throbber
Guidance for Industry
`
`E11 Clinical Investigation of
`Medicinal Products
`
`in the Pediatric Population
`
`U.S. Department of Health and Human Services
`
`Food and Drug Administration
`
`Center for Drug Evaluation and Research (CDER)
`Center for Biologics Evaluation and Research (CBER)
`
` ICH
`ICH
`December 2000
`
`Eton Ex. 1098
`1 of 17
`
`Eton Ex. 1098
`1 of 17
`
`

`

`Guidance for Industry
`
`E11 Clinical Investigation of
`Medicinal Products
`
`in the Pediatric Population
`
`Additional copies are available from:
`
`Office of Training and Communications
`Division of Communications Management
`Drug Information Branch, HFD-210
`5600 Fishers Lane
`
`Rockville, MD 20857
`(Tel) 301-827-4573
`(Internet) http://www.fda.gov/cder/guidance/index.htm
`
`Of"
`
`Office of Communication, Training and
`Manufacturers Assistance, HFM-40
`Center for Biologics Evaluation and Research
`Food and Drug Administration
`1401 Rockville Pike, Rockville, MD 20852-1448
`Internet: http://www.fda.gov/cber/guidelines.htm.
`Fax: 1-888-CBERFAX or 301-827-3844
`
`Mail: the Voice Information System at 800-835-4709 or 301-827-1800
`
`U.S. Department of Health and Human Services
`
`Food and Drug Administration
`
`Center for Drug Evaluation and Research (CDER)
`
`Center for Biologics Evaluation and Research (CBER)
`
` ICH
`ICH
`
`December 2000
`
`Eton Ex. 1098
`2 of 17
`
`Eton Ex. 1098
`2 of 17
`
`

`

`...........................................................................................................................................................1
`............................................................................................................................ 1
`.......................................................................................................................................................... 1
`....................................................................................................................................2
`.............................................................................................................................................2
`.......................................................................................................................................................................2
`................... 2
`EDIATRIC
`EVELOPMENT
`..................................................................................................................................3
`................................................................................................................................................ 4
`.................................................................................................................................................. 5
`............................................................................................... 9
`EDIATRIC ATIENTS
`...........................................................................................................12
`EDIATRIC
`
`EDIATRIC
`
`Eton Ex. 1098
`3 of 17
`
`

`

`Guidance for Industry1
`
`E11 Clinical Investigation of Medicinal Products
`in the Pediatric Population
`
`It does
`This guidance represents the Food and Drug Administration's current thinking on this topic.
`not create or confer any rights for or on any person and does not operate to bind FDA or the public.
`
`statutes and regulations.
`
`An alternative approach may be used if such approach satisfies the requirements of the applicable
`
`I.
`
`INTRODUCTION (1.)
`
`A.
`A.
`
`Objectives of the Guidance (1.1)
`
`The number of medicinal products currently labeled for pediatric use is limited. This
`guidance is intended to encourage and facilitate timely pediatric medicinal product
`development internationally. The guidance provides an outline of critical issues in pediatric
`drug development and approaches to the safe, efficient, and ethical study of medicinal
`products in the pediatric population.
`
`B.
`
`Background (1.2)
`
`Other ICH documents with relevant information affecting pediatric studies include:
`
`E2:
`
`E3:
`
`E4:
`
`E5:
`
`E6:
`
`E8:
`
`E9:
`
`Clinical Safety Data Management
`Structure and Content of Clinical Study Reports
`Dose-Response Information to Support Drug Registration
`Ethnic Factors in the Acceptability of Foreign Clinical
`Data
`
`Good Clinical Practice: Consolidated Guideline
`
`General Considerations for Clinical Trials
`
`Statistical Principles for Clinical Trials
`
`1 This guidance was prepared under the auspices of the International Conference on Harmonisation of the
`Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH).
`
`Eton Ex. 1098
`4 of 17
`
`Eton Ex. 1098
`4 of 17
`
`

`

`E10: Choice of Control Group in Clinical Trials
`M3:
`Nonclinical Safety Studies for the Conduct of Human Clinical Trials for
`Pharmaceuticals
`
`Q1 :
`02:
`Q3:
`
`C.
`C.
`
`Stability Testing
`Validation of Analytical Procedures
`Impurity Testing
`
`Scope of the Guidance (1.3.)
`
`Specific clinical study issues addressed in this guidance include:
`
`1. Considerations when initiating a pediatric program for a medicinal product;
`2. Timing of initiation of pediatric studies during medicinal product development;
`3. Types of studies (pharmacokinetic, pharmacokinetic/pharmacodynamic (PK/PD),
`efficacy, safety);
`4. Age categories; and
`5. Ethics of pediatric clinical investigation.
`
`This guidance is not intended to be comprehensive; other ICH guidances, as well as
`documents from regional regulatory authorities and pediatric societies, provide additional
`detail.
`
`D.
`D.
`
`General Principles (1.4)
`
`Pediatric patients should be given medicines that have been appropriately evaluated for
`their use in those populations. Safe and effective pharmacotherapy in pediatric patients
`requires the timely development of information on the proper use of medicinal products in
`pediatric patients of various ages and, often, the development of pediatric formulations of
`those products. Advances in formulation chemistry and in pediatric study design will help
`facilitate the development of medicinal products for pediatric use.
`
`Drug development programs should usually include the pediatric patient population when a
`product is being developed for a disease or condition in adults and it is anticipated the
`product will be used in the pediatric population. Obtaining knowledge of the effects of
`medicinal products in pediatric patients is an important goal. However, this should be done
`without compromising the well-being of pediatric patients participating in clinical studies.
`This responsibility is shared by companies, regulatory authorities, health professionals,
`and society as a whole.
`
`ll.
`
`GUIDANCE (2)
`
`A.
`A.
`
`Issues When Initiating a Pediatric Medicinal Product Development
`
`Program (2.1)
`
`Eton Ex. 1098
`5 of 17
`
`Eton Ex. 1098
`5 of 17
`
`

`

`Data on the appropriate use of medicinal products in the pediatric population should be
`generated unless the use of a specific medicinal product in pediatric patients is clearly
`inappropriate. The timing of initiation of clinical studies in relation to studies conducted in
`adults, which may be influenced by regional public health and medical needs, is discussed
`in section ”.0. Justification for the timing and the approach to the clinical program needs to
`be clearly addressed with regulatory authorities at an early stage and then periodically
`during the medicinal product development process. The pediatric development program
`should not delay completion of adult studies and availability of a medicinal product for
`adults.
`
`The decision to proceed with a pediatric development program for a medicinal product,
`and the nature of that program, involve consideration of many factors, including:
`
`- The prevalence of the condition to be treated in the pediatric population
`- The seriousness of the condition to be treated
`
`••• ••••••
`
`- The availability and suitability of alternative treatments for the condition in the
`pediatric population, including the efficacy and the adverse event profile (including
`any unique pediatric safety issues) of those treatments
`- Whether the medicinal product is novel or one of a class of compounds with known
`properties
`- Whether there are unique pediatric indications for the medicinal product
`- The need for the development of pediatric-specific endpoints
`- The age ranges of pediatric patients likely to be treated with the medicinal product
`- Unique pediatric (developmental) safety concerns with the medicinal product,
`including any nonclinical safety issues
`Potential need for pediatric formulation development
`
`-
`
`Of these factors, the most important is the presence of a serious or life-threatening disease
`for which the medicinal product represents a potentially important advance in therapy. This
`situation suggests relatively urgent and early initiation of pediatric studies.
`
`Information from nonclinical safety studies to support a pediatric clinical program is
`discussed in ICH M3.
`It should be noted that the most relevant safety data for pediatric
`studies ordinarily come from adult human exposure. Repeated dose toxicity studies,
`reproduction toxicity studies, and genotoxicity tests would generally be available. The need
`forjuvenile animal studies should be considered on a case-by-case basis and be based
`on developmental toxicology concerns.
`
`B.
`B.
`
`Pediatric Formulations (2.2)
`
`There is a need for pediatric formulations that permit accurate dosing and enhance patient
`compliance. For oral administration, different types of formulations, flavors, and colors may
`be more acceptable in one region than another. Several formulations, such as liquids,
`suspensions, and chewable tablets, may be needed or desirable for pediatric patients of
`different ages. Different drug concentrations in these various formulations may also be
`
`Eton Ex. 1098
`6 of 17
`
`Eton Ex. 1098
`6 of 17
`
`

`

`needed. Consideration should also be given to the development of alternative delivery
`systems.
`
`For injectable formulations, appropriate drug concentrations should be developed to allow
`accurate and safe administration of the dose. For medicinal products supplied as single-
`use vials, consideration should be given to dose-appropriate single-dose packaging.
`
`The toxicity of some excipients may vary across pediatric age groups and between
`pediatric and adult populations (e.g., benzyl alcohol is toxic in the preterm newborn).
`Depending on the active substance and excipients, appropriate use of the medicinal
`product in the newborn may require a new formulation or appropriate information about
`dilution of an existing formulation. International harmonization on the acceptability of
`formulation excipients and of validation procedures would help ensure that appropriate
`formulations are available for the pediatric population everywhere.
`
`C.
`C.
`
`Timing of Studies (2.3)
`
`During clinical development, the timing of pediatric studies will depend on the medicinal
`product, the type of disease being treated, safety considerations, and the efficacy and
`safety of alternative treatments. Since development of pediatric formulations can be
`difficult and time consuming, it is important to consider the development of these
`formulations early in medicinal product development.
`
`1.
`
`Medicinal Products for Diseases Predominantly or Exclusively
`Affecting Pediatric Patients (2.3.1)
`
`In such cases, the entire development program will be conducted in the pediatric
`population except for initial safety and tolerability data, which will usually be obtained in
`adults. Some products may reasonably be studied only in the pediatric population even in
`the initial phases (e.g., when studies in adults would yield little useful information or expose
`them to inappropriate risk). Examples include surfactant for respiratory distress syndrome
`in preterm infants and therapies targeted at metabolic or genetic diseases unique to the
`pediatric population.
`
`2.
`
`Medicinal Products Intended to Treat Serious or Life-Threatening
`
`Diseases, Occurring in Both Adults and Pediatric Patients, for
`Which There Are Currently No or Limited Therapeutic Options
`
`(2.3.2)
`
`The presence of a serious or life-threatening disease for which the product represents a
`potentially important advance in therapy suggests the need for relatively urgent and early
`initiation of pediatric studies.
`In such cases, medicinal product development should begin
`early in the pediatric population, following assessment of initial safety data and reasonable
`evidence of potential benefit. Pediatric study results should be part of the marketing
`
`Eton Ex. 1098
`7 of 17
`
`Eton Ex. 1098
`7 of 17
`
`

`

`In circumstances where this has not been possible, lack of data
`application database.
`should be justified in detail.
`
`3.
`
`Medicinal Products Intended to Treat Other Diseases and
`
`Conditions (2.3.3)
`
`In such cases, although the medicinal product will be used in pediatric patients, there is
`less urgency than in previous cases, and studies would usually begin at later phases of
`clinical development or, if a safety concern exists, even after substantial postmarketing
`experience in adults. Companies should have a clear plan for pediatric studies and
`reasons for their timing. Testing of these medicinal products in the pediatric population
`would usually not begin until phase 2 or 3.
`In most cases, therefore, only limited pediatric
`data would be available at the time of submission of the application, but more would be
`expected after marketing. The development of many new chemical entities is discontinued
`during or following phase 1 and 2 studies in adults for lack of efficacy or an unacceptable
`side effect profile. Therefore, very early initiation of testing in pediatric patients might
`needlessly expose these patients to a compound that will be of no benefit.
`
`In cases of a nonserious disease where the medicinal product represents a major
`therapeutic advance for the pediatric population, studies should begin early in
`development, and pediatric data should be submitted in the application. Lack of data
`should bejustified in detail. Thus, it is important to carefully weigh benefit/risk and
`therapeutic need in deciding when to start pediatric studies.
`
`D.
`D.
`
`Types of Studies (2.4)
`
`The principles outlined in ICH E4, E5, E6, and E10 apply to pediatric studies. Several
`pediatric-specific issues are worth noting. When a medicinal product is studied in
`pediatric patients in one region, the intrinsic (e.g., pharmacogenetic) and extrinsic (e.g.,
`diet) factors2 that could affect the extrapolation of data to other regions should be
`considered.
`
`When a medicinal product is to be used in the pediatric population for the same
`indication(s) as those studied and approved in adults, the disease process is similar in
`adults and pediatric patients, and the outcome of therapy is likely to be comparable,
`extrapolation from adult efficacy data may be appropriate.
`In such cases, pharmacokinetic
`studies in all the age ranges of pediatric patients likely to receive the medicinal product,
`together with safety studies, may provide adequate information for use by allowing
`selection of pediatric doses that will produce blood levels similar to those observed in
`
`2 In the ICH E5 guideline on Ethnic Factors in the Acceptance of Foreign Data, factors that may result in
`different drug responses to a drug in different populations are categorized as intrinsic ethnic factors or
`extrinsic ethnic factors.
`In this document, these categories are referred to as intrinsic factors and extrinsic
`factors, respectively.
`
`Eton Ex. 1098
`8 of 17
`
`Eton Ex. 1098
`8 of 17
`
`

`

`If this approach is taken, adult pharmacokinetic data should be available to plan the
`adults.
`pediatric studies.
`
`When a medicinal product is to be used in younger pediatric patients for the same
`indication(s) as those studied in older pediatric patients, the disease process is similar,
`and the outcome of therapy is likely to be comparable, extrapolation of efficacy from older
`to younger pediatric patients may be possible.
`In such cases, pharmacokinetic studies in
`the relevant age groups of pediatric patients likely to receive the medicinal product,
`together with safety studies, may be sufficient to provide adequate information for pediatric
`use.
`
`An approach based on pharmacokinetics is likely to be insufficient for medicinal products
`where blood levels are known or expected not to correspond with efficacy or where there is
`concern that the concentration-response relationship may differ between the adult and
`pediatric populations.
`In such cases, studies of the clinical or the pharmacological effect of
`the medicinal product would usually be expected.
`
`Where the comparability of the disease course or outcome of therapy in pediatric patients
`is expected to be similar to adults, but the appropriate blood levels are not clear, it may be
`possible to use measurements of a pharmacodynamic effect related to clinical
`effectiveness to confirm the expectations of effectiveness and to define the dose and
`concentration needed to attain that pharmacodynamic effect. Such studies could provide
`increased confidence that achieving a given exposure to the medicinal product in pediatric
`patients would result in the desired therapeutic outcomes. Thus, a PK/PD approach
`combined with safety and other relevant studies could avoid the need for clinical efficacy
`studies.
`
`In other situations where a pharmacokinetic approach is not applicable, such as for
`topically active products, extrapolation of efficacy from one patient population to another
`can be based on studies that include pharmacodynamic endpoints and/or appropriate
`alternative assessments. Local tolerability studies may be appropriate.
`It may be
`important to determine blood levels and systemic effects to assess safety.
`
`When novel indications are being sought for the medicinal product in pediatric patients or
`when the disease course and outcome of therapy are likely to be different in adults and
`pediatric patients, clinical efficacy studies in the pediatric population are recommended.
`
`1.
`
`Pharmacokinetics (2.4. 1)
`
`Pharmacokinetic studies generally should be performed to support formulation
`development and determine pharmacokinetic parameters in different age groups to
`support dosing recommendations. Relative bioavailability comparisons of pediatric
`formulations with the adult oral formulation typically should be done in adults. Definitive
`pharmacokinetic studies for dose selection across the age ranges of pediatric patients in
`
`Eton Ex. 1098
`9 of 17
`
`Eton Ex. 1098
`9 of 17
`
`

`

`whom the medicinal product is likely to be used should be conducted in the pediatric
`population.
`
`Pharmacokinetic studies in the pediatric population should generally be conducted in
`patients with the disease. This may lead to higher intersubject variability than studies in
`normal volunteers, but the data will better reflect clinical use.
`
`For medicinal products that exhibit linear pharmacokinetics in adults, single-dose
`pharmacokinetic studies in the pediatric population may provide sufficient information for
`dosage selection. This can be corroborated, if indicated, by sparse sampling in multidose
`clinical studies. Any nonlinearity in absorption, distribution, and elimination in adults and
`any difference in duration of effect between single and repeated dosing in adults would
`suggest the need for steady state studies in the pediatric population. All these approaches
`can be facilitated by knowledge of adult pharmacokinetic parameters. Knowing the
`pathways of clearance (renal and metabolic) of the medicinal product and understanding
`the age-related changes of those processes can often be helpful in planning pediatric
`studies.
`
`Dosing recommendations for most medicinal products used in the pediatric population are
`usually based on milligram (mg)/kilogram (kg) body weight up to a maximum adult dose.
`While dosing based on mg/square meter body surface area might be preferred, clinical
`experience indicates that errors in measuring height or length (particularly in smaller
`children and infants) and calculation errors of body surface area from weight and height are
`common. For some medications (e.g., medications with a narrow therapeutic index, such
`as those used in oncology), surface-area-guided dosing may be necessary, but extra care
`should be taken to ensure proper dose calculation.
`
`Practical considerations to facilitate pharmacokinetic studies
`
`The volume of blood withdrawn should be minimized in pediatric studies. Blood volumes
`should be justified in protocols. Institutional review boards/independent ethics committees
`(lRBs/lECs) review and may define the maximum amount of blood (usually on a milliliters
`(mL)/kg or percentage of total blood volume basis) that may be taken for investigational
`purposes. Several approaches can be used to minimize the amount of blood drawn and/or
`the number of venipunctures.
`
`-
`
`Sensitive assays for parent drugs and metabolites to decrease the volume of blood
`required per sample
`
`• • •
`
`- Laboratories experienced in handling small volumes of blood for pharmacokinetic
`analyses and for laboratory safety studies (blood counts, clinical chemistry)
`
`- Collection of routine, clinical blood samples wherever possible at the same time as
`samples are obtained for pharmacokinetic analysis
`
`Eton Ex. 1098
`10 of 17
`
`Eton Ex. 1098
`10 of 17
`
`

`

`••-
`
`The use of indwelling catheters, to minimize distress as discussed in section II.E.5.
`
`- Use of population pharmacokinetics and sparse sampling based on optimal sampling
`theory to minimize the number of samples obtained from each patient. Techniques
`include (1) sparse sampling approaches where each patient contributes as few as 2 to
`
`4 observations at predetermined times to an overall population area-under—the—curve
`and (2) population pharmacokinetic analysis using the most useful sampling time points
`derived from modeling of adult data.
`
`2.
`
`Efficacy (2.4.2)
`
`The principles in study design, statistical considerations, and choice of control groups
`detailed in ICH E6, E9, and E10 generally apply to pediatric efficacy studies. There are,
`however, certain features unique to pediatric studies. The potential for extrapolation of
`efficacy from studies in adults to pediatric patients or from older to younger pediatric
`patients is discussed in section II.D. Where efficacy studies are going to be conducted,
`companies may want to develop, validate, and employ different endpoints for specific age
`and developmental subgroups. Measurement of subjective symptoms, such as pain, calls
`for different assessment instruments for patients of different ages. In pediatric patients with
`chronic diseases, the response to a medicinal product may vary among patients not only
`because of the duration of the disease and its chronic effects but also because of the
`
`developmental stage of the patient. Many diseases in the preterm and term newborn infant
`are unique or have unique manifestations precluding extrapolation of efficacy from older
`pediatric patients and call for novel methods of outcome assessment.
`
`3.
`
`Safety (2.4.3)
`
`ICH guidances on E2 topics and ICH E6, which describe adverse event reporting, apply to
`pediatric studies. Age-appropriate, normal laboratory values and clinical measurements
`should be used in adverse event reporting. Unintended exposures to medicinal products
`(accidental ingestions) may provide the opportunity to obtain safety and pharmacokinetic
`information and to maximize understanding of dose-related side effects.
`
`Medicinal products may affect physical and cognitive growth and development, and the
`adverse event profile may differ in pediatric patients. Because developing systems may
`respond differently from matured adult organs, some adverse events and drug interactions
`that occur in pediatric patients may not be identified in adult studies.
`In addition, the
`dynamic processes of growth and development may not manifest an adverse event acutely,
`but at a later stage of growth and maturation. Long-term studies or surveillance data, either
`while patients are on chronic therapy or during the posttherapy period, may be needed to
`determine possible effects on skeletal, behavioral, cognitive, sexual, and immune
`maturation and development.
`
`4.
`
`Postmarketing Information (2.4.4)
`
`Eton Ex. 1098
`11 of 17
`
`Eton Ex. 1098
`11 of 17
`
`

`

`Normally the pediatric database is limited at the time of approval. Therefore,
`postmarketing surveillance is particularly important.
`In some cases, long-term follow-up
`studies may be important to determine effects of certain medications on growth and
`development of pediatric patients. Postmarketing surveillance and/or long-term follow-up
`studies may provide safety and/or efficacy information for subgroups within the pediatric
`population or additional information for the entire pediatric population.
`
`E.
`
`Age Classification of Pediatric Patients (2.5)
`
`Any classification of the pediatric population into age categories is to some extent
`arbitrary, but a classification such as the one below provides a basis for thinking about
`study design in pediatric patients. Decisions on how to stratify studies and data by age
`should take into consideration developmental biology and pharmacology. Thus, a flexible
`approach is necessary to ensure that studies reflect current knowledge of pediatric
`pharmacology. The identification of which ages to study should be medicinal product-
`specific and justified.
`
`If the clearance pathways of a medicinal product are well established and the ontogeny of
`the pathways is understood, age categories for pharmacokinetic evaluation might be
`chosen based on any break pointwhere clearance is likely to change significantly.
`Sometimes, it may be more appropriate to collect data over broad age ranges and
`examine the effect of age as a continuous covariant. For efficacy, different endpoints may
`be established for pediatric patients of different ages, and the age groups might not
`correspond to the categories presented below. Dividing the pediatric population into many
`age groups might needlessly increase the number of patients required.
`In longer term
`studies, pediatric patients may move from one age category to another; the study design
`and statistical plans should prospectively take into account changing numbers of patients
`within a given age category.
`
`The following is one possible categorization. There is, however, considerable overlap in
`developmental (e.g., physical, cognitive, and psychosocial) issues across the age
`categories. Ages are defined in completed days, months, or years.
`
`Preterm newborn infants
`
`•••••
`
`-
`
`- Term newborn infants (0 to 27 days)
`-
`Infants and toddlers (28 days to 23 months)
`- Children (2 to 11 years)
`- Adolescents (12 to 16-18 years (dependent on region))
`
`1.
`
`Preterm Newborn Infants (2.5.1)
`
`The study of medicinal products in preterm newborn infants presents special challenges
`because of the unique pathophysiology and responses to therapy in this population. The
`complexity of and ethical considerations involved in studying preterm newborn infants
`suggest the need for careful protocol development with expert input from neonatologists
`
`Eton Ex. 1098
`12 of 17
`
`Eton Ex. 1098
`12 of 17
`
`

`

`and neonatal pharmacologists. Only rarely will it be possible to extrapolate efficacy from
`studies in adults or even in older pediatric patients to the preterm newborn infant.
`
`The category of preterm newborn infants is not a homogeneous group of patients. A 25-
`week gestation, 500-gram (g) newborn is very different from a 30-week gestation newborn
`weighing 1,500 g. A distinction should also be made for low-birth-weight babies as to
`whether they are immature or growth retarded. Important features that should be
`considered for these patients include:
`
`S-"PP’NT‘
`
`9’
`
`7.
`
`8.
`
`gestational age at birth and age after birth (adjusted age);
`immaturity of renal and hepatic clearance mechanisms;
`protein binding and displacement issues (particularly bilirubin);
`penetration of medicinal products into the central nervous system (CNS);
`unique neonatal disease states (e.g., respiratory distress syndrome of the newborn,
`patent ductus arteriosus, primary pulmonary hypertension);
`unique susceptibilities of the preterm newborn (e.g., necrotizing enterocolitis,
`intraventricular hemorrhage, retinopathy of prematurity);
`rapid and variable maturation of all physiologic and pharmacologic processes
`leading to different dosing regimens with chronic exposure; and
`transdermal absorption of medicinal products and other chemicals.
`
`Study design issues that should be considered include:
`
`1. weight and age (gestational and postnatal) stratification;
`2. small blood volumes (a 500-g infant has 40 mL of blood);
`3. small numbers of patients at a given center and differences in care among centers;
`and
`
`4. difficulties in assessing outcomes.
`
`2.
`
`Term Newborn Infants (0 to 27 days) (2.5.2)
`
`Although term newborn infants are developmentally more mature than preterm newborn
`infants, many of the physiologic and pharmacologic principles discussed above also apply
`to term infants. Volumes of distribution of medicinal products may be different from those
`in older pediatric patients because of different body water and fat content and high body-
`surface—area-to-weight ratio. The blood-brain barrier is still not fully mature and medicinal
`products and endogenous substances (e.g., bilirubin) may gain access to the CNS with
`resultant toxicity. Oral absorption of medicinal products may be less predictable than in
`older pediatric patients. Hepatic and renal clearance mechanisms are immature and
`rapidly changing; doses may need to be adjusted over the first weeks of life. Many
`examples of increased susceptibility to toxic effects of medicinal products result from
`limited clearance in these patients (e.g., chloramphenicol grey baby syndrome). On the
`other hand, term newborn infants may be less susceptible to some types of adverse effects
`(e.g., aminoglycoside nephrotoxicity) than are patients in older age groups.
`
`10
`
`Eton Ex. 1098
`13 of 17
`
`Eton Ex. 1098
`13 of 17
`
`

`

`3.
`
`Infants and Toddlers (28 days to 23 months) (2.5.3)
`
`This is a period of rapid CNS maturation, immune system development, and total body
`growth. Oral absorption becomes more reliable. Hepatic and renal clearance pathways
`continue to mature rapidly. By 1 to 2 years of age, clearance of many drugs on a mg/kg
`basis may exceed adult values. The developmental pattern of maturation is dependent on
`specific pathways of clearance. There is often considerable inter-individual variability in
`maturation.
`
`4.
`
`Children (2 to 11 years) (2.5.4)
`
`Most pathways of drug clearance (hepatic and renal) are mature, with clearance often
`exceeding adult values. Changes in clearance of a drug may be dependent on maturation
`of specific metabolic pathways.
`
`Specific strategies should be addressed in protocols to ascertain any effects of the
`medicinal product on growth and development. Children achieve several important
`milestones of psychomotor development that could be adversely affected by CNS-active
`drugs. Entry into school and increased cognitive and motor skills may affect a child’s
`ability to participate in some types of efficacy studies. Factors useful in measuring the
`effects of a medicinal product on children include skeletal growth, weight gain, school
`attendance, and school performance. Recruitment of patients should ensure adequate
`representation across the age range in this category, as it is important to ensure a
`sufficient number of younger patients for evaluation. Stratification by age within this
`category is often unnecessary, but it may be appropriate to stratify patients based on
`pharmacokinetic and/or efficacy endpoint considerations.
`
`The onset of puberty is highly variable and occurs earlier in girls, in whom normal onset of
`puberty may occur as early as 9 years of age. Puberty can affect the apparent activity of
`enzymes that metabolize drugs, and dose requirements for some medicinal products on a
`mg/kg basis may decrease dramatically (e.g., theophylline).
`In some cases, it may be
`appropriate to specifically assess the effect of puberty on a medicinal product by studying
`pre— and postpubertal pediatric patients.
`In other cases, it may be appropriate to record
`Tanner stages of pubertal development or obtain biological markers of puberty and
`examine data for any potential influence of pubertal changes.
`
`5.
`
`Adolescents (12 to 16-18 years (dependent on region)) (2.5.5)
`
`This is a period of sexual maturation; medicinal products may interfere with the actions of
`sex hormones and impede development. In certain studies, pregnancy testing and review
`of sexual activity and contraceptive use may be appropriate.
`
`This is also a period of rapid growth and continued neurocognitive development.
`Medicinal products and illnesses that delay or accelerate the onset of puberty can have a
`profound effec

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket