector A. Baldis | 105 | | 3.1
3.2 | Introduction Introduction to Optical Diagnostics | 105
110 | | | | | ĺΧ | × | | Contents | |-------|---|------------| | 3.3 | Introduction to X-ray Diagnostics | 131 | | | References | 161 | | نسب د | | 470 | | | aser-Sustained Plasmas
Dennis R. Keefer | 169 | | 4.1 | Introduction | 169 | | 4.2 | Principles of Operation | 172 | | 4.3 | Analytical Models | 182 | | 4.4 | Experimental Studies | 189 | | 4.5 | Applications of the Laser-Sustained Plasma | 196 | | | References | 203 | | | nertially Confined Fusion
Robert L. McCrory and John M. Soures | 207 | | è | | 207 | | 5.1 | Historical Overview | | | 5.2 | Laser-Fusion Scaling Laws | 211
217 | | 5.3 | Coronal Physics | 4.15.11 | | 5.4 | X-ray Generation by Laser-Produced Plasmas | 224 | | 5.5 | Laser-Driven Ablation | 227 | | 5.6 | Hydrodynamic Stability of Ablatively Driven Shells | 239 | | 5.7 | Irradiation Uniformity Requirements | 243 | | 5.8 | Implosion Experiments | 251 | | | References | 260 | | | aser-Based Semiconductor Fabrication oseph R. Wachter | 269 | | 6.1 | Aspects of Semiconductor Fabrication | 269 | | 6.2 | Applications of Lasers in the Semiconductor Industry | 276 | | 6.3 | Research Areas | 283 | | 6.4 | Outlook | 290 | | | References | 291 | | | Spectrochemical Analysis Using Laser Plasma Excitation
Leon J. Radziemski and David A. Cremers | 295 | | 7.1 | Review | 295 | | 7.2 | Methods and Properties of Analysis Using Laser Plasmas | | | 7.3 | Analysis of Gases | 302 | | 7.4 | Analysis of Bulk Liquids | 306 | | 7.5 | Analysis of Particles | 309 | | 7.6 | Analysis of Solids | 313 | | 7.7 | Advances in Instrumentation | 318 | | Contents | ix | |--|--------------| | 7.8 Prognosis | 321 | | References | 323 | | 8 Fundamentals of Analysis of Solids by Laser-Produced | | | Plasmas | 327 | | Yong W. Kim | | | 8.1 Chapter Organization | 327 | | 8.2 Introduction | 327 | | 8.3 Phenomenology of Laser Heating of Condensed-Phase | 220 | | Targets | 330
336 | | 8.4 Quantitative Spectroscopy | 330
341 | | 8.5 Intensity Measurements and Elemental Analysis 8.6 Summary | 344 | | References | 345 | | References | W.10 | | 9 Laser Vaporization for Sample Introduction in Atomic and | المسادي الله | | Mass Spectroscopy | 347 | | Joseph Sneddon, Peter G. Mitchell, and Nicholas S. Nogar | | | 9.1 Conventional Solid Sample Introduction for Atomic | 347 | | Spectroscopy 1.2. Lagar Ablation of Solid Samples | 350 | | 9.2 Laser Ablation of Solid Samples 9.3 Laser Ablation for Sample Introduction in Atomic | 550 | | Spectroscopy | 353 | | 9.4 Relative Merits of Laser Ablation for Sample Introduction | | | in Atomic Spectroscopy | 363 | | 9.5 Laser Sources for Mass Spectrometry | 365 | | 9.6 Applications of Laser Microprobe | 369 | | 9.7 Applications of Laser Desorption and Postionization | 372 | | 9.8 Conclusion | 376 | | References | 376 | | 10 Current New Applications of Laser Plasmas | 385 | | Allan A. Hauer, David W. Forslund, Colin J. McKinstrie, | h | | Justin S. Wark, Philip J. Hargis, Jr., Roy A. Hamil, and Josep
M. Kindel | ±1 | | 10.1 Introduction | 385 | | 10.2 Applications of Laser-Plasma-Generated X-rays and | | | Particles | 386 | | 10.3 Laser-Plasma Acceleration of Particles | 413 | | | | # DOCKET # Explore Litigation Insights Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things. ## **Real-Time Litigation Alerts** Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend. Our comprehensive service means we can handle Federal, State, and Administrative courts across the country. ### **Advanced Docket Research** With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place. Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase. ### **Analytics At Your Fingertips** Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours. Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips. #### API Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps. #### **LAW FIRMS** Build custom dashboards for your attorneys and clients with live data direct from the court. Automate many repetitive legal tasks like conflict checks, document management, and marketing. #### **FINANCIAL INSTITUTIONS** Litigation and bankruptcy checks for companies and debtors. #### **E-DISCOVERY AND LEGAL VENDORS** Sync your system to PACER to automate legal marketing.