throbber
Handbook of
`THIN FilM
`· DEPOSITION
`
`Processes and Technologies
`SECOND EDITION
`
`0 ~ ... P.II..-c(e)
`6 Gdo,c •• oi710'C 1111
`+ Gdo,c P. 01~ Co)
`D - l c P• ot 'IIO'C CeQ
`'I' GoAo, .. •. ot 7IO'C Col
`A Gdo,4 P. OIIIID'C Cll
`• -...•.•~CII
`
`IPR2015-01087 - Ex. 1040
`Micron Technology, Inc., et al., Petitioners
`1
`
`

`
`Copyright © 2002 by Noyes Publications
`No part of this book may be reproduced or
`utilized in any form or by any means, elec(cid:173)
`tronic or mechanical, including photocopying,
`recording or by any information storage and
`retrieval system, without permission in writing
`from the Publisher.
`Library of Congress Catalog Card Number: 2001135178
`ISBN : 0-8155-1442-5
`Printed in the United States
`
`Published in the United States of America by
`Noyes Publications I William Andrew Publishing
`13 Eaton A venue
`Norwich, NY 13815
`1-800-932-7045
`www. williamandrew .com
`www.knovel.com
`
`10 9 8 7 6 5 4 3 2 I
`
`Library of Congress Cataloging-in-Publication Data
`
`Handbook of Thin-Film Deposition Processes and Techniques I [edited]
`by Krishna Seshan. ·· 2nd edition
`em.
`p.
`Includes bibliographical references and index.
`ISBN 0-8155-1442-5
`I. Thin film devices ·· Design and construction ·· Handbooks,
`manuals, etc.
`I. Seshan, Krishna.
`II. Title.
`•
`TK7872.T55H36
`2001135178
`621.381'72--dcl9
`CIP
`
`NOTICE
`
`To the best of our knowledge the information in this publication is
`accurate; however the Publisher does not assume any responsibility
`or liability for the accuracy or completeness of, or consequences
`arising from, such information. This book is intended for informational
`purposes only. Mention of trade names or commercial products does
`not constitute endorsement orrecommendation for use by the Publisher.
`Final determination of the suitability of any information or product
`for use contemplated by any user, and the manner of that use, is the
`sole responsibility of the user. We recommend that anyone intending
`to rely on any recommendation of materials or procedures mentioned
`in this publication should satisfy himself as to such suitability, and
`that he can meet all applicable safety and health standards.
`
`2
`
`

`
`Contents
`
`Recent Changes in the Semiconductor Industry ....................... 1
`Krishna Seshan
`1.0 COST OF DEVICE FABRICATION .. .......... .... .......... ..... I
`1.1 Role of Cleanliness in Cost of Equipment .............. 3
`1.2 Role of Chip Size Trends, Larger Fabricators,
`and 12" Wafers ........................................................ 4
`1.3 Lithography, Feature Size, and Cleaner
`Fabricators and Equipment.. .................................... 4
`1.4 Defect Density and the Need for Cleaner
`Fabricators ................................ ............................... 5
`1.5 Conclusions ........... .... ........... .... ........ ....................... 7
`2.0 TECHNOLOGY TRENDS, CHIP SIZE,
`PERFORMANCE, AND MOORE'S LAW .. .................... 7
`2.1 Performance of Packaged Chips- Trends .............. 8
`REFERENCES .. ............ ............................. ............................... 9
`
`xvii
`
`3
`
`

`
`xviii Contents
`
`1
`
`Deposition Technologies and Applications: Introduction
`and Overview ..................................................................... 11
`Werner Kern and Klaus K. Schuegraf
`1.0 OBJECTIVE AND SCOPE OF THIS BOOK ..... ......... .. 11
`2.0
`IMPORTANCE OF DEPOSITION
`TECHNOLOGY IN MODERN FABRICATION
`PROCESSES ................................................................... 12
`3.0 CLASSIFICATION OF DEPOSITION
`TECHNOLOGIES ..................................... .... .... .............. 14
`4.0 OVERVIEW OF VARIOUS THIN-FILM
`DEPOSITION TECHNOLOGIES ............ ...................... 14
`4.1 Evaporative Technologies ........ ...... ............ .. ......... 14
`4.2 Glow-Discharge Technologies .................. ...... ...... 17
`4.3 Gas-Phase Chemical Processes ................... .. ........ 20
`4.4 Liquid-Phase Chemical Formation ............. ...... .. .. . 25
`5.0 CRITERIA FOR THE SELECTION OF A
`DEPOSITION TECHNOLOGY FOR SPECIFIC
`APPLICATIONS ................................................... ...... .... 28
`5.1 Thin-Film Applications ......................................... 29
`5.2 Material Characteristics .............................. ........... 30
`5.3 Process Technology ................ : .............................. 32
`5.4 Thin-Film Manufacturing Equipment ........ ........... 35
`6.0 SUMMARY AND PERSPECTIVE FOR THE FUTURE . 36
`ACKNOWLEDGMENTS ...................................................... . 39
`REFERENCES ....................................................................... . 40
`
`2
`
`Silicon Epitaxy by Chemical Vapor Deposition .............. 45
`Martin L. Hammond
`1.0
`INTRODUCTION .............................................. ............. 45
`1.1 Applications of Silicon Epitaxy ................ ............ 46
`2.0 THEORY OF SILICON EPITAXY BY CVD ... ............. 49
`3.0 SILICON EPITAXY PROCESS CHEMISTRY .... .... ..... 52
`
`4
`
`

`
`Contents
`
`xix
`
`4.0 COMMERCIAL REACTOR GEOMETRIES ............ .... 54
`4.1 Horizontal Reactor ............................................ ..... 55
`4.2 Cylinder Reactor ...... ...... ........................................ 56
`4.3 Vertical Reactor ............................ .... ................ ..... 56
`4.4 New Reactor Geometry .................................... ..... 56
`5.0 THEORY OF CHEMICAL VAPOR DEPOSITION .. .... 57
`6.0 PROCESS ADJUSTMENTS .......................................... 60
`6.1 Horizontal Reactor .................. ............................... 61
`6.2 Cylinder Reactor .......... ....... ................................... 63
`6.3 Vertical Reactor .......... ............................... .. .......... 64
`6.4 Control of Variables .... ............................. .. ........ ... 66
`7.0 EQUIPMENT CONSIDERATIONS FOR
`SILICON EPITAXY .............. ........................................ . 67
`7.1 Gas Control System .. .. .. ................... ...................... 68
`7.2 Leak Testing .................... ..................... ................. 68
`7.3 Gas Flow Control .............................................. ..... 70
`7.4 Dbpant Flow Control ...... ....................................... 72
`8.0 OTHER EQUIPMENT CONSIDERATIONS ............... . 78
`8.1 Heating Power Supplies ........................................ 78
`8.2 Effect of Pressure .... .. ............................................ 78
`8.3 Temperature Measurement ........................ ............ 79
`8.4 Backside Transfer ...... .... ............................ ............ 82
`8.5
`Intrinsic Resistivity .................................... ....... .. ... 83
`8.6 Phantom p-Type Layer .............................. ............ 84
`9.0 DEFECTS IN EPITAXY LAYERS .................... ............ 84
`10.0 SAFETY .............................................................. ...... ...... 87
`11.0 KEY TECHNICAL ISSUES ................................ ........... 87
`11 .1 Productivity/Cost ................................................... 87
`11.2 Uniformity/Quality .................................... ............ 91
`11.3 Buried Layer Pattern Transfer .................. ............. 91
`11.4 Autodoping ................................................ ............ 96
`12.0 NEW MATERIALS TECHNOLOGY FOR
`SILICON EPITAXY .......................................... ........... 104
`13.0 LOW TEMPERATURE EPITAXY .................... .......... 105
`
`5
`
`

`
`xx Contents
`
`3
`
`CONCLUSIONS o o o 000 000 o 00 o o 00 o 000 o 00 0 000 0 00 0 o 00 0 0 00 0 00 0 0 00 0 0 00 0 000 0 oooo· 0 00 00 .oo 106
`REFERENCES oo 000 0 000 000 0 000 0 oooo .......... 0 ...... 0 0 00 o .. 0 .. o o .. o ... o 0 ...... o o o o .. 107
`
`Chemical Vapor Deposition of Silicon Dioxide Films .. 111
`John Foggiato
`loO
`INTRODUCTION ...... ooooooooooooooooooooooooooooooooooooooooooooooooooo 111
`200 OVERVIEW OF ATMOSPHERIC PRESSURE
`CVD
`.. oooooo oo oo ooOooo .ooo.ooOoooooooooooooooooooooooooooo•oo •oo•oo•ooooooooooo oo 112
`201 Basis of Atmospheric Deposition ........ 00 00 00 ........ 00 116
`202 Parameters Affecting Chemical Reactions .... 00000 120
`203 Reaction Chamber Designs oooooooooo .... oo ....... oooooooooo 124
`2.4 Process Exhaust and Particle Containment .... 00000 125
`300 PLASMA ENHANCED CHEMICAL VAPOR
`DEPOSITION oooooooooooooooooooooooooo;;oooooooooooooooooooooooooooooooooooo 126
`301 Deposition Rates 00000000000000000000000000000000000000000000000000 127
`302 Film Characteristics for Different Chemistries 000 132
`400 PROPERTIES OF DIELECTRIC FILMS oooooooo oooooooo·oo· 136
`500 NEW DEPOSITION TECHNOLOGIES 0000000000000000000000 137
`501 Trends for CVD of Dielectric Films oooo oo oo ........ ooo 143
`600 FUTURE DIRECTIONS FOR CVD.OF
`DIELECTRIC FILMS ................ 0000 .............................. 0 147
`700 SUMMARY ooo ooooo oooooooo .............. o ............ oo .. ooooooooo .......... 148
`REFERENCES 0 .. o ...... oo ......... oo 00 00 00 .... 0 ............. 00 .. 00 .. 0 0 0 00 00 00 .. 00 .. 149
`
`4 Metal Organic Chemical Vapor Deposition: Technology
`and Equipment ................................................................. 151
`John L. Zitko
`INTRODUCTION .. oo .. ..... oo.oooo ........... oo ... oooooooooo ............. 151
`1.0
`200 APPLICATIONS OF MOCVD ............................ 000000000 156
`300 PHYSICAL AND CHEMICAL PROPERTIES
`OF SOURCES USED IN MOCVD ... oooo ...... oo oo ooooooooooooo 158
`Physical and Chemical Properties of
`301
`Organometallic Compounds 00 ... 00 00 00 00 00 00 ......... 00 .... 160
`3.2 Organometallic Source Packaging ...................... 168
`303 Hydride Sources and Packaging .......... 000000 .......... 171
`
`6
`
`

`
`Contents
`
`xxi
`
`4.0 GROWTH MECHANISMS, CONDITIONS,
`AND CHEMISTRY .................... ... ...................... ........ . 173
`4.1 Growth Mechanisms .... ........................................ 173
`4.2 Growth Conditions, Chemistry and
`Materials Purity ................................................... 17 4
`5.0 SYSTEM DESIGN AND CONSTRUCTION ........... ... 181
`5.1 Leak Integrity and Cleanliness .. ... ......... ....... ....... 181
`5.2 Oxygen Gettering Techniques ..... ....... .. .......... ..... 182
`5.3 Gas Manifold Design ............................. .............. 183
`5.4 Reaction Chamber ........................... ...... .............. 187
`5.5 Exhaust and Low Pressure MOCVD ................... 193
`6.0 FUTURE DEVELOPMENTS ............... ............ ............ 194
`6.1
`Improved Uniformity Over Larger Areas ........... 195
`6.2
`In-situ Diagnostics and Control.. ..... .. ....... .. .... ..... 195
`6.3 New Materials ......... ..... ............................. ....... .... 199
`ACKNOWLEDGMENTS ..... .... ............................................ 199
`REFERENCES .................. .... ......... ....................................... 200
`
`5
`
`Feature Scale Modeling ................................................... 205
`VivekSingh
`1.0
`INTRODUCTION ..... .... ....... .. ........ ......... .... .... ............ .. 205
`2.0 COMPONENTS OF ETCH AND DEPOSITION
`MODELING ...... ......................................................... .. . 207
`3.0 ETCH MODELING .. .. .... .. ................................... ........ . 210
`3.1
`Ion Transport in Sheath .................................... ... 212
`3.2 Selection of Surface Transport Mechanism ...... .. 213
`3.3 Surface Reaction Kinetics ......................... ........ .. 214
`3.4 Simplifying Assumptions .... ............ .................... 215
`3.5 Modeling of Surface Re-emission ......... ... .. ......... 216
`3.6 Modeling of Surface Diffusion ........................... 217
`3.7 Numerical Methods ............................................. 219
`4.0 ETCH EXAMPLES .. .. ......... .......................................... 222
`5.0 DEPOSITION MODELING ......................................... 228
`6.0 DEPOSITION EXAMPLES .. .......... .............. .. .......... ... 233
`
`7
`
`

`
`xxii Contents
`
`6
`
`7.0 REAL LIFE ................................................................... 237
`REFERENCES ...... ...................... ............................ ......... ..... 238
`
`The Role Of Metrology And Inspection In
`Semiconductor Processing .............................................. 241
`Mark Keefer, Rebecca Pinto, Cheri Dennison,
`and James Turlo
`1.0 OVERVIEW .................................................................. 241
`2.0
`INTRODUCTION TO METROLOGY AND
`INSPECTION .... ...... ... ............ .......................... ............. 242
`3.0 METROLOGY AND INSPECTION TRENDS:
`PAST, PRESENT, AND FUTURE .... ...... ....... ...... ....... 245
`3.1 Trends in Metrology ................ ...... ........ .............. 245
`3.2 Trends in Defect Inspection .... ............... ............. 246
`3.3 Trends in Inspection Strategies .. ... ....... ............... 250
`4.0 THEORY OF OPERATION, EQUIPMENT DESIGN
`PRINCIPLES, MAIN APPLICATIONS,
`AND STRENGTHS AND LIMITATIONS OF
`METROLOGY AND INSPECTION SYSTEMS ...... ... 255
`4.1
`Film Thickness Measurement ,Systems ..... .......... 256
`4.2 Resistivity Measurement Systems ....... .. .... .......... 261
`4.3
`Stress Measurement Systems ........ ................... ... 264
`4.4 Defect Inspection Systems ........ .......................... 269
`4.5 Automatic Defect Classification .................. ....... 277
`4.6 Defect Data Analysis Systems .................. ... ... .... 280
`GLOSSARY ....... ................................................................... 281
`REFERENCES .... ................... ............................................... 285
`
`7
`
`Contamination Control, Defect Detection, and
`Yield Enhancement in Gigabit Manufacturing ............ 287
`Suresh Bhat and Krishna Seshan
`1.0
`INTRODUCTION ......................................................... 287
`2.0 CONTAMINATION AND DEFECT GOALS
`FOR ULSI DEVICES .................................................... 289
`
`8
`
`

`
`Contents
`
`xxiii
`
`300 SOURCES OF PARTICLES oooooooooooooooooooooooooooooooooooo ooooo 292
`400 CONTAMINATION AND DEFECT
`DETECTION: TOOLS OF THE TRADE 000000000000000 00 000 293
`Introduction oooooooooooooooooooooooooooooooooooooooooooooooooooo o o OOO 293
`401
`402 Non-Patterned (Bare) Wafer Surface Defect
`Detection oooooooooooooooooooo o oooo o o ooooooooooooooooooooooo o ooooooooooo 295
`Patterned Wafer Surface Defect Detection 0000 00000 297
`403
`500 ADVANCED TECHNIQUES FOR TRACE
`CONTAMINATION MONITORING 00000000 00 00 00 00 00 00 00 00 00 299
`Introduction 0000 0000 0000 0000 00 00 0 .. 00 000 00000 .. 0 0000000 0000 0 00 00 .. 00 0 299
`5 01
`502 Laser Light Scattering-Based In Situ Particle
`Detectors oooooooooooooo o oooo . . . . . . . . oooooo o ooOooooooooOooOooooooOoooooo 300
`503 Residual Gas Analyzers, Mass Spectrometry 00··· 300
`600 SUBSTRATE SURFACE PREPARATION
`TECHNIQUES 0 .... o ·oo 0 000 0 .. o 0 .. 0 ... o . . 0 0 .. 0 .. .. 0 ....... oo 00 0000 .. 00 .. 00 000 304
`Introduction .. 00 .. 00 ...... 00 000 .... 0 .. 00 .. 00 .. 00 .. oo . . ooooooooooooooo 304
`6.1
`602 Aqueous Chemical Cleaning and Etching 00000 .. 00 00 305
`6.3 Role of Organic Contamination 00 .. 00 ........ o 0000 ...... 0 305
`6.4 Summary ooo ooooooo 000 0 .... 0 .. o . . . o . . o . . . . . . . . . . . . . . . . . 0 ...... 0 0 ....... 0 307
`700 CHALLENGES TO ULSI (GIGABIT)
`CONTAMINATION CONTROL 000000000000 .. .................. 0 307
`7.1 Effect of People on Particle Density
`in Cleanrooms .. 0 00 00 00 00 00 00 0 .... 00 .......... 00 00 0 00 ...... 00 .. 0 .. 00 310
`800 PROCESS EVOLUTION ooooooooooooooooooooOOOOOOOO oooooo 0000 00 00 .. 00 311
`9.0 EVOLUTION OF CIRCUIT BASED
`ELECTRICAL DEFECT DETECTION 0000 00 00 ooo oo oOoo 000000 313
`1000 CONCLUSION 000000000000 ........ oo . . . . . . oooooooooooooo ooooooooooooooooooo 316
`ACKNOWLEDGMENT 00000 .. 00 000000 .... o. 000 0000 000 0000 0000 00 000 0000 ooo 0000 316
`REFERENCES 00 0000 .. 00 .. 0 ...... o . . oooooooooooooo 00000000000 .. 00 ..... 00 ... 0 00000000 317
`
`8
`
`Sputtering and Sputter Deposition ................................ 319
`Stephen Rossnagel
`INTRODUCTION oooooooo . . . oo . . . . . ooooooOOOoooooooo . . . . . . . . . . . . . . . . . . . . . . 319
`100
`200 PHYSICAL SPUTTERING THEORY ......................... 320
`2.1 Energy Dependence of Sputtering .00 ... 00 ...... 00.000000 321
`2.2 Energy and Direction of Sputtered Atoms .. 00 ...... 324
`
`9
`
`

`
`xxiv Contents
`
`9
`
`3.0 PLASMAS AND SPUTTERING SYSTEMS ..... .. ....... 326
`4.0 DEPOSITION RATES AND EFFICIENCIES .... ... .... .. 335
`5.0 REACTIVE SPUTTER DEPOSITION ............ ... ....... .. 338
`6.0 SPUTTERING SYSTEMS ................................... ......... 344
`7.0 CONCLUSIONS AND FUTURE DIRECTIONS .. ..... . 347
`REFERENCES .................................................................. .... 348
`
`Laser and Electron Beam Assisted Processing ............. 349
`Cameron A. Moore, Zeng-qi Yu, LanceR. Thompson,
`and George J. Collins
`1.0
`INTRODUCTION ............... .. ........................................ 349
`2.0 BEAM ASSISTED CVD OF THIN FILMS .............. ... 351
`2.1 Conventional CVD Methods ... ....................... ... .. 351
`2.2 Electron Beam Assisted CVD .... .. ....................... 351
`2.3 Laser Assisted CVD ................... ......... ... ............. 352
`2.4 Experimental Apparati of Beam
`Assisted CVD ...................................................... 352
`2.5 Comparison of Beam Deposited Film
`Properties ...... ...... ................ ........................... ...... 354
`3.0 SUBMICRON PATTERN DELINEATION WITH
`LARGE AREA GLOW DISCHARGE PULSED
`ELECTRON-BEAMS ....................... .... .... ................... . 365
`4.0 BEAM INDUCED THERMAL PROCESSES ........... .. 368
`4.1 Overview ................................................ .............. 368
`4.2 Electron Beam Annealing oflon-lmplanted
`Silicon ......... ...... ... .. .............. ..... ... ................ .... .... 3 70
`4.3 Electron Beam Alloying of Silicides ................... 372
`4.4 Laser and Electron Beam Recrystallization
`of Silicon on Si02 ............................. ....... .. .............................. 374
`5.0 SUMMARY AND CONCLUSIONS .................... ........ 376
`ACKNOWLEDGEMENTS ................................................. .. 377
`REFERENCES .................................................. .... .......... ...... 377
`
`10
`
`

`
`Contents
`
`xxv
`
`10 Molecular Beam Epitaxy:
`Equipment and Practice .................................................. 381
`WalterS. Knodle and Robert Chow
`1.0 THE BASIC MBE PROCESS ....................................... 382
`2.0 COMPETING DEPOSITION TECHNOLOGIES ........ 385
`2.1 Liquid Phase Epitaxy .................................... ....... 386
`2.2 Vapor Phase Epitaxy and MOCVD ............... ...... 386
`3.0 MBE-GROWNDEVICES ............................................ 390
`3.1 Transistors ....................................................... .... 394
`3.2 Microwave and Millimeter Wave Devices ...... ... 396
`3.3 Optoelectronic Devices ....................................... 396
`3.4
`Integrated Circuits ............................................... 397
`4.0 MBE DEPOSITION EQUIPMENT ....................... .... ... 398
`4.1 Vacuum System Construction ............................. 399
`4.2 Sources ............................................................... .. 403
`4.3 Sample Manipulation ..................................... ..... 411
`4.4 System Automation .................................... ......... 412
`4.5 Performance Parameters ..................... ........ ...... ... 412
`5.0 PRINCIPLES OF OPERATION .................. .... ............. 415
`5.1
`Substrate Preparation ........................... .. ..... ........ . 417
`5.2 Growth Procedure ................................................ 419
`5.3
`In Situ Analysis .................................. ..... .. .. .... .... 425
`5.4 Materials Evaluation ............................................ 427
`5.5 Safety .................................. .. ............................... 431
`6.0 RECENT ADVANCES ............................................ ..... 431
`6.1 RHEED Oscillation Control ................................ 432
`6.2 GaAs on Silicon ................................................... 432
`6.3 Oval Defect Reduction ........................................ 434
`6.4 Chemical Beam Epitaxy/Gas Source MBE ......... 434
`6.5 Superlattice Structures ......................................... 437
`7.0 FUTURE DEVELOPMENTS ....................................... 439
`7.1
`Production Equipment ......................................... 439
`7.2
`In Situ Processing ................................................ 441
`7.3 Process Developments ......................................... 442
`7.4 Toxic Gases and Environmental Concerns ......... 444
`REFERENCES .......... ................................................... .. ....... 444
`
`11
`
`

`
`xxvi Contents
`
`11
`
`Ion Beam Deposition .............. n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 463
`John R. McNeil, James J. McNally, and Paul D. Reader
`1.0
`INTRODUCTION ......................................................... 463
`2.0 OVERVIEW OF ION BEAM APPLICATIONS .... .... . 464
`2.1 Categories ofKaufman Ion Sources .............. .. .... 464
`2.2 Operational Considerations ................................. 467
`ION BEAM PROBING ........................................... .. .... 468
`3.0
`4.0 SUBSTRATE CLEANING WITH ION BEAMS .. ...... 471
`5.0 APPLICATIONS ........................................................... 475
`5.1
`Ion Beam Sputtering ............................................ 475
`Ion Assisted Deposition ..... ............. ............. ........ 483
`5.2
`5.3 Application Summary ..................................... ..... 496
`6.0 CONCLUDING COMMENTS ............................. ........ 497
`ACKNOWLEDGMENTS ................................. .................... 497
`REFERENCES ............................................................. .. ....... 497
`
`12 Chemical Mechanical Polishing ..................................... 501
`Kenneth C. Cadien
`1.0
`INTRODUCTION ........................... : ...... ............. .......... 501
`2.0 PROCESSING ............................................................... 503
`2.1 Oxide Polish .............................. ............. .. ........... 504
`2.2 STI Polish ............................................................ 506
`2.3 Tungsten Polish ................................................... 506
`3.0 POLISH EQUIPMENT ................................................. 507
`4.0 HISTORY ............................................ .. .. .. .................... 508
`5.0
`INNOVATIONS ............................................................ 509
`6.0 AUTOMATION ................................................... ......... 510
`7.0 WAFERIPADRELATIVEMOTION .............. ............ 510
`8.0 FUTURE CHALLENGES ..................................... .. .... . 510
`CONCLUSION ...................................................................... 511
`REFERENCES .............. .... ...... .............................................. 512
`
`12
`
`

`
`Contents
`
`xxvii
`
`13 Organic Dielectrics in Multilevel Metallization
`of Integrated Circuits ...................................................... 513
`Krishna Seshan, Dominic J. Schepis, and
`Laura B. Rothman
`1.0 GENERAL INTRODUCTION .................. ................... 513
`2.0 HISTORICAL PERSPECTIVE .................................... 517
`3.0 FUNDAMENTAL CHEMISTRY OF ORGANIC
`DIELECTRICS ............................................................. . 524
`3.1 Materials Options ................................................ 524
`3.2 Polyimide Structure ............................................ . 527
`3.3 Depositing Polyimides ................ ...... .................. 53 1
`3.4 Moisture Absorption .......................................... .. 53 I
`3.5
`Solvent Effects ..................................................... 534
`3.6 Oxidation ............................................................. 535
`3.7 Dimensional Stability .......................................... 536
`3.8
`fvt.etal-Polymer Interactions ............................ .. ... 536
`3.9 Photosensitive Organic Dielectrics ................... .. 539
`3.10 Summary .............................................................. 540
`4.0 PROCESSING OF POLYMER FILMS ........................ 540
`4.1
`Substrate Preparation and Polyimide Coating .... 54 1
`4.2 Polyimide Adhesion ....................................... .... . 542
`4.3 Curing ofPolyimides ...................................... ..... 544
`4.4 Diffusion of Water ..... ............. .... .. ..... ........ .......... 544
`4.5 Summaty .............. ........................ ............. ....... .... 546
`5.0 PROCESS INTEGRATION WITH ORGANIC
`DIELECTRICS .................................................... .......... 546
`5.1
`Processes for Forming MLM Structures ..... ........ 54 7
`5.2 Patterning of Organic Dielectrics ................ ........ 5 51
`5.3
`Planarization ............................................. ........... 553
`5.4 Thetmal Budget Considerations .... .. ........ ............ 556
`5.5 Examples or Organic Dielectrics in
`Semiconductor Technologies ................... ...... ..... 558
`5.6 Summary ........................................ ...................... 560
`
`13
`
`

`
`xxviii Contents
`
`6.0 RELIABILITY ... ..... ............ ... .... ......... ....... ................... 560
`6.1 Adhesion and Its Connection to Diffusion
`of Metal into Polyimide: The Interphase and
`Interface Stress ....... ........... .. ....... .... ............ ... ... .. . 561
`6.2 Effect of Moisture Ingress ................................... 568
`6.3 Mechanical ........................................................... 570
`6.4 Electrical Properties ............................................ 571
`6.5 Long Term Reliability ........................................ , 574
`6.6 Summary .............................................................. 576
`7.0 PERFORMANCE ADVANTAGES OF ORGANIC
`DIELECTRICS .............................................................. 576
`7.1
`Performance Comparisons .................................. 577
`7.2 Performance Conclusions .................................... 584
`7.3 Factors in the Ultimate Limits to Performance ... 584
`8.0 FUTURE TRENDS ............... ...... .. ........ .... ........ ....... .. ... 586
`REFERENCES ....... ... .............................. .............. ... ... .... ... ... 588
`
`14 Performance, Processing, and Lithography
`Trends
`............................................................................ 595
`Krishna Seshan
`1.0
`INTRODUCTION .. ........... ......... ................... ................ 595
`2.0 SCALING THE TRANSISTOR ... ............. ......... ..... ... .. 596
`3.0 LOW RESISTANCE: CHANGE TO
`COPPER-BASED METALLURGY ...... .... ........ ...... ..... 599
`4.0 TREND TO LOW K MATERIALS .............................. 601
`5.0 LITHOGRAPHY ANDPLANARIZATION ... ... ...... .. .. 603
`6.0 CHALLENGES TO CONTAMINATION/
`CLEANING ................................................... .... ............ 603
`6.1 Detection/Types of Contamination ..................... 603
`6.2 Trends in Integrated Processing ..... ... .. .... ... ... ... .. . 604
`7.0 SUMMARY ......................................... ....................... .. 606
`REFERENCES .............................................. .... ... ................. 606
`
`Index
`
`.................................. ,. ..................................................... 609
`
`14
`
`

`
`3
`
`Chemical Vapor
`Deposition of Silicon
`Dioxide Films
`
`John Foggiato
`
`1.0
`
`INTRODUCTION
`
`The use of chemical vapor deposition for various insulator films is
`paramount in the fabrication of semiconductor devices. The initial use of
`such films for passivation led to the development of low temperature
`techniques for film deposition. With the availability of silane, the pyroly(cid:173)
`sis of silane in the presence of oxygen at atmospheric pressure provided
`the deposition mechanism. Further enhancements in film characteristics
`through the use of phosphorus as a dopant within the film allowed the film
`to provide gettering of impurities during wafer fabrication. This led to the
`need for "smoothing" the films, now known as rejlow, to minimize the
`sharp comers that metal lines had to cover. Reflow was further enhanced
`by the addition of boron as the dopant. This technology continues to be
`used today with better implementation of the reflow processes.
`With the addition of more than a single metal layer, dielectric films
`were needed for electrical isolation. These dielectrics had to be deposited
`at less than 400°C to prevent affecting the underlying metal layer. Initially,
`using silane at atmospheric pressure, suitable films could be formed. The
`
`111
`
`15
`
`

`
`112 Thin-Film Deposition Processes and Technologies
`
`advent of plasma enhanced film deposition enabled or improved dense film
`deposition. Low frequency power during deposition improved both the film
`deposition process and the film properties. Both atmospheric and plasma
`enhanced films are extensively used today.
`More recently, other reactants in the form of liquid precursors have
`been developed to provide other film properties, generally focused toward
`better step coverage. Although initially used at high deposition tempera(cid:173)
`tures (>650°C), today TEOS (tetraethylorthosilicate) is used as a precur(cid:173)
`sor in plasma enhanced deposition and for atmospheric pressure deposi(cid:173)
`tion with ozone. New precursors are being developed to deposit interlevel
`and intermetal dielectrics. As the technology drives towards 0.10 J.tm
`linewidths and gaps, better gap filling capabilities are needed and, as much
`as possible, dielectric films need an in-situ flow characteristic.
`This chapter focuses on the deposition of dielectric films suitable
`for interlevel and intermetal dielectrics. A brief review of future directions
`of dielectrics for DRAM memory cells is given. Starting with atmospheric
`deposition of films, the first portion of the chapter covers the history of
`this technology. Plasma enhanced CVD follows with a short overview of
`new techniques, including HDP (High Density Plasma), ECR (Electron
`Cyclotron Resonance) and photo enhanced deposition.
`After reviewing the basis for deposition for each of the technologies
`within their respective sections, current deposition methods are reviewed.
`The reaction mechanisms and the film characteristics that are obtained are
`given along with the basis by which the film properties are achieved.
`An important advancement in achieving the ability to reflow depos(cid:173)
`ited films came as a result of incorporating phosphorus as a dopant. Later
`optimizations included adding boron to form boron phosphorus silicon
`glass (BPSG). A review of the dopant incorporation mechanisms is given
`for this important step in enhancing integrated circuit reliability and
`manufacturability of smaller device geometries.
`In summarizing the chapter, film properties from the different tech(cid:173)
`nologies are compared, especially the film properties required for applica(cid:173)
`tions in integrated circuit manufacturing.
`
`2.0 OVERVIEW OF ATMOSPHERIC PRESSURE CVD
`
`The initial techniques for depositing films of Si02 employed atmo(cid:173)
`spheric pressure reactors (APCVD). Operating at atmospheric pressure,
`
`16
`
`

`
`Chapter 3: CVD of Silicon Dioxille Films
`
`113
`
`the reactor designs were simple, yet provided high deposition rates. By
`using silane (SiH4) and oxygen, injected as separate gases, the surface
`reaction on the heated wafer, typically at 400°C, grew films in the 2000 to
`3000 A/min range. The resultant films had suitable electrical characteris(cid:173)
`tics, however, due to gas phase reactions, the step coverage was poor.
`Examples of such coverage are shown in Figs. 1(a) to 1(c) with the
`notation that a "bread-loafing" effect appears as the film becomes thicker.
`Figure 1a illustrates the conformal deposition initially achieved, however
`with additional deposition (Fig. 1 b), the formation of the "bread-loafing"
`effect can be seen. With typical film thicknesses of 0.5 to 1.0 11m, narrow
`gaps will fill with a void (empty hole) forming as shown in Fig. 1 (c). With
`a better understanding of the reaction mechanisms

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket