throbber
Touchscreen - Wikipedia, the free encyclopedia
`
`Page 1 of 13
`
`Touchscreen
`
`From Wikipedia, the free encyclopedia
`
`A touchscreen is an input device normally layered on the top of an
`electronic visual display of an information processing system. A user
`can give input or control the information processing system through
`simple or multi-touch gestures by touching the screen with a special
`stylus/pen and-or one or more fingers.[1] Some touchscreens use an
`ordinary or specially coated gloves to work while others use a special
`stylus/pen only. The user can use the touchscreen to react to what is
`displayed and to control how it is displayed (for example by zooming
`the text size).
`
`The touchscreen enables the user to interact directly with what is
`displayed, rather than using a mouse, touchpad, or any other
`intermediate device (other than a stylus, which is optional for most
`modern touchscreens).
`
`Interactive table, Ideen 2020 exposition,
`2013
`
`Touchscreens are common in devices such as game consoles, personal
`computers, tablet computers, and smartphones. They can also be attached to
`computers or, as terminals, to networks. They also play a prominent role in
`the design of digital appliances such as personal digital assistants (PDAs),
`GPS navigation devices, mobile phones, and video games and some books
`(E-books).
`
`The popularity of smartphones, tablets, and many types of information
`appliances is driving the demand and acceptance of common touchscreens
`for portable and functional electronics. Touchscreens are found in the
`medical field and in heavy industry, as well as for automated teller machines
`(ATMs), and kiosks such as museum displays or room automation, where
`keyboard and mouse systems do not allow a suitably intuitive, rapid, or
`accurate interaction by the user with the display's content.
`
`Historically, the touchscreen sensor and its accompanying controller-based
`firmware have been made available by a wide array of after-market system
`integrators, and not by display, chip, or motherboard manufacturers. Display
`manufacturers and chip manufacturers worldwide have acknowledged the
`trend toward acceptance of touchscreens as a highly desirable user interface
`component and have begun to integrate touchscreens into the fundamental
`design of their products.
`
`Contents
`◾ 1 History
`◾ 2 Technologies
`◾ 2.1 Resistive
`◾ 2.2 Surface acoustic wave
`◾ 2.3 Capacitive
`◾ 2.3.1 Surface capacitance
`◾ 2.3.2 Projected capacitance
`
`HP Series 100 HP-150 c. 1983, the
`earliest commercial touchscreen
`computer
`
`The IBM Simon Personal
`Communicator, c. 1993, the first
`touchscreen phone
`
`https://en.wikipedia.org/wiki/Touchscreen
`
`8/1/2015
`
`

`
`Touchscreen - Wikipedia, the free encyclopedia
`
`Page 2 of 13
`
`◾ 2.3.3 Mutual capacitance
`◾ 2.3.3.1 Self-capacitance
`◾ 2.3.3.1.1 Use of styli on capacitive screens
`◾ 2.4 Infrared grid
`◾ 2.5 Infrared acrylic projection
`◾ 2.6 Optical imaging
`◾ 2.7 Dispersive signal technology
`◾ 2.8 Acoustic pulse recognition
`◾ 3 Construction
`◾ 4 Development
`◾ 5 Ergonomics and usage
`◾ 5.1 Touchscreen accuracy
`◾ 5.2 Hand position, digit used and switching
`◾ 5.3 Combined with haptics
`◾ 5.4 "Gorilla arm"
`◾ 5.5 Fingerprints
`◾ 6 See also
`◾ 7 Notes
`◾ 8 References
`◾ 9 External links
`
`History
`
`E.A. Johnson described his work on capacitive touchscreens in a short article
`which is published in 1965[6] and then more fully—along with photographs
`and diagrams—in an article published in 1967.[7] A description of the
`applicability of the touch technology for air traffic control was described in
`an article published in 1968.[8] Frank Beck and Bent Stumpe, engineers from
`CERN, developed a transparent touchscreen in the early 1970s and it was
`manufactured by CERN and put to use in 1973.[9] This touchscreen was
`based on Bent Stumpe's work at a television factory in the early 1960s. A
`resistive touchscreen was developed by American inventor G. Samuel Hurst
`who received US patent #3,911,215 on October 7, 1975.[10] The first version
`was produced in 1982.[11]
`
`Apple iPad, a tablet computer with a
`touchscreen
`
`In 1972, a group at the University of Illinois filed for a patent on an optical
`touchscreen.[12] These touch screens became a standard part of the
`Magnavox Plato IV Student Terminal. Thousands of these were built for the
`PLATO IV system. These touchscreens had a crossed array of 16 by 16
`infrared position sensors, each composed of an LED on one edge of the
`screen and a matched phototransistor on the other edge, all mounted in front
`of a monochrome plasma display panel. This arrangement can sense any
`fingertip-sized opaque object in close proximity to the screen. A similar
`touchscreen was used on the HP-150 starting in 1983; this was one of the
`world's earliest commercial touchscreen computers.[13] HP mounted their infrared transmitters and receivers around
`the bezel of a 9" Sony Cathode Ray Tube (CRT).
`
`The prototype[2] x-y mutual
`capacitance touchscreen (left)
`developed at CERN[3][4] in 1977 by
`Bent Stumpe, a Danish electronics
`engineer, for the control room of
`CERN’s accelerator SPS (Super
`Proton Synchrotron). This was a
`further development of the self-
`capacitance screen (right), also
`developed by Stumpe at CERN[5] in
`1972.
`
`https://en.wikipedia.org/wiki/Touchscreen
`
`8/1/2015
`
`

`
`Touchscreen - Wikipedia, the free encyclopedia
`
`Page 3 of 13
`
`In 1985, Sega released the Terebi Oekaki, also known as the Sega Graphic Board, for the SG-1000 video game
`console and SC-3000 home computer. It consisted of a plastic pen and a plastic board with a transparent window
`where the pen presses are detected. It was used primarily for a drawing software application.[14]
`
`In the early 1980s, General Motors tasked its Delco Electronics division with a project aimed at replacing an
`automobile's non essential functions (i.e. other than throttle, transmission, braking and steering) from mechanical or
`electro-mechanical systems with solid state alternatives wherever possible. The finished device was dubbed the
`ECC for "Electronic Control Center", a digital computer and software control system hardwired to various
`peripheral sensors, servos, solenoids, antenna and a monochrome CRT touchscreen that functioned both as display
`and sole method of input.[15] The ECC replaced the traditional mechanical stereo, fan, heater and air conditioner
`controls and displays, and was capable of providing very detailed and specific information about the vehicle's
`cumulative and current operating status in real time. The ECC was standard equipment on the 1985–89 Buick
`Riviera and later the 1988–89 Buick Reatta, but was unpopular with consumers partly due to technophobia on
`behalf of some traditional Buick customers, but mostly because of costly to repair technical problems suffered by
`the ECC's touchscreen which being the sole access method, would render climate control or stereo operation
`impossible.[16]
`
`Multi-touch technology began in 1982, when the University of Toronto's Input Research Group developed the first
`human-input multi-touch system, using a frosted-glass panel with a camera placed behind the glass. In 1985, the
`University of Toronto group including Bill Buxton developed a multi-touch tablet that used capacitance rather than
`bulky camera-based optical sensing systems (see History of multi-touch).
`
`In 1986, the first graphical point of sale software was demonstrated on the 16-bit Atari 520ST color computer. It
`featured a color touchscreen widget-driven interface.[17] The ViewTouch[18] point of sale software was first shown
`by its developer, Gene Mosher, at Fall Comdex, 1986, in Las Vegas, Nevada to visitors at the Atari Computer
`demonstration area and was the first commercially available POS system with a widget-driven color graphic
`touchscreen interface.[19]
`
`In 1987, Casio launched the Casio PB-1000 pocket computer with a touchscreen consisting of a 4x4 matrix,
`resulting in 16 touch areas in its small LCD graphic screen.
`
`Sears et al. (1990)[20] gave a review of academic research on single and multi-touch human–computer interaction of
`the time, describing gestures such as rotating knobs, adjusting sliders, and swiping the screen to activate a switch (or
`a U-shaped gesture for a toggle switch). The University of Maryland Human – Computer Interaction Lab team
`developed and studied small touchscreen keyboards (including a study that showed that users could type at 25 wpm
`for a touchscreen keyboard compared with 58 wpm for a standard keyboard), thereby paving the way for the
`touchscreen keyboards on mobile devices. They also designed and implemented multitouch gestures such as
`selecting a range of a line, connecting objects, and a "tap-click" gesture to select while maintaining location with
`another finger.
`
`In c. 1991–92, the Sun Star7 prototype PDA implemented a touchscreen with inertial scrolling.[21] In 1993, the IBM
`Simon—the first touchscreen phone—was released.
`
`An early attempt at a handheld game console with touchscreen controls was Sega's intended successor to the Game
`Gear, though the device was ultimately shelved and never released due to the expensive cost of touchscreen
`technology in the early 1990s. Touchscreens would not be popularly used for video games until the release of the
`Nintendo DS in 2004.[22] Until recently, most consumer touchscreens could only sense one point of contact at a
`time, and few have had the capability to sense how hard one is touching. This has changed with the
`commercialization of multi-touch technology.
`
`https://en.wikipedia.org/wiki/Touchscreen
`
`8/1/2015
`
`

`
`Touchscreen - Wikipedia, the free encyclopedia
`
`Page 4 of 13
`
`Technologies
`
`There are a variety of touchscreen technologies that have different methods of sensing touch.[20]
`
`Resistive
`
`A resistive touchscreen panel comprises several layers, the most important of which are two thin, transparent
`electrically-resistive layers separated by a thin space. These layers face each other with a thin gap between. The top
`screen (the screen that is touched) has a coating on the underside surface of the screen. Just beneath it is a similar
`resistive layer on top of its substrate. One layer has conductive connections along its sides, the other along top and
`bottom. A voltage is applied to one layer, and sensed by the other. When an object, such as a fingertip or stylus tip,
`presses down onto the outer surface, the two layers touch to become connected at that point: The panel then behaves
`as a pair of voltage dividers, one axis at a time. By rapidly switching between each layer, the position of a pressure
`on the screen can be read.
`
`Resistive touch is used in restaurants, factories and hospitals due to its high resistance to liquids and contaminants.
`A major benefit of resistive touch technology is its low cost. Additionally, as only sufficient pressure is necessary
`for the touch to be sensed, they may be used with gloves on, or by using anything rigid as a finger/stylus substitute.
`Disadvantages include the need to press down, and a risk of damage by sharp objects. Resistive touchscreens also
`suffer from poorer contrast, due to having additional reflections from the extra layers of material (separated by an
`air gap) placed over the screen.[23] This is the type of touchscreen used by Nintendo in DS consoles and the WiiU.[24]
`
`Surface acoustic wave
`
`Surface acoustic wave (SAW) technology also uses ultrasonic waves that pass over the touchscreen panel. When the
`panel is touched, a portion of the wave is absorbed. This change in the ultrasonic waves registers the position of the
`touch event and sends this information to the controller for processing. Surface acoustic wave touchscreen panels
`can be damaged by outside elements. Contaminants on the surface can also interfere with the functionality of the
`touchscreen.
`
`Capacitive
`
`A capacitive touchscreen panel consists of an insulator such as glass, coated
`with a transparent conductor such as indium tin oxide (ITO).[25] As the
`human body is also an electrical conductor, touching the surface of the
`screen results in a distortion of the screen's electrostatic field, measurable as
`a change in capacitance. Different technologies may be used to determine
`the location of the touch. The location is then sent to the controller for
`processing.
`
`Unlike a resistive touchscreen, one cannot use a capacitive touchscreen
`through most types of electrically insulating material, such as gloves. This
`disadvantage especially affects usability in consumer electronics, such as
`touch tablet PCs and capacitive smartphones in cold weather. It can be
`overcome with a special capacitive stylus, or a special-application glove with an embroidered patch of conductive
`thread passing through it and contacting the user's fingertip.
`
`Capacitive touchscreen of a mobile
`phone
`
`The largest capacitive display manufacturers continue to develop thinner and more accurate touchscreens, with
`touchscreens for mobile devices now being produced with 'in-cell' technology that eliminates a layer, such as
`Samsung's Super AMOLED screens, by building the capacitors inside the display itself. This type of touchscreen
`
`https://en.wikipedia.org/wiki/Touchscreen
`
`8/1/2015
`
`

`
`Touchscreen - Wikipedia, the free encyclopedia
`
`Page 5 of 13
`
`reduces the visible distance (within millimetres) between the user's finger and what the user is touching on the
`screen, creating a more direct contact with the content displayed and enabling taps and gestures to be more
`responsive.
`
`A simple parallel plate capacitor has two conductors separated by a dielectric layer. Most of the energy in this
`system is concentrated directly between the plates. Some of the energy spills over into the area outside the plates,
`and the electric field lines associated with this effect are called fringing fields. Part of the challenge of making a
`practical capacitive sensor is to design a set of printed circuit traces which direct fringing fields into an active
`sensing area accessible to a user. A parallel plate capacitor is not a good choice for such a sensor pattern. Placing a
`finger near fringing electric fields adds conductive surface area to the capacitive system. The additional charge
`storage capacity added by the finger is known as finger capacitance, CF. The capacitance of the sensor without a
`finger present is denoted as CP in this article, which stands for parasitic capacitance.
`
`Surface capacitance
`
`In this basic technology, only one side of the insulator is coated with a conductive layer. A small voltage is applied
`to the layer, resulting in a uniform electrostatic field. When a conductor, such as a human finger, touches the
`uncoated surface, a capacitor is dynamically formed. The sensor's controller can determine the location of the touch
`indirectly from the change in the capacitance as measured from the four corners of the panel. As it has no moving
`parts, it is moderately durable but has limited resolution, is prone to false signals from parasitic capacitive coupling,
`and needs calibration during manufacture. It is therefore most often used in simple applications such as industrial
`controls and kiosks.[26]
`
`Projected capacitance
`
`Projected Capacitive Touch (PCT; also PCAP) technology is a variant of
`capacitive touch technology. All PCT touch screens are made up of a matrix
`of rows and columns of conductive material, layered on sheets of glass. This
`can be done either by etching a single conductive layer to form a grid pattern
`of electrodes, or by etching two separate, perpendicular layers of conductive
`material with parallel lines or tracks to form a grid. Voltage applied to this
`grid creates a uniform electrostatic field, which can be measured. When a
`conductive object, such as a finger, comes into contact with a PCT panel, it
`distorts the local electrostatic field at that point. This is measurable as a
`change in capacitance. If a finger bridges the gap between two of the
`"tracks", the charge field is further interrupted and detected by the controller.
`The capacitance can be changed and measured at every individual point on
`the grid (intersection). Therefore, this system is able to accurately track
`touches.[27] Due to the top layer of a PCT being glass, it is a more robust
`solution than less costly resistive touch technology. Additionally, unlike
`traditional capacitive touch technology, it is possible for a PCT system to
`sense a passive stylus or gloved fingers. However, moisture on the surface of the panel, high humidity, or collected
`dust can interfere with the performance of a PCT system. There are two types of PCT: mutual capacitance and self-
`capacitance.
`
`Back side of a Multitouch Globe,
`based on Projected Capacitive Touch
`(PCT) technology
`
`Mutual capacitance
`
`This is a common PCT approach, which makes use of the fact that most conductive objects are able to hold a charge
`if they are very close together. In mutual capacitive sensors, a capacitor is inherently formed by the row trace and
`column trace at each intersection of the grid. A 16-by-14 array, for example, would have 224 independent
`capacitors. A voltage is applied to the rows or columns. Bringing a finger or conductive stylus close to the surface
`
`https://en.wikipedia.org/wiki/Touchscreen
`
`8/1/2015
`
`

`
`Touchscreen - Wikipedia, the free encyclopedia
`
`Page 6 of 13
`
`of the sensor changes the local electrostatic field which reduces the mutual
`capacitance. The capacitance change at every individual point on the grid
`can be measured to accurately determine the touch location by measuring the
`voltage in the other axis. Mutual capacitance allows multi-touch operation
`where multiple fingers, palms or styli can be accurately tracked at the same
`time.
`
`Self-capacitance
`
`Self-capacitance sensors can have the same X-Y grid as mutual capacitance
`sensors, but the columns and rows operate independently. With self-
`capacitance, the capacitive load of a finger is measured on each column or
`row electrode by a current meter. This method produces a stronger signal
`than mutual capacitance, but it is unable to resolve accurately more than one
`finger, which results in "ghosting", or misplaced location sensing.
`
`Use of styli on capacitive screens
`
`Capacitive touchscreens don't necessarily need to be operated by a finger,
`but the special styli required can be quite expensive to purchase.
`
`Schema of projected-capacitive
`touchscreen
`
`Infrared grid
`
`An infrared touchscreen uses an array of X-Y infrared LED and
`photodetector pairs around the edges of the screen to detect a disruption in
`the pattern of LED beams. These LED beams cross each other in vertical and
`horizontal patterns. This helps the sensors pick up the exact location of the
`touch. A major benefit of such a system is that it can detect essentially any
`input including a finger, gloved finger, stylus or pen. It is generally used in
`outdoor applications and point of sale systems which can not rely on a
`conductor (such as a bare finger) to activate the touchscreen. Unlike
`capacitive touchscreens, infrared touchscreens do not require any patterning
`on the glass which increases durability and optical clarity of the overall
`system. Infrared touchscreens are sensitive to dirt/dust that can interfere with
`the IR beams, and suffer from parallax in curved surfaces and accidental
`press when the user hovers his/her finger over the screen while searching for
`the item to be selected.
`
`Infrared acrylic projection
`
`A translucent acrylic sheet is used as a rear projection screen to display
`information. The edges of the acrylic sheet are illuminated by infrared
`LEDs, and infrared cameras are focused on the back of the sheet. Objects
`placed on the sheet are detectable by the cameras. When the sheet is touched
`by the user the deformation results in leakage of infrared light, which peaks
`at the points of maximum pressure indicating the user's touch location.
`Microsoft's PixelSense tables use this technology.
`
`Optical imaging
`
`Infrared sensors mounted around the
`display watch for a user's touchscreen
`input on this PLATO V terminal in
`1981. The monochromatic plasma
`display's characteristic orange glow is
`illustrated.
`
`https://en.wikipedia.org/wiki/Touchscreen
`
`8/1/2015
`
`

`
`Touchscreen - Wikipedia, the free encyclopedia
`
`Page 7 of 13
`
`Optical touchscreens are a relatively modern development in touchscreen technology, in which two or more image
`sensors are placed around the edges (mostly the corners) of the screen. Infrared back lights are placed in the
`camera's field of view on the other side of the screen. A touch shows up as a shadow and each pair of cameras can
`then be pinpointed to locate the touch or even measure the size of the touching object (see visual hull). This
`technology is growing in popularity, due to its scalability, versatility, and affordability, especially for bigger units.
`
`Dispersive signal technology
`
`Introduced in 2002, by 3M, this system uses sensors to detect the piezoelectricity in the glass that occurs due to a
`touch. Complex algorithms then interpret this information and provide the actual location of the touch.[28] The
`technology claims to be unaffected by dust and other outside elements, including scratches. Since there is no need
`for additional elements on screen, it also claims to provide excellent optical clarity. Also, since mechanical
`vibrations are used to detect a touch event, any object can be used to generate these events, including fingers and
`stylus. A downside is that after the initial touch the system cannot detect a motionless finger.
`
`Acoustic pulse recognition
`
`The key to this technology is that a touch at any one position on the surface generates a sound wave in the substrate
`which then produces a unique combined sound after being picked up by three or more tiny transducers attached to
`the edges of the touchscreen. The sound is then digitized by the controller and compared to a list of pre-recorded
`sounds for every position on the surface. The cursor position is instantly updated to the touch location. A moving
`touch is tracked by rapid repetition of this process. Extraneous and ambient sounds are ignored since they do not
`match any stored sound profile. The technology differs from other attempts to recognize the position of touch with
`transducers or microphones in using a simple table look-up method, rather than requiring powerful and expensive
`signal processing hardware to attempt to calculate the touch location without any references. As with the dispersive
`signal technology system, a motionless finger cannot be detected after the initial touch. However, for the same
`reason, the touch recognition is not disrupted by any resting objects. The technology was created by SoundTouch
`Ltd in the early 2000s, as described by the patent family EP1852772, and introduced to the market by Tyco
`International's Elo division in 2006 as Acoustic Pulse Recognition.[29] The touchscreen used by Elo is made of
`ordinary glass, giving good durability and optical clarity. APR is usually able to function with scratches and dust on
`the screen with good accuracy. The technology is also well suited to displays that are physically larger.
`Construction
`
`There are several principal ways to build a touchscreen. The key goals are to recognize one or more fingers touching
`a display, to interpret the command that this represents, and to communicate the command to the appropriate
`application.
`
`In the most popular techniques, the capacitive or resistive approach, there are typically four layers:
`
`1. Top polyester coated with a transparent metallic conductive coating on the bottom
`2. Adhesive spacer
`3. Glass layer coated with a transparent metallic conductive coating on the top
`4. Adhesive layer on the backside of the glass for mounting.
`
`When a user touches the surface, the system records the change in the electric current that flows through the display.
`
`Dispersive-signal technology which 3M created in 2002, measures the piezoelectric effect—the voltage generated
`when mechanical force is applied to a material—that occurs chemically when a strengthened glass substrate is
`touched.
`
`https://en.wikipedia.org/wiki/Touchscreen
`
`8/1/2015
`
`

`
`Touchscreen - Wikipedia, the free encyclopedia
`
`Page 8 of 13
`
`There are two infrared-based approaches. In one, an array of sensors detects a finger touching or almost touching
`the display, thereby interrupting light beams projected over the screen. In the other, bottom-mounted infrared
`cameras record screen touches.
`
`In each case, the system determines the intended command based on the controls showing on the screen at the time
`and the location of the touch.
`Development
`
`The development of multipoint touchscreens facilitated the tracking of more than one finger on the screen; thus,
`operations that require more than one finger are possible. These devices also allow multiple users to interact with
`the touchscreen simultaneously.
`
`With the growing use of touchscreens, the marginal cost of touchscreen technology is routinely absorbed into the
`products that incorporate it and is nearly eliminated. Touchscreens now have proven reliability. Thus, touchscreen
`displays are found today in airplanes, automobiles, gaming consoles, machine control systems, appliances, and
`handheld display devices including the Nintendo DS and multi-touch enabled cellphones; the touchscreen market
`for mobile devices is projected to produce US$5 billion in 2009.[30]
`
`The ability to accurately point on the screen itself is also advancing with the emerging graphics tablet/screen
`hybrids.
`
`TapSense, announced in October 2011, allows touchscreens to distinguish what part of the hand was used for input,
`such as the fingertip, knuckle and fingernail. This could be used in a variety of ways, for example, to copy and
`paste, to capitalize letters, to activate different drawing modes, and similar.[31][32]
`Ergonomics and usage
`Touchscreen accuracy
`
`Users must be able to accurately select targets on touchscreens, and avoid accidental selection of adjacent targets, to
`effectively use a touchscreen input device. The design of touchscreen interfaces must reflect both technical
`capabilities of the system, ergonomics, cognitive psychology and human physiology.
`
`Guidelines for touchscreen designs were first developed in the 1990s, based on early research and actual use of
`older systems, so assume the use of contemporary sensing technology such as infrared grids. These types of
`touchscreens are highly dependent on the size of the user's fingers, so their guidelines are less relevant for the bulk
`of modern devices, using capacitive or resistive touch technology.[33][34] From the mid-2000s onward, makers of
`operating systems for smartphones have promulgated standards, but these vary between manufacturers, and allow
`for significant variation in size based on technology changes, so are unsuitable from a human factors perspective.[35]
`[36][37]
`
`Much more important is the accuracy humans have in selecting targets with their finger or a pen stylus. The
`accuracy of user selection varies by position on the screen. Users are most accurate at the center, less so at the left
`and right edges, and much less accurate at the top and especially bottom edges. The R95 accuracy varies from 7 mm
`in the center, to 12 mm in the lower corners.[38][39][40][41][42] Users are subconsciously aware of this, and are also
`slightly slower, taking more time to select smaller targets, and any at the edges and corners.[43]
`
`https://en.wikipedia.org/wiki/Touchscreen
`
`8/1/2015
`
`

`
`Touchscreen - Wikipedia, the free encyclopedia
`
`Page 9 of 13
`
`This inaccuracy is a result of parallax, visual acuity and the speed of the feedback loop between the eyes and
`fingers. The precision of the human finger alone is much, much higher than this, so when assistive technologies are
`provided such as on-screen magnifiers, users can move their finger (once in contact with the screen) with precision
`as small as 0.1 mm.[44]
`
`Hand position, digit used and switching
`
`Users of handheld and portable touchscreen devices hold them in a variety of ways, and routinely change their
`method of holding and selection to suit the position and type of input. There are four basic types of handheld
`interaction:
`
`1. Holding at least in part with both hands, tapping with a single thumb
`2. Holding with one hand, tapping with the finger (or rarely, thumb) of another hand
`3. Holding the device in one hand, and tapping with the thumb from that hand
`4. Holding with two hands and tapping with both thumbs
`
`Use rates vary widely. While two-thumb tapping is encountered rarely (1-3%) for many general interactions, it is
`used for 41% of typing interaction.[45]
`
`In addition, devices are often placed on surfaces (desks or tables) and tablets especially are used in stands. The user
`may point, select or gesture in these cases with their finger or thumb, and also varies the use.[46]
`
`Combined with haptics
`
`Touchscreens are often used with haptic response systems. A common example of this technology is the vibratory
`feedback provided when a button on the touchscreen is tapped. Haptics are used to improve the user's experience
`with touchscreens by providing simulated tactile feedback, and can be designed to react immediately, partly
`countering on-screen response latency. Research from the University of Glasgow Scotland [Brewster, Chohan, and
`Brown 2007 and more recently Hogan] demonstrates that sample users reduce input errors (20%), increase input
`speed (20%), and lower their cognitive load (40%) when touchscreens are combined with haptics or tactile feedback
`[vs. non-haptic touchscreens].
`
`"Gorilla arm"
`
`Extended use of gestural interfaces without the ability of the user to rest their arm is referred to as "gorilla arm."[47]
`It can result in fatigue, and even repetitive stress injury when routinely used in a work setting. Certain early pen-
`based interfaces required the operator to work in this position for much of the work day.[48] Allowing the user to rest
`their hand or arm on the input device or a frame around it is a solution for this in many contexts. This phenomenon
`is often cited as a prima facie example of what not to do in ergonomics.
`
`Unsupported touchscreens are still fairly common in applications such as ATMs and data kiosks, but are not an
`issue as the typical user only engages for brief and widely spaced periods.[49]
`
`Fingerprints
`
`Touchscreens can suffer from the problem of fingerprints on the display. This can be mitigated by the use of
`materials with optical coatings designed to reduce the visible effects of fingerprint oils, or oleophobic coatings as
`most of the modern smartphones, which lessen the actual amount of oil residue, or by installing a matte-finish anti-
`glare screen protector, which creates a slightly roughened surface that does not easily retain smudges, or by
`reducing skin contact by using a fingernail or stylus.
`
`https://en.wikipedia.org/wiki/Touchscreen
`
`8/1/2015
`
`

`
`Touchscreen - Wikipedia, the free encyclopedia
`
`Page 10 of 13
`
`See also
`◾ Dual-touchscreen
`◾ Pen computing
`◾ Energy harvesting
`◾ Flexible keyboard
`◾ Gestural interface
`◾ Graphics tablet
`◾ Graphics tablet-screen hybrid
`◾ Lock screen
`◾ List of Touch Solution manufacturers
`◾ Tablet PC
`◾ Touch switch
`◾ Touchscreen remote control
`◾ Multi-touch
`◾ Omnitouch
`◾ SixthSense
`Notes
`
`Fingerprints and smudges on an iPad
`touchscreen
`
`1. Walker, Geoff (August 2012). "A review of technologies for sensing contact location on the surface of a
`display" (http://onlinelibrary.wiley.com/doi/10.1002/jsid.100/abstract). Journal of the Society for Information Display 20
`(8): 413–440. doi:10.1002/jsid.100 (https://dx.doi.org/10.1002%2Fjsid.100).
`2. "The first capacitative touch screens at CERN" (http://cerncourier.com/cws/article/cern/42092). CERN Courrier. 31
`March 2010. Retrieved 2010-05-25
`3. Bent STUMPE (16 March 1977). "A new principle for x-y touch
`system" (http://cdsweb.cern.ch/record/1266588/files/StumpeMar77.pdf) (PDF). CERN. Retrieved 2010-05-25
`4. Bent STUMPE (6 February 1978). "Experiments to find a manufacturing process for an x-y touch
`screen" (http://cdsweb.cern.ch/record/1266589/files/StumpeFeb78.pdf) (PDF). CERN. Retrieved 2010-05-25
`5. Frank BECK & Bent STUMPE (24 May 1973). "Two devices for operator interaction in the central control of the new
`CERN accelerator" (http://cdsweb.cern.ch/record/186242/files/p1.pdf) (PDF). CERN. Retrieved 2010-05-25
`6. Johnson, E.A. (1965). "Touch Display - A novel input/output device for computers". Electronics Letters 1 (8): 219–220.
`doi:10.1049/el:19650200 (https://dx.doi.org/10.10

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket