throbber
SEL EXHIBIT NO. 2021
`INNOLUX CORP. v. PATENT OF SEMICONDUCTOR ENERGY
`LABORATORY CO., LTD.
`
`IPR2013-00064
`
`

`

`6,104,042
`[11] Patent Number:
`[19]
`Unlted States Patent
`
`Sah
`[45] Date of Patent:
`Aug. 15, 2000
`
`USOO6104042A
`
`[54] THIN FILM TRANSISTOR WITH A MULTI-
`METAL STRUCTURE A METHOD OF
`MANUFACTURING THE SAME
`
`5,976,902
`5,981,972
`6,011,274
`
`11/1999 Shih .......................................... 438/30
`11/1999 Kawai et al.
`257/59
`
`................................... 257/59
`1/2000 Gu et al.
`
`[75]
`
`Inventor: Wen-Jyh Sah, Jen Te, Taiwan
`
`[73] Assignee: Chi Mei Optoelectronics C0rp.,
`Hsinchu, Taiwan
`
`FOREIGN PATENT DOCUMENTS
`2—219275
`8/1990
`Japan ....................................... 257/66
`2—224275
`9/1990
`Japan .....
`257/61
`
`3—44968
`2/1991
`Japan .....
`257/61
`6—85255
`3/1994
`Japan ....................................... 257/72
`
`[21] Appl. NO‘: 09/328,580
`
`Primary Examiner—Donald L. Monin, Jr.
`
`7
`
`ate on a trans-
`resent invention includes forrnin a
`The
`g
`P
`g
`arent substrate.A ate isolation la er is then formed on the
`P
`g
`y
`gate. An amorphous silicon (a-Si) layer and n+ doped silicon
`layer are successively formed on the gate isolation layer.
`Then,
`the a-Si layer and the n+ doped silicon layer are
`patterned. A first, a second and a third metal layers are
`successively formed on the n+ doped silicon layer, thereby
`forming a rnulti-rnetal layer structure. Subsequently, a wet
`and a dry etching is utilized to etch the rnulti-rnetal layer,
`thereby defining the S/D electrodes. A passivation layer is
`.
`depos1ted 0“ the S/D Struaure‘
`
`26 Claims, 9 Drawing Sheets
`
`.
`.......................... H01L 29/04, H01L 31/036
`Int. Cl.
`[51]
`.
`.
`.................................. 257/59, 257/66, 257/72
`[52] US. Cl.
`.
`[58] Fleld of Search .................................. 257/59, 72, 66,
`257/61> 57> 58> 60> 462, 459
`_
`References CltEd
`US. PATENT DOCUMENTS
`,
`,
`,
`.
`11/1994 KWaSHle et al.
`........................ 437/40
`
`31333 ghetttenl ““““““
`849/122
`.
`210 e a .
`
`..... 257/59
`5/1999 Ahn et al.
`
`7/1999 Kitazawa et al.
`.
`.. 257/59
`
`................................... 257/59
`8/1999 Na et al.
`
`[56]
`
`5,362,660
`g’gzg’gg
`,
`,
`5,905,274
`5,920,082
`5,942,767
`
`48a 48b
`
`35553535353
`
`
`
`
`

`

`US. Patent
`
`Aug. 15,2000
`
`Sheet 1 0f9
`
`6,104,042
`
`'
`
` Photoresist I
`
`.
`
`4d
`
`
`
`

`

`US. Patent
`
`Aug. 15, 2000
`
`Sheet 2 0f 9
`
`6,104,042
`
`40
`
`Minimum CD
`|-———-I
`
`44d
`
`44c
`
`44b 44a
`
`.
`
`
`
`. :-:-'-.5R\\\\\\\\\\\\\\
`
`_.%§=;44
`
`_
`
`Channel length
`
`i
`III/IIIIIIIIIIIII)‘
`
`38
`36
`
`- 32
`
`34
`
`FIGS
`
`(Prior Art)
`
`

`

`US. Patent
`
`Aug. 15,2000
`
`Sheet 3 0f9
`
`6,104,042
`
`
`
`42
`
`42a
`
`FIGS
`
`

`

`US. Patent
`
`Aug. 15,2000
`
`Sheet 4 0f9
`
`6,104,042
`
`
`
`
`
`3mg
`
`
`
`
`42
`
`423
`
`FIG.6
`
`

`

`US. Patent
`
`Aug. 15,2000
`
`Sheet 5 0f9
`
`6,104,042
`
`.A\\\\\\\\\
`
`42
`
`42a
`
`FIG.7
`
`

`

`US. Patent
`
`Aug. 15,2000
`
`Sheet 6 0f9
`
`6,104,042
`
`
`
`42
`
`42a
`
`FIG.8A
`
`
`
`

`

`US. Patent
`
`Aug. 15,2000
`
`Sheet 7 0f9
`
`6,104,042
`
`
`
`

`

`US. Patent
`
`Aug. 15,2000
`
`Sheet 8 0f9
`
`6,104,042
`
`
`
`

`

`US. Patent
`
`Aug. 15,2000
`
`Sheet 9 0f9
`
`6,104,042
`
`
`
`

`

`6,104,042
`
`1
`THIN FILM TRANSISTOR WITH A MULTI-
`METAL STRUCTURE A METHOD OF
`MANUFACTURING THE SAME
`
`CROSS REFERENCE TO RELATED
`APPLICATION
`
`This application is related to a application Ser. No.
`09/321,210 filed on May 27, 1999.
`FIELD OF THE INVENTION
`
`The present invention relates to a method of making a thin
`film transistor (TFT) for a liquid crystal display (LCD), and
`more specifically, to a method of forming a TFT with a
`multi-metal structure as source and drain electrodes.
`
`BACKGROUND OF THE INVENTION
`
`There are various kind of flat panel display devices
`characterized by low power consumption and small size.
`Those devices include the liquid crystal display (LCD),
`plasma display panel (PDP) and clcctrolumincsccncc dis-
`play (ELD). The LCD has been used in electron devices
`successfully because of its capability for high resolution. At
`present,
`the portable computer or personal data assistant
`(PDA) are widely used in the mass market and those are
`remarkably progressing. In order to meet the requirement of
`portable apparatus, the displays for portable use are light
`weight and low power consumption. Thin film transistor-
`liquid crystal display (TFT-LCD) is one of the devices that
`can fit the aforementioned requirements and is known as the
`display required for the high pixel density and quality.
`In general, the TFT-LCD includes a bottom plate formed
`with thin film transistors and pixel electrodes and a top plate
`formed with color filters. The liquid crystal is filled between
`the top plate and the bottom plate. In each unit pixel, the TFT
`serves as a switching element of the unit pixel. When the
`data voltage is applied to the TFT, the arrangement of the
`liquid crystal molecules is changed, thereby changing the
`optical properties and displaying the image. The color filter
`(CF) plate is used in the LCD to show the colored portion of
`the screen.
`
`In the art, two types of the TFT structure are developed.
`One is the so called ES (etching stopper) TFT and the other
`one is the BCE (bask channel etched) TFT. In the type of
`BCE TFT, there is no etching block on the channel region,
`therefore,
`the channel region will be etched during the
`process because of the etching rates of the amorphous
`silicon and the doped silicon are similar. Please refer to FIG.
`2, a gate electrode 22 is formed on the substrate 20. An
`insulating layer 24 is next formed on the gate electrode 22.
`An amorphous silicon layer 26 having a channel loss region
`26a is over the insulating layer 24. The amorphous layer 26
`has a doped silicon layer 28 formed on a portion of the
`amorphous silicon layer 26 for forming ohmic contact.
`Source and drain (S/D) electrodes consisting of a Cr 29a
`sub-layer and anAl sub-layer 29b are patterned on the doped
`silicon layer 28. The disadvantage of the BCE type structure
`is that the channel region will lose thickness during the
`etching for forming the S/D electrodes. In addition, the wet
`etching to etch the double metal (Al/Cr) layers generates
`undercut portions 29c under the Al sub-layer 29b due to the
`etching rate of the two sub-layers is different and the
`solution will laterally etch the Cr layer. It is hard to control
`the etching conditions to prevent the channel from being
`etched and forming the undercut portions 29c.
`Referring to FIG. 3, in the type of the ES TFT structure,
`an etching stop layer is formed over an amorphous silicon
`
`Ln
`
`10
`
`20
`
`30
`
`40
`
`LnLn
`
`60
`
`2
`layer to prevent the channel region formed in the amorphous
`silicon layer from being etched while an etch is performed
`to form the source and drain. The ES type is shown in FIG.
`3, the structure includes a substrate 32, a gate electrode 34
`is formed on the substrate. An insulating layer 36 is formed
`on the gate electrode 34 for isolation. An amorphous silicon
`layer 38 is patterned on the isolation layer 36. Reference
`number 42 is the aforementioned etching stopper 42 to
`protect the channel region. Thus, it has high resistant to etch.
`Source and drain (S/D) electrodes 44 are formed on the
`amorphous silicon layer 38 and a portion of the etching
`stopper 42. Typically, the S/D electrodes 44 are consisted of
`multi-metal layers, which are n+ doped silicon layer 44a, a
`first titanium layer 44b, an aluminum layer 44c and a further
`titanium layer 44d. The n+ doped silicon layer 44a is used
`to form ohmic contact layer. In the structure, a portion of the
`ES layer 42 is exposed by the S/D electrodes 44. The
`channel region under the ES layer 42 will not be attacked
`during the etching to form S/D electrodes 44. However, the
`channel length of the ES type TFT is longer than BCE type
`TFT structure.
`
`As the display resolution is going higher and higher, the
`performance of the TFT is also pushed higher and higher.
`From the device performance point of view, the BCE type
`TFT has the advantage of shorter channel length. Consid-
`ering the channel loss, wet etch of the S/D metal is preferred.
`However, a multi-layer structure is usually applied for the
`source and drain metal. As shown in FIG. 1, a triple-layer 4
`consists of a first barrier metal 4a, a major conducting layer
`4b (usually Al) and a second barrier metal 4c, such as a
`Mo/Al/Mo structure.
`In order to obtain a taper etching
`profile, the etching rate of the metal layer 4a must be higher
`than that of Al. Because 4c is usually similar to 4a, it is easy
`to form an Al overhang structure as shown in FIG. 1, which
`is not a healthy profile. Furthermore, the channel length is
`determined by the CD of the layer 4c, which is the CD
`defined by the photoresist plus the side etch of the Al and
`layer 4c. As a result, the BCE TFT performance is strongly
`degraded.
`Thus, what is required is a novel method to form the TFT
`to avoid aforementioned disadvantages of BCE and ES TFT.
`SUMMARY OF THE INVENTION
`
`A first object of the present invention is to provide a
`method of forming a TFT by using a multi-metal S/D
`structure.
`
`A second object of the present invention is to form a TFT
`by using two steps of etching including a dry etching and a
`wet etching to pattern the S/D metal.
`A third object of the present invention is to prevent the
`critical dimensions (CD) loss issue and to reduce the channel
`region loss problem.
`A forth object of the present invention is to form a contact
`structure between S/D and thereafter formed transparent
`conducting layer via a via hole in the passivation layer which
`is formed between said S/D structure and thereafter formed
`transparent conducting layer.
`The present invention includes providing an insulating
`transparent substrate. A gate such as metal or alloy is
`patterned on the transparent substrate. Next, a gate isolation
`layer is formed on the gate electrode for isolation. The gate
`isolation is composed of silicon oxide or silicon nitride. A
`semiconductor layer such as amorphous silicon (a-Si) layer
`is subsequently formed on the gate isolation layer. A n+
`doped silicon layer is formed on the upper surface of the a-Si
`layer. The n+ doped layer can be created by implanting ions
`
`

`

`6,104,042
`
`3
`into the upper surface of the a-Si layer or by forming a doped
`silicon layer directly by using plasma chemical vapor depo-
`sition (CVD). Then, the a-Si layer and the n+ doped silicon
`layer are patterned by means of lithography technique.
`A first, a second and a third metal layers are successively
`formed on the n+ doped silicon layer, thereby forming a
`multi-metal layer structure. The upper metal layer (the third
`metal layer) is selected from Mo, MoN. The second metal
`layer is formed by aluminum or aluminum alloy, such as
`AlNd. The lower metal layer is selected from the group of
`Cr (chromium), Ti (titanium), Cr alloy, Ti alloy and titanium
`nitride. Awet etching is used to etch the third metal layer and
`the second metal layer. Preferably, the etching rate of the
`third metal layer is higher than that of the second metal layer
`(aluminum).
`Subsequently, a dry etching is utilized to etch the first
`metal layer and the n+ doped layer, thereby defining the S/D
`electrodes. Residual n+ doped silicon layer covered by the
`first metal layer will remain on a portion of the amorphous
`silicon to act as an ohmic contact layer.
`Thereafter, a passivation layer is deposited on the whole
`surface. Then, patterning is applied to the passivation layer
`by using a photoresist mask (not shown) and further apply-
`ing an etching.
`An ITO (indium tin oxide) layer is formed by a sputtering
`technique. Subsequently, patterning is applied to the ITO
`layer. Finally, the drain electrode is electrically connected to
`the pixel electrode formed by the ITO layer.
`BRIEF DESCRIPTION OF THE DRAWINGS
`
`The foregoing aspects and many of the attendant advan-
`tages of this invention will become more readily appreciated
`as the same becomes better understood by reference to the
`following detailed description, when taken in conjunction
`with the accompanying drawings, wherein:
`FIGS. 1 is a cross sectional view of a S/D bus metal
`having overhang portion after a wet etching in accordance
`with the prior art.
`FIG. 2 is a cross sectional view of BCE type TFT in
`accordance with the prior art.
`FIG. 3 is a cross sectional view of ES type TFT in
`accordance with the prior.
`FIG. 4 is a cross sectional view of a TFT illustrating the
`steps of forming gate electrode, amorphous silicon and
`doped silicon layer in accordance with the present invention.
`FIG. 5 is a cross sectional view of a TFT illustrating the
`step of forming a multi-metal structure in accordance with
`the present invention.
`FIG. 6 is a cross sectional view of a TFT illustrating the
`step of performing a wet etching to etch the third and the
`second metal layers of the multi-metal structure in accor-
`dance with the present invention.
`FIG. 7 is a cross sectional view of a TFT illustrating the
`step of performing a dry etching to etch the first metal layers
`of the multi-metal structure in accordance with the present
`invention.
`
`FIG. 8A is a cross sectional view of a TFT illustrating the
`steps of forming a passivation layer and a ITO layer in
`accordance with the present invention.
`FIGS. 8B—8H are cross sectional views of alternative
`
`embodiments in accordance with the present invention.
`DETAILED DESCRIPTION OF THE
`PREFERRED EMBODIMENT
`
`The present invention will be described in detail with
`reference to drawings. The present invention is to provide a
`
`Ln
`
`10
`
`20
`
`30
`
`40
`
`LnLn
`
`60
`
`4
`method of manufacturing TFT by means of BCE structure
`introducing two steps of etching for S/D metal patterning. A
`wet etch is involved to etch the third metal layer and the
`aluminum (Al) layer. Adry etch is used to etch the first metal
`layer. The first metal layer is selected with the resistant to the
`wet etchant used to etch the aluminum. The detailed pro-
`cesses will be described as follows.
`
`Referring to FIG. 4, in the preferred embodiment, a glass
`substrate 40 or the like is used as an insulating transparent
`substrate 40. Aconductive layer 42 such as metal or alloy is
`deposited onto the transparent substrate 40, followed by
`etching the conductive layer 42 with lithography process to
`form a gate electrode 42. The material used for the gate can
`be chromium (Cr), tungsten (W), titanium (Ti), tantalum
`(Ta), molybdenum (Mo), aluminum (Al) orAl alloy. In some
`case, a multi-gate structure can also be used for the present
`invention. The material of the multi-gate structure can be
`selected from above material. The thickness of the conduc-
`
`tive layer 42 is typically 1000 to 3000 angstroms. Next, a
`gate isolation (dielectric) layer 44 is formed on the gate
`electrode 42 for isolation. The gate isolation is composed of
`silicon oxide, silicon nitride or the combination of both
`kinds of material to form a multi-layer structure. The multi-
`layer structure will
`improve the dielectric breakdown
`strength. The isolation layer 44 can be formed by using
`plasma chemical vapor deposition method. The reaction
`gases for forming the silicon oxide or nitride layer can be
`SiH4, NH3, N2, N20 or SiH2C12, NH3, N2, and N20.
`A semiconductor layer such as amorphous silicon (a-Si)
`layer 46 is subsequently formed on the gate isolation layer
`44. In addition, in some case, the semiconductor layer 46 can
`be composed of multi-layer structure to improve the film
`quality and production throughput. In a case, the amorphous
`silicon layer 46 is about 2000 to 3000 angstroms in thick-
`ness. A n+ doped silicon layer 46a is formed on the upper
`surface of the a-Si layer 46. The n+ doped layer can be
`created by implanting ions into the upper surface of the a-Si
`layer 46 or by forming a doped silicon layer, directly. In a
`case, the doped silicon layer can be directly deposited by
`using plasma chemical vapor deposition (CVD). Then, the
`layers including the a-Si layer 46 and the n+ doped silicon
`layer 46a are patterned over the gate electrode 42 by means
`of lithography technique. The thickness of the n+ doped
`silicon layer 46a is about 200 to 500 angstroms.
`Turning to FIG. 5, a multi-metal structure 48 is formed on
`the patterned n+ doped silicon layer 46a and on the insu-
`lating layer 44. The multi-metal layer herein is referred to
`the structure constructed by at least three conductive layers.
`In other words, a first metal layer 48a is formed on the n+
`doped silicon layer 46a, followed by forming a second metal
`layer 48b. Then, a third metal layer 48c is formed on the
`second metal layer 48b. Typically, the second metal layer
`48b is formed by aluminum or aluminum alloy, such as
`AlNd. The lower metal layer, namely, the first metal layer
`48a is selected from the group of Cr (chromium), Ti
`(titanium), Cr alloy, Ti alloy, chromium nitride and titanium
`nitride. Preferably, the first metal layer 48a exhibits high
`etching resistance under the etching of the second metal
`layer 48b. It acts as the barrier between the aluminum layer
`48b and the n+ doped silicon layer 46a.
`As illustrated in FIG. 6, next stage is to perform the two
`steps etching. In the first etching step, a wet etching is
`introduced to etch the third metal layer 48c and the second
`metal layer 48b using a photoresist 50 as an etching mask.
`Preferably, the etching rate of the third metal layer 48c is
`higher than that of the second metal layer (aluminum) 48b.
`As known in the art, the wet etching is isotropical, therefore
`
`

`

`6,104,042
`
`5
`the solution for etching will laterally attack these two metal
`layers 48b and 48c, thereby achieving a taper etching profile.
`On the contrast, the first metal layer 48a is not etched by the
`etching solution in this stage. The third metal layer 48c is
`selected form Mo, MoN or the combination thereof.
`Subsequently, a second etching step is performed, as
`shown in FIG. 7. In this step, a dry etching is utilized to etch
`the first metal layer 48a using the same photoresist 50 as the
`etching mask. The dry etching exhibits the anisotropical
`etching characteristic,
`thus the first metal layer 48a has
`extended portions 48d after the etching. The etching will not
`stop until the amorphous silicon 46 is exposed,
`thereby
`defining the S/D electrodes. Residual n+ doped silicon layer
`covered by the first metal layer 48a will remain on a portion
`of the amorphous silicon 46 to act as an ohmic contact layer.
`In one case, reactive ion etching (RIE) technique can be
`utilized for the second etching step. Then, the photoresist 50
`is stripped away.
`Because a dry etching is used with a photoresist pattern
`having critical dimension, the critical dimensions (CD) will
`not lose in the present invention. Further, the thickness of a
`single first metal layer 48a is similar to the one of the n+
`doped silicon layer 46a, thus the over-etching can be easily
`controlled by time mode to prevent the channel region of the
`silicon layer 46 from being etched too much. Therefore, the
`channel region loss in the prior art can be reduced by the
`present invention. Thus, the present invention can solve the
`channel loss problem without the ES layer, a taper profile
`can be obtained by the usage of the wet etching as mentioned
`above. Alternatively, the ES layer can be used in the present
`invention, as shown in FIG. 8A. The ES layer 46b is
`patterned on the amorphous silicon layer 46b prior to the
`formation of the doped silicon layer 46a.
`Thereafter, a passivation layer 52 is deposited on the
`whole surface by applying a plasma CVD method. Please
`refer to FIG. 8. Asingle insulating layer or double insulating
`layers can form the passivation layer 52. In a preferred
`embodiment, the passivation layer is composed of silicon
`nitride, oxide or the like. Then, patterning is applied to the
`passivation layer 52 by using a photoresist mask (not shown)
`and further introducing a wet etching using a hydrofluoric
`acid solution or a dry etching including RIE using a fluorine
`containing gas such as CF4+O2 or BCl3+C12. Thus,
`the
`passivation layer 52 appears to have a predetermined
`pattern, a portion of the third conductive layer 48c are
`exposed, as shown in FIG. 8A. A via hole 56 is also
`generated in the passivation layer 52.
`An ITO (indium tin oxide) layer 54 is formed by a
`sputtering technique to have a thickness from about 50 to
`100 nm in thickness for instance. Subsequently, patterning is
`applied to the ITO layer via lithography technique. For
`example, the etchant for etching ITO layer 52 is a mixture
`solution of HCl and HNO3 or a mixture liquid of HCL and
`FeClZ. Finally, the drain electrode is electrically connected
`to the pixel electrode formed by ITO layer 54. The ITO layer
`54 contacts the drain electrode by the third metal layer 48c
`via the via hole 56, as shown in FIG. 8A. The structure can
`be also used for ES type TFT, as shown in FIG. 8B. In the
`drawing, an etching stop layer 46b is formed on the amor-
`phous layer 46 before the formation of the doped amorphous
`layer 46a.
`The structure of the present invention can be seen in FIG.
`8A and FIG. 8B. The present invention includes a gate
`electrode 42 formed on a substrate 40. A gate insulating
`layer 44 is formed on the gate electrode 42 and the substrate
`40 for isolation. A semiconductor layer 46 is formed on the
`
`Ln
`
`10
`
`20
`
`30
`
`40
`
`LnLn
`
`60
`
`6
`gate insulating layer 44. A doped semiconductor layer 46a is
`then formed on the semiconductor layer 46 as an ohmic
`contact layer and a drain and source structure consisting of
`a first conductive layer 48a, a second conductive layer 48b
`and a third conductive layer 48c. Wherein the first conduc-
`tive layer 48a is formed on the doped semiconductor layer
`46a and the gate insulating layer 44, the second conductive
`layer 48b lays on the first conductive layer 48a and a third
`conductive layer 48c is on the second conductive layer 48b,
`thereby forming a multi-conductive structure. Apassivation
`layer 52 is formed on the source and drain structure. The
`structure includes an indium tin oxide (ITO) layer 54 is
`formed on the passivation layer 52. The first conductive
`layer 48a has extended portions 48d on a portion of a
`channel region to prevent a critical dimension loss.
`Further, the source/drain structure of the present invention
`can be formed by two layers. The third and fourth embodi-
`ments are illustrated in the FIG. 8C and FIG. 8D. Similarly,
`the embodiments according to FIG. 8C and FIG. 8D repre-
`sent the BCE and ES type TFT, respectively. In the figures,
`the multi-layer conductive structure is composed of a first
`and a second conductive layers 48a and 48b. The materials
`for forming these layers are the same with the first or second
`embodiment. The structure will prevent the critical dimen-
`sion of the channel from being loss. In addition, the contact
`between the ITO and the multi-layer conductive structure is
`different from the three multi-layer structure. During the
`patterning of the passivation layer 52, the via hole 56a is
`defined adjacent to the drain consisted of the first conductive
`layer 48a and the second conductive layer 48b, and at least
`the side wall of the multi-layer conductive structure is
`exposed. The feature will provide a benefit for the subse-
`quent side wall contact between the ITO and the drain. A
`recessed portion 58 may be generated in the passivation
`layer 52 by over-etching during the formation of the via hole
`56a due to the passivation layer 52 and the gate isolation
`layer 44 may be composed of similar material. In order to
`prevent the above issue, the passivation layer 52 and the gate
`isolation 44 can be formed by different material with high
`etching selectivity between thereof.
`Alternatively, the via hole 56a can be formed by using
`other method to prevent the gate isolation layer 44 from
`being etched. The FIG. 8E to FIG. 8H show the improved
`methods to overcome the above issue. Both of the methods
`
`can be applied to BCE or ES type TFT. The fifth and sixth
`embodiments are shown in FIG. 8E and 8F. The major step
`is to create a contact pad 46c to act as an etching barrier
`during the pattern of the amorphous layer 46. The contact
`pad 46c is defined adjacent
`to the channel region and
`separated from the channel in cross sectional view. Aportion
`of the contact pad 46c has to be exposed during the pattern-
`ing of the via hole 56a in the passivation layer to provide a
`area for contacting to the subsequent ITO layer. Before
`forming the via hole,
`the source and drain structure is
`defined by using aforesaid method. Subsequent step is to
`form a passivation layer 52 thereon. The via hole 56a is then
`created in the passivation layer and aligned to the contact
`pad 46c, thereby exposing the contact pad 46c. The contact
`pad 46c acts as an etching stop layer, therefore, the embodi-
`ments can prevent
`the recessed portion 58 from being
`formed in the passivation layer.
`The alternative example is to form an extended portion
`46d of the amorphous layer 46 instead of separating the
`amorphous layer 46 into the channel region and the contact
`pad during the patterning of the amorphous layer 46. The
`extended portion 46d extends to the area for forming the via
`holes 56a to acts as the etching barrier. The other steps are
`
`

`

`6,104,042
`
`7
`similar to the aforesaid methods. The detailed description is
`omitted. Certainly, the method can be applied to BCE or ES
`type structure.
`As described above, the present invention uses two steps
`of etching to etch the S/D electrode, and an novel S/D
`multi-conductive layer structure corresponding to the etch-
`ings. As is understood by a person skilled in the art, the
`foregoing preferred embodiments of the present invention
`are illustrated of the present invention rather than limiting of
`the present invention. It is intended to cover various modi-
`fications and similar arrangements included within the spirit
`and scope of the appended claims, the scope of which should
`be accorded the broadest interpretation so as to encompass
`all such modifications and similar structures. Thus, while the
`preferred embodiment of the invention has been illustrated
`and described, it will be appreciated that various changes
`can be made therein without departing from the spirit and
`scope of the invention.
`The embodiments of the invention in which an exclusive
`
`property or privilege is claimed are defined as follows:
`1. Astructure of a thin film transistor (TFT), said structure
`comprising:
`a gate electrode formed on a substrate;
`a gate insulating layer formed on said gate electrode and
`said substrate for isolation;
`a semiconductor layer formed on said gate insulating
`layer;
`a doped semiconductor layer formed on said semiconduc-
`tor layer as an ohmic contact layer; and
`a drain and source structure including a first conductive
`layer, a second conductive layer and a third conductive
`layer, wherein said first conductive layer is formed on
`said doped semiconductor layer and said gate insulating
`layer, said second conductive layer being on said first
`conductive layer and a third conductive layer being on
`said second conductive layer, thereby forming a multi-
`conductive layer structure, wherein said first conduc-
`tive layer has rims uncovered by said second and third
`conductive layers to prevent a critical dimension loss
`and provide a contact structure with conducting layer
`formed thereafter.
`
`2. The structure of claim 1, further comprising a passi-
`vation layer formed on said source and drain structure.
`3. The structure of claim 1, further comprising a trans-
`parent conducting layer formed on said passivation layer,
`wherein said transparent conducting layer contacts said third
`conductive layer via a via hole in said passivation layer.
`4. The structure of claim 1, further comprising transparent
`conducting layer formed on said passivation layer, wherein
`said transparent conducting layer contacts rims and sides of
`said multi- conductive layer structure via a via hole in said
`passivation layer.
`5. The structure of claim 1, wherein said first conductive
`layer is selected from Cr (chromium), Ti (titanium), Cr alloy,
`Ti alloy, titanium nitride, chromium nitride.
`6. The structure of claim 1, wherein said second conduc-
`tive layer is selected from aluminum or aluminum alloy.
`7. The structure of claim 1, wherein said third conductive
`layer is selected from Mo, MoN and the combination
`thereof.
`
`8. The structure of claim 1, further comprising an etching
`stop layer formed on said semiconductor layer.
`9. Astructure of a thin film transistor (TFT), said structure
`comprising:
`a gate electrode formed on a substrate;
`a gate insulating layer formed on said gate electrode and
`said substrate for isolation;
`
`10
`
`20
`
`30
`
`40
`
`LnLn
`
`60
`
`8
`a semiconductor layer formed on said gate insulating
`layer;
`a doped semiconductor layer formed on said semiconduc-
`tor layer as an ohmic contact layer; and
`a drain and source structure including a first conductive
`layer and a second conductive layer, wherein said first
`conductive layer is formed on said doped semiconduc-
`tor layer and said gate insulating layer, said second
`conductive layer being on said first conductive layer,
`thereby forming a multi-conductive layer structure,
`wherein said first conductive layer has rims uncovered
`by said second conductive layer to prevent a critical
`dimension loss and provide a contact structure with
`conducting layer formed thereafter.
`10. The structure of claim 9, further comprising a passi-
`vation layer formed on said source and drain structure,
`wherein said passivation layer has a via hole formed adja-
`cent to said multi-conductive layer structure.
`11. The structure of claim 9, further comprising a trans-
`parent conducting layer formed on said passivation layer,
`wherein said transparent conducting layer contacts rims and
`sides of said multi-conductive layer structure via said via
`hole.
`12. The structure of claim 9, wherein said first conductive
`layer is selected from Cr (chromium), Ti (titanium), Cr alloy,
`Ti alloy, titanium nitride, chromium nitride.
`13. The structure of claim 9, wherein said second con-
`ductive layer is selected from aluminum or aluminum alloy.
`14. The structure of claim 9, further comprising an etching
`stop layer formed on said semiconductor layer.
`15. A structure of a thin film transistor (TFT), said
`structure comprising:
`a gate electrode formed on a substrate;
`a gate insulating layer formed on said gate electrode and
`said substrate for isolation;
`a semiconductor layer formed on said gate insulating
`layer;
`a contact pad formed adjacent
`layer;
`a doped semiconductor layer formed on said semiconduc-
`tor layer as an ohmic contact layer; and
`a drain and source structure including a first conductive
`layer and a second conductive layer, wherein said first
`conductive layer is formed on said doped semiconduc-
`tor layer and said gate insulating layer, said second
`conductive layer being on said first conductive layer,
`thereby forming a multi-conductive layer structure,
`wherein said first conductive layer has rims uncovered
`by said second conductive layer to prevent a critical
`dimension loss and provide a contact structure with
`conducting layer formed thereafter.
`16. The structure of claim 15,
`further comprising a
`passivation layer formed on said source and drain structure,
`wherein said passivation layer has a via hole formed adja-
`cent to said multi-conductive layer structure and said via
`hole being aligned to said contact pad.
`17. The structure of claim 15,
`further comprising a
`transparent conducting layer formed on said passivation
`layer, wherein said transparent conducting layer contacts
`rims and sides of said multi-conductive layer structure via
`said via hole.
`18. The structure of claim 15, wherein said first conduc-
`tive layer is selected from Cr (chromium), Ti (titanium), Cr
`alloy, Ti alloy, titanium nitride, chromium nitride.
`19. The structure of claim 15, wherein said second con-
`ductive layer is selected from aluminum or aluminum alloy.
`
`to said semiconductor
`
`

`

`6,104,042
`
`9
`20. The structure of claim 15, further comprising an
`etching stop layer formed on said semiconductor layer.
`21. A structure of a thin film transistor (TFT), said
`structure comprising:
`a gate electrode formed on a substrate;
`a gate insulating layer formed on said gate electrode and
`said substrate for isolation;
`a semiconductor layer formed on said gate insulating
`layer to act a channel region , wherein said channel
`region has an extended portion extending to a via hole
`area;
`
`a doped semiconductor layer formed on said semiconduc-
`tor layer as an ohmic contact layer; and
`a drain and source structure including a first conductive
`layer and a second conductive layer, wherein said first
`conductive layer is formed on said doped semiconduc-
`tor layer and said gate insulating layer, said second
`conductive layer being on said first conductive layer,
`thereby forming a multi-conductive layer structure,
`wherein said first conductive layer has rims uncovered
`by said second conducting layer to prevent a critical
`
`10
`dimension loss and provide a contact structure with
`c

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket