throbber
REVIEWS
`
`Valerie S. Salazar, Laura W. Gamer and Vicki Rosen
`
`BMP signalling in skeletal
`development, disease and repair
`
`Abstract | Since the identification in 1988 of bone morphogenetic protein 2 (BMP2) as a potent
`inducer of bone and cartilage formation, BMP superfamily signalling has become one of the most
`heavily investigated topics in vertebrate skeletal biology. Whereas a large part of this research has
`focused on the roles of BMP2, BMP4 and BMP7 in the formation and repair of endochondral bone,
`a large number of BMP superfamily molecules have now been implicated in almost all aspects of
`bone, cartilage and joint biology. As modulating BMP signalling is currently a major therapeutic
`target, our rapidly expanding knowledge of how BMP superfamily signalling affects most tissue
`types of the skeletal system creates enormous potential to translate basic research findings into
`successful clinical therapies that improve bone mass or quality, ameliorate diseases of skeletal
`overgrowth, and repair damage to bone and joints. This Review examines the genetic evidence
`implicating BMP superfamily signalling in vertebrate bone and joint development, discusses a
`selection of human skeletal disorders associated with altered BMP signalling and summarizes the
`status of modulating the BMP pathway as a therapeutic target for skeletal trauma and disease.
`
`The human skeleton includes over 200 bones and 340
`joints, as well as an intricate network of tendons, lig-
`aments and cartilage. During development and post-
`natal life, bone and joint health is profoundly affected
`by genetics and environmental factors such as nutrition
`and exercise. Unsurprisingly, the skeletal system is a
`major site of human disease. As the name implies, bone
`morphogenetic proteins (BMPs) were originally discov-
`ered by their ability to induce new bone formation1–4;
`accordingly, recombinant human BMPs have been
`exploited as osteoinductive agents to repair bone defects
`in clinical settings5. However, our current understanding
`of BMP superfamily molecules further establishes these
`signals as mediators of normal skeletogenesis as well as
`the underlying aetiology of several debilitating skeletal
`pathologies including fibrodysplasia ossificans progres-
`siva (FOP)6, Marfan syndrome7, Loeys–Dietz syndrome8
`and osteoarthritis9,10. In this Review, we describe BMP
`superfamily signalling in the context of skeletal devel-
`opment and joint morphogenesis, with the premise
`that the pathway is poised as a promising therapeutic
`target for treating skeletal trauma and diseases beyond
`bone repair. We open with a historical account of how
`BMPs were discovered, present a phylogenetic analysis
`of key molecules in the BMP signalling pathway and
`summarize fundamental BMP family signalling mech-
`anisms in vertebrates. We then discuss developmental
`skeletogenesis, focusing on the genetic evidence from
`
`mice and humans supporting a decisive role for the
`BMP pathway in skeletal development and disease and
`conclude by summarizing nodes of the pathway that are
`currently or potentially accessible as therapeutic targets
`for clinical medicine.
`
`Historical perspective
`
`Marshall Urist practiced orthopaedic surgery and con-
`ducted scientific research at the University of California,
`Los Angeles Medical School, USA, for nearly half of the
`twentieth century. At the time of his practice, the thera-
`peutic potential of applying shavings from healthy bone
`to heal major bone defects had long been recognized
`in orthopaedic settings11, although the mechanism for
`repair was unknown. In the 1960s, Urist identified an
`interfibrillar protein complex1 in demineralized rabbit
`bone able to induce calcified cartilage from minced mus-
`cles in vitro2 and bone formation at nonskeletal sites in
`rats3. Urist named this factor bone morphogenetic pro-
`tein. Although initially ignored, Urist’s work was eventu-
`ally reproduced and published by Nobel laureate Charles
`Huggins12, sparking intense efforts to identify and purify
`bone morphogenetic protein. The challenging purifica-
`tion of BMPs from bone matrix took many years and,
`in the end, researchers were unable to purify a homo-
`geneous BMP13,14. Human BMPs were finally cloned
`in 1988, and it was then realized that the BMP activity
`Urist first identified consisted of multiple individual
`
` VOLUME 12 | APRIL 2016 | 203
`
`(cid:49)(cid:35)(cid:50)(cid:35)(cid:49)(cid:53)(cid:35)(cid:34)(cid:421)
`
`(cid:17)(cid:52)(cid:32)(cid:43)(cid:40)(cid:50)(cid:39)(cid:35)(cid:49)(cid:50)
`(cid:613)
`
`(cid:12)(cid:40)(cid:44)(cid:40)(cid:51)(cid:35)(cid:34)(cid:421)
`(cid:613)
`
`(cid:1)(cid:43)(cid:43)
`(cid:613)
`
`(cid:49)(cid:40)(cid:37)(cid:39)(cid:51)(cid:50)
`(cid:613)
`
`(cid:400)(cid:398)(cid:399)(cid:406)
`(cid:613)
`
`(cid:13)(cid:31)(cid:33)(cid:44)(cid:40)(cid:43)(cid:43)(cid:31)(cid:45)
`(cid:613)
`
`(cid:479)(cid:613)
`
`Department of Developmental
`Biology, Harvard School
`of Dental Medicine,
`188 Longwood Avenue,
`Boston, Massachusetts
`02115, USA.
`
`Correspondence to V.R.
`vicki_rosen@
`hsdm.harvard.edu
`
`doi:10.1038/nrendo.2016.12
`
`Published online 19 Feb 2016
`
`NATURE REVIEWS | ENDOCRINOLOGY
`
`Lassen - Exhibit 1025, p. 1
`
`

`

`REVIEWS
`Key points
`• Phylogenetic analysis indicates that the bone morphogenetic protein (BMP) pathway
`is ancient and highly conserved across the animal kingdom
`• Gene duplication and divergence has created a diverse matrix of BMP ligand–
`receptor pairs that achieve sophisticated control of signalling through variable
`activity profiles and functional redundancy
`• Members of the BMP superfamily affect almost all aspects of bone, cartilage and
`• Altered BMP signalling is a major underlying cause of human skeletal disorders
`• Modulation of BMP signalling is emerging as a promising therapeutic strategy for
`improving bone mass and bone quality, ameliorating diseases of skeletal overgrowth
`and repairing damage to bones and joints
`
`(cid:76)(cid:81)(cid:75)(cid:80)(cid:86)(cid:124)(cid:68)(cid:75)(cid:81)(cid:78)(cid:81)(cid:73)(cid:91)
`
`related gene products4. Since that time, recombinant
`human BMP2 and BMP7 have been used in ortho paedic
`applications, where enhancing bone repair by activat-
`ing BMP signalling has become standard practice in
`treating non-union fractures, spinal surgeries and oral
`maxillofacial procedures5,15.
`
`Signalling mechanisms of the BMP pathway
`Essential components
`
`The BMP pathway is at least 1.2–1.4 billion years old,
`emerging in the evolutionary record with multi-cellu-
`lar animals16. Consistent with the role of transmitting
`information between cells, BMP signalling coordinates
`many developmental processes including body axis
`determination17, germ layer specification, tissue mor-
`phogenesis and cell-fate specification. Phylogenetic
`analysis reveals that protein sequences for ligands,
`receptors and SMADs of the BMP pathway are highly
`conserved across distant species in the animal kingdom
`such as mice, flies and worms18. Full-length protein
`sequences of human and fly orthologues also exhibit
`considerable similarity19,20 (FIG. 1), and this evolutionary
`conservation is particularly striking in the amino acid
`sequence of active mature signalling proteins produced
`after post-translational processing of prepeptide and
`propeptide domains21,22. In fact, striking examples of
`cross-species activity have been documented in which fly
`orthologues of BMP2 and/or BMP4 and BMP7 (Dpp and
`Gbb, respectively) can successfully induce endochondral
`bone formation when implanted in mammals23.
`At the most empirical level, BMP signalling relies
`on a source of secreted ligands and a target cell express-
`ing type I and type II BMP receptors. Ligand-binding
`events activate a complex array of downstream intra-
`cellular mediators including, most notably, the canon-
`ical SMAD pathway 21,24. Although weak transcription
`factors on their own, SMADs are potent regulators of
`gene expression via their ability to recruit chromatin-
`remodelling machinery and tissue-specific transcrip-
`tion factors to the genomic landscape25–28. Despite the
`seemingly simple nature of this signal transduction cas-
`cade, >30 secreted ligands, seven type I receptors, five
`type II receptors and eight SMADs have been identi-
`fied in humans. Gene expression programs initiated by
`BMP superfamily signals are therefore highly diverse
`and tailored by factors such as ligand identity and
`
`204 | APRIL 2016 | VOLUME 12
`
`concentration, the type I and type II receptor profile
`on the target cell, the repertoire of tissue-specific tran-
`scription factors that define which SMAD-dependent
`gene targets are regulated27 and the status of the epi-
`genetic landscape26. The number of genes regulated by
`any single BMP superfamily ligand can therefore be
`either very low or very high, permitting the system to
`accommodate distinct transcriptional requirements of
`both quiescent stem cells and differentiated cells with
`complex physiological activity.
`
`Ligands. This extensive ligand family includes BMPs,
`growth/differentiation factors (GDFs), transform-
`ing growth factors (TGFs), activins, Nodal, and anti-
`Müllerian hormone (AMH). Collectively, these mol-
`ecules are typically referred to as the TGF-β superfam-
`ily, although this terminology is based on the order of
`their discovery as opposed to phylogenetic analysis,
`which identifies BMP2 as the founding family mem-
`ber22. Whereas BMPs were discovered as a result of their
`osteo inductive qualities, activins and inhibins were orig-
`inally discovered by their opposing control of follicle-
`stimulating hormone production29, and TGF-βs were first
`reported as secreted factors that conferred malignancy
`on cells via autocrine induction30. Aside from sequence
`similarity, these ligands can be further organized into
`three groups on the basis of preferred receptor usage and
`SMAD1/5/8 versus SMAD2/3 signalling activity (FIG. 2).
`In general, ligands are initially translated as prepropro-
`teins, which facilitates targeting to the secretory pathway
`for proteo lytic cleavage and enables noncovalent assem-
`bly into fully active dimers upon secretion via conserved
`cystine knot motifs31,32. Except for Nodal, proteolytic acti-
`vation and dimerization is essential for signalling33. Both
`homo dimers and heterodimers exhibit biological activ-
`ity34 that is well typified by activins, which can form active
`homodimers or heterodimers of activin βA, activin βB,
`activin βC or activin βE subunits. Activins can alterna-
`tively dimerize with inhibin α, and although this dimer
`retains receptor-binding activity, it constitutes a non-
`signal-generating ligand. Most ligands exhibit local
`para crine activity, although some BMPs, activins,
`TGF-βs and GDFs are thought to circulate and exert
`systemic effects35–39.
`
`Receptors. Type I and type II BMP receptors are the only
`known class of transmembrane cell surface receptors in
`humans with serine/threonine kinase activity. A mature
`receptor signalling complex requires one ligand dimer,
`two type I receptors and two type II receptors (FIG. 2).
`Several mechanisms are utilized to form activated
`ligand:receptor complexes, which affect the specific-
`ity of ligand-receptor pairing 40,41 and competition by
`distinct ligands for shared receptors42. Whereas type II
`receptors are constitutively active, type I receptors
`encode a Gly/Ser-rich domain that must be phospho-
`rylated by a type II receptor to activate intrinsic kinase
`activity (FIG. 2) and subsequently stimulate the recruit-
`ment and phosphorylation of the essential downstream
`pathway mediators known as receptor-activated SMADs
`(R-SMADs)43 (FIG. 2).
`
`www.nature.com/nrendo
`
`(cid:49)(cid:35)(cid:50)(cid:35)(cid:49)(cid:53)(cid:35)(cid:34)(cid:421)
`
`(cid:49)(cid:40)(cid:37)(cid:39)(cid:51)(cid:50)
`(cid:613)
`
`(cid:17)(cid:52)(cid:32)(cid:43)(cid:40)(cid:50)(cid:39)(cid:35)(cid:49)(cid:50)
`(cid:613)
`
`(cid:12)(cid:40)(cid:44)(cid:40)(cid:51)(cid:35)(cid:34)(cid:421)
`(cid:613)
`
`(cid:1)(cid:43)(cid:43)
`(cid:613)
`
`(cid:400)(cid:398)(cid:399)(cid:406)
`(cid:613)
`
`(cid:13)(cid:31)(cid:33)(cid:44)(cid:40)(cid:43)(cid:43)(cid:31)(cid:45)
`(cid:613)
`
`(cid:479)(cid:613)
`
`Lassen - Exhibit 1025, p. 2
`
`

`

`a
`
`LEFTYA
`LEFTYB
`
`2.0
`
`Ligands
`
`b
`
`REVIEWS
`Type I receptors
`Decapentaplegic
`BMP2BMP4BMP9/GDF2
`Thickveins
`ALK3/BMPR1A
`ALK6/BMPR1BSaxophone
`BMP10GDF5/BMP14
`ALK1/ACVRL1
`GDF7/BMP12
`ALK2/ACVR1
`GDF6/BMP13
`GDF1
`Baboon
`GDF3 GDF15GDF9
`ALK4/ACVR1B
`ALK7/ACVR1C
`ALK5/TGFBR1
`BMP15
`PuntACVR2B
`NODALScrew
`Type II receptors
`Glass bottom boat
`ACVR2C
`BMP8A
`TGFBR2
`BMP8B/OP2
`Wishful thinking
`BMP6BMP5
`BMPR2
`AMHR2
`BMP7/OP1
`AMH/MIS
`TGF-β1
`TGF-β2
`TGF-β3Activin β
`Co-SMADS
`Medea
`INHβA/ACTA
`SMAD4
`INHβB/ACTB
`Mad
`BMP/GDF
`INHβC/ACTC
`SMAD1
`R-Smads
`INHβE/ACTE
`SMAD5
`Dawdle
`GDF11/BMP11
`SMAD8
`GDF8/MSTNMyoglianin
`SMAD2
`TGF-β/Activin
`SMAD3
`R-SMADS
`BMP3BMP3B/GDF10
`Smox
`Dad
`I-SMADS
`Maverick
`SMAD6
`INHα
`SMAD7
`0.5
`Figure 1 | Phylogenetic analysis of BMP superfamily molecules. Protein sequences from flies and humans were
`aligned to assess evolutionary relationships between bone morphogenetic protein (BMP) superfamily molecules.
`Human proteins are designated in all capital letters; only the first letter of fly proteins is capitalized. For ligands,
`preproprotein sequences were used for alignments. The longest known isoform of each molecule was used when
`applicable. Molecules are grouped into a | ligands, b |(cid:2)(cid:86)(cid:91)(cid:82)(cid:71)(cid:124)(cid:43)(cid:2)(cid:67)(cid:80)(cid:70)(cid:2)(cid:86)(cid:91)(cid:82)(cid:71)(cid:124)(cid:43)(cid:43)(cid:2)(cid:84)(cid:71)(cid:69)(cid:71)(cid:82)(cid:86)(cid:81)(cid:84)(cid:85)(cid:2)(cid:67)(cid:80)(cid:70)(cid:2)c | SMADs. Branch lengths are
`drawn to scale; the scale bar indicates to the number of amino acid substitutions per site between two compared
`sequences. ACV, activin; ACVR, activin receptor; ALK, activin receptor-like kinase; AMH, anti-Müllerian hormone;
`(cid:35)(cid:47)(cid:42)(cid:52)(cid:20)(cid:14)(cid:2)(cid:35)(cid:47)(cid:42)(cid:2)(cid:84)(cid:71)(cid:69)(cid:71)(cid:82)(cid:86)(cid:81)(cid:84)(cid:15)(cid:20)(cid:29)(cid:2)(cid:36)(cid:47)(cid:50)(cid:52)(cid:14)(cid:2)(cid:36)(cid:47)(cid:50)(cid:2)(cid:84)(cid:71)(cid:69)(cid:71)(cid:82)(cid:86)(cid:81)(cid:84)(cid:29)(cid:2)(cid:41)(cid:38)(cid:40)(cid:14)(cid:2)(cid:73)(cid:84)(cid:81)(cid:89)(cid:86)(cid:74)(cid:17)(cid:70)(cid:75)(cid:72)(cid:72)(cid:71)(cid:84)(cid:71)(cid:80)(cid:86)(cid:75)(cid:67)(cid:86)(cid:75)(cid:81)(cid:80)(cid:2)(cid:72)(cid:67)(cid:69)(cid:86)(cid:81)(cid:84)(cid:29)(cid:2)(cid:43)(cid:48)(cid:42)β, inhibin β; co-SMAD,
`(cid:69)(cid:81)(cid:79)(cid:79)(cid:81)(cid:80)(cid:2)(cid:53)(cid:47)(cid:35)(cid:38)(cid:29)(cid:2)(cid:43)(cid:15)(cid:53)(cid:47)(cid:35)(cid:38)(cid:14)(cid:2)(cid:75)(cid:80)(cid:74)(cid:75)(cid:68)(cid:75)(cid:86)(cid:81)(cid:84)(cid:91)(cid:2)(cid:53)(cid:47)(cid:35)(cid:38)(cid:29)(cid:2)(cid:52)(cid:15)(cid:53)(cid:47)(cid:35)(cid:38)(cid:14)(cid:2)(cid:84)(cid:71)(cid:69)(cid:71)(cid:82)(cid:86)(cid:81)(cid:84)(cid:15)(cid:67)(cid:69)(cid:86)(cid:75)(cid:88)(cid:67)(cid:86)(cid:71)(cid:70)(cid:2)(cid:53)(cid:47)(cid:35)(cid:38)(cid:29)(cid:2)(cid:54)(cid:41)(cid:40)(cid:15)β(cid:14)(cid:2)(cid:86)(cid:84)(cid:67)(cid:80)(cid:85)(cid:72)(cid:81)(cid:84)(cid:79)(cid:75)(cid:80)(cid:73)(cid:2)(cid:73)(cid:84)(cid:81)(cid:89)(cid:86)(cid:74)(cid:2)(cid:72)(cid:67)(cid:69)(cid:86)(cid:81)(cid:84)(cid:124)β;
`TGFBR, TGF-β receptor.
`
`0.5
`
`c
`
`SMADs. SMADs are homologues of Drosophila melano-
`gaster Mad proteins (mothers against decapentaplegic)
`and Caenorhabditis elegans SMA proteins (small body
`size), and encode cytoplasmic proteins required for
`responsiveness to BMP superfamily ligands44. SMADs are
`modular in structure, with many highly conserved motifs.
`Among these, the N-terminal MH1 domain contains a
`sequence-selective45 DNA-binding motif 46 and nuclear
`localization signal47 essential for SMAD-dependent
`effects on gene expression in response to ligand-binding
`events48. A conserved L3 loop motif mediates direct bind-
`ing between R-SMADs and activated receptors and deter-
`mines SMAD1/5 versus SMAD2/3 pairing specificity49.
`A series of serine/threonine residues in the linker domain
`
`NATURE REVIEWS | ENDOCRINOLOGY
`
`enables SMADs to receive regulatory inputs from a vari-
`ety of intracellular kinase cascades including inhibitory
`regulation by mitogen-activated protein kinase (MAPK)50
`and glycogen synthase kinase 3β (GSK3β)51,52, facili-
`tating integration of BMP signals with other pathways
`including fibroblast growth factor (FGF) and WNT. The
`C-terminus of SMADs contains serine/threonine (Ser/
`Thr) residues directly phosphorylated by type I receptors,
`as well as protein–protein interaction domains that medi-
`ate R-SMAD/SMAD4 trimerization53 (FIG. 2). Activated
`SMAD complexes translocate to the nucleus where they
`target the genome via consensus SMAD-binding motifs,
`integrate with tissue-specific transcription factors and
`recruit chromatin remodelling machinery25–28 (FIG. 2).
`
` VOLUME 12 | APRIL 2016 | 205
`
`(cid:49)(cid:35)(cid:50)(cid:35)(cid:49)(cid:53)(cid:35)(cid:34)(cid:421)
`
`(cid:17)(cid:52)(cid:32)(cid:43)(cid:40)(cid:50)(cid:39)(cid:35)(cid:49)(cid:50)
`(cid:613)
`
`(cid:12)(cid:40)(cid:44)(cid:40)(cid:51)(cid:35)(cid:34)(cid:421)
`(cid:613)
`
`(cid:1)(cid:43)(cid:43)
`(cid:613)
`
`(cid:49)(cid:40)(cid:37)(cid:39)(cid:51)(cid:50)
`(cid:613)
`
`(cid:400)(cid:398)(cid:399)(cid:406)
`(cid:613)
`
`(cid:13)(cid:31)(cid:33)(cid:44)(cid:40)(cid:43)(cid:43)(cid:31)(cid:45)
`(cid:613)
`
`(cid:479)(cid:613)
`
`Lassen - Exhibit 1025, p. 3
`
`

`

`Activin
`• Activin βA
`• Activin βB
`e.g. Noggin
`• Activin βC
`• Activin βE
`• Myostatin
`• GDF1/3/11/15
`• BMP3
`• Activin β/Inhibin α
`• LEFTYA/B
`• ACVR2A
`• ACVR2A
`• ACVR2B
`• ACVR2B
`• BMPR2
`• AMHR2
`
`TGF-β
`e.g. Follistatin,
`• TGF-β1
`proprotein
`• TGF-β2
`latency
`• TGF-β3
`• ALK4 (βA)
`• ALK7 (βA/B, βB/B, Nodal)
`• ALK5 (MSTN)
`
`ALK5
`
`Proprotein
`latency
`TGFBR2
`
`REVIEWS
`BMP/GDF
`• BMP2/4/7
`• BMP5/6/7/8A/8B
`• BMP9/10/15
`• GDF5/6/7
`• AMH
`• MIS
`• ALK1
`• ALK2
`• ALK3
`• ALK6
`
`Ligands
`
`Receptor
`
`Recruitment
`Phosphorylation
`
`Trimerization
`
`expression
`Gene
`
`P
`
`PP
`P
`
`P P
`SMAD4
`
`SMAD1/5/8
`P
`
`PP
`
`PP
`
`P
`P
`
`SMAD2/3
`P
`
`P P
`
`P
`
`PP
`SMAD2/3
`P P
`
`P
`P
`P
`P
`SMAD1/5/8 responsive genes
`SMAD2/3 responsive genes
`• SMAD-dependent recruitment of chromatin remodelling factors (e.g. SWI/SNF) or histone modifying enzymes (e.g. p300, CBP)
`• (cid:52)(cid:71)(cid:69)(cid:84)(cid:87)(cid:75)(cid:86)(cid:79)(cid:71)(cid:80)(cid:86)(cid:2)(cid:67)(cid:80)(cid:70)(cid:17)(cid:81)(cid:84)(cid:2)(cid:75)(cid:80)(cid:86)(cid:71)(cid:73)(cid:84)(cid:67)(cid:86)(cid:75)(cid:81)(cid:80)(cid:2)(cid:89)(cid:75)(cid:86)(cid:74)(cid:2)(cid:69)(cid:71)(cid:78)(cid:78)(cid:15)(cid:86)(cid:91)(cid:82)(cid:71)(cid:2)(cid:85)(cid:82)(cid:71)(cid:69)(cid:75)(cid:558)(cid:69)(cid:2)(cid:86)(cid:84)(cid:67)(cid:80)(cid:85)(cid:69)(cid:84)(cid:75)(cid:82)(cid:86)(cid:75)(cid:81)(cid:80)(cid:2)(cid:72)(cid:67)(cid:69)(cid:86)(cid:81)(cid:84)(cid:85)(cid:2)(cid:10)(cid:71)(cid:16)(cid:73)(cid:16)(cid:2)(cid:52)(cid:55)(cid:48)(cid:58)(cid:20)(cid:11)
`Figure 2 | Fundamental mechanisms of canonical BMP superfamily signalling. Over 30 bone morphogenetic
`protein (BMP) superfamily ligands have been discovered in humans. Most are secreted as mature disulfide-linked dimers,
`with the exception of TGF-β1, TGF-β2 and TGF-β3, which can be secreted in a latent form and require proteolytic
`receptors recruit and phosphorylate pathway-specific R-SMADs (SMAD1, SMAD5 and SMAD8 (blue pathway), and
`SMAD2 and SMAD3 (orange pathway)), which can form trimers with SMAD4 and translocate to the nucleus. SMADs
`machinery and integration with tissue-specific transcription factors. SMAD8 is also known as SMAD9. The pathway can
`be antagonized by many mechanisms including neutralization of ligands by secreted traps such as noggin or follistatin,
`secretion of latent ligands bound to their propeptides, or via titration of receptors by nonsignalling ligands such
`(cid:67)(cid:85)(cid:124)(cid:36)(cid:47)(cid:50)(cid:21)(cid:14)(cid:2)(cid:67)(cid:69)(cid:86)(cid:75)(cid:88)(cid:75)(cid:80)(cid:2)β/inhibin α dimers or LEFTY monomers. ACVR, activin receptor; ALK, activin receptor-like kinase;
`Receptor/SMAD usage profiles
`
`(cid:67)(cid:69)(cid:86)(cid:75)(cid:88)(cid:67)(cid:86)(cid:75)(cid:81)(cid:80)(cid:16)(cid:2)(cid:36)(cid:47)(cid:50)(cid:85)(cid:2)(cid:85)(cid:75)(cid:73)(cid:80)(cid:67)(cid:78)(cid:2)(cid:86)(cid:74)(cid:84)(cid:81)(cid:87)(cid:73)(cid:74)(cid:2)(cid:67)(cid:2)(cid:79)(cid:87)(cid:78)(cid:86)(cid:75)(cid:79)(cid:71)(cid:84)(cid:75)(cid:69)(cid:2)(cid:69)(cid:71)(cid:78)(cid:78)(cid:2)(cid:85)(cid:87)(cid:84)(cid:72)(cid:67)(cid:69)(cid:71)(cid:2)(cid:69)(cid:81)(cid:79)(cid:82)(cid:78)(cid:71)(cid:90)(cid:2)(cid:69)(cid:81)(cid:80)(cid:85)(cid:75)(cid:85)(cid:86)(cid:75)(cid:80)(cid:73)(cid:2)(cid:81)(cid:72)(cid:2)(cid:86)(cid:89)(cid:81)(cid:2)(cid:86)(cid:91)(cid:82)(cid:71)(cid:124)(cid:43)(cid:2)(cid:84)(cid:71)(cid:69)(cid:71)(cid:82)(cid:86)(cid:81)(cid:84)(cid:85)(cid:2)(cid:67)(cid:80)(cid:70)(cid:2)(cid:86)(cid:89)(cid:81)(cid:2)(cid:86)(cid:91)(cid:82)(cid:71)(cid:124)(cid:43)(cid:43)(cid:2)
`(cid:84)(cid:71)(cid:69)(cid:71)(cid:82)(cid:86)(cid:81)(cid:84)(cid:85)(cid:16)(cid:2)(cid:54)(cid:91)(cid:82)(cid:71)(cid:124)(cid:43)(cid:2)(cid:67)(cid:80)(cid:70)(cid:2)(cid:86)(cid:91)(cid:82)(cid:71)(cid:124)(cid:43)(cid:43)(cid:2)(cid:36)(cid:47)(cid:50)(cid:2)(cid:84)(cid:71)(cid:69)(cid:71)(cid:82)(cid:86)(cid:81)(cid:84)(cid:85)(cid:2)(cid:67)(cid:84)(cid:71)(cid:2)(cid:85)(cid:75)(cid:80)(cid:73)(cid:78)(cid:71)(cid:2)(cid:82)(cid:67)(cid:85)(cid:85)(cid:2)(cid:86)(cid:84)(cid:67)(cid:80)(cid:85)(cid:79)(cid:71)(cid:79)(cid:68)(cid:84)(cid:67)(cid:80)(cid:71)(cid:2)(cid:82)(cid:84)(cid:81)(cid:86)(cid:71)(cid:75)(cid:80)(cid:85)(cid:2)(cid:89)(cid:75)(cid:86)(cid:74)(cid:2)(cid:67)(cid:80)(cid:2)(cid:75)(cid:80)(cid:86)(cid:84)(cid:67)(cid:69)(cid:71)(cid:78)(cid:78)(cid:87)(cid:78)(cid:67)(cid:84)(cid:2)(cid:85)(cid:71)(cid:84)(cid:75)(cid:80)(cid:71)(cid:17)
`(cid:86)(cid:74)(cid:84)(cid:71)(cid:81)(cid:80)(cid:75)(cid:80)(cid:71)(cid:2)(cid:77)(cid:75)(cid:80)(cid:67)(cid:85)(cid:71)(cid:2)(cid:70)(cid:81)(cid:79)(cid:67)(cid:75)(cid:80)(cid:16)(cid:2)(cid:35)(cid:72)(cid:86)(cid:71)(cid:84)(cid:2)(cid:78)(cid:75)(cid:73)(cid:67)(cid:80)(cid:70)(cid:2)(cid:68)(cid:75)(cid:80)(cid:70)(cid:75)(cid:80)(cid:73)(cid:14)(cid:2)(cid:86)(cid:91)(cid:82)(cid:71)(cid:124)(cid:43)(cid:43)(cid:2)(cid:84)(cid:71)(cid:69)(cid:71)(cid:82)(cid:86)(cid:81)(cid:84)(cid:85)(cid:2)(cid:82)(cid:74)(cid:81)(cid:85)(cid:82)(cid:74)(cid:81)(cid:84)(cid:91)(cid:78)(cid:67)(cid:86)(cid:71)(cid:2)(cid:10)(cid:50)(cid:11)(cid:2)(cid:86)(cid:74)(cid:71)(cid:2)(cid:86)(cid:91)(cid:82)(cid:71)(cid:124)(cid:43)(cid:2)(cid:84)(cid:71)(cid:69)(cid:71)(cid:82)(cid:86)(cid:81)(cid:84)(cid:85)(cid:16)(cid:2)(cid:35)(cid:69)(cid:86)(cid:75)(cid:88)(cid:67)(cid:86)(cid:71)(cid:70)(cid:2)(cid:86)(cid:91)(cid:82)(cid:71)(cid:124)(cid:43)(cid:2)
`
`(cid:74)(cid:67)(cid:88)(cid:71)(cid:2)(cid:75)(cid:80)(cid:86)(cid:84)(cid:75)(cid:80)(cid:85)(cid:75)(cid:69)(cid:2)(cid:38)(cid:48)(cid:35)(cid:15)(cid:68)(cid:75)(cid:80)(cid:70)(cid:75)(cid:80)(cid:73)(cid:2)(cid:67)(cid:69)(cid:86)(cid:75)(cid:88)(cid:75)(cid:86)(cid:91)(cid:2)(cid:67)(cid:80)(cid:70)(cid:2)(cid:67)(cid:84)(cid:71)(cid:2)(cid:67)(cid:68)(cid:78)(cid:71)(cid:2)(cid:86)(cid:81)(cid:2)(cid:84)(cid:71)(cid:73)(cid:87)(cid:78)(cid:67)(cid:86)(cid:71)(cid:2)(cid:73)(cid:71)(cid:80)(cid:71)(cid:2)(cid:71)(cid:90)(cid:82)(cid:84)(cid:71)(cid:85)(cid:85)(cid:75)(cid:81)(cid:80)(cid:2)(cid:68)(cid:91)(cid:2)(cid:84)(cid:71)(cid:69)(cid:84)(cid:87)(cid:75)(cid:86)(cid:79)(cid:71)(cid:80)(cid:86)(cid:2)(cid:81)(cid:72)(cid:2)(cid:69)(cid:74)(cid:84)(cid:81)(cid:79)(cid:67)(cid:86)(cid:75)(cid:80)(cid:15)(cid:84)(cid:71)(cid:79)(cid:81)(cid:70)(cid:71)(cid:78)(cid:78)(cid:75)(cid:80)(cid:73)(cid:2)
`
`(cid:35)(cid:47)(cid:42)(cid:14)(cid:124)(cid:67)(cid:80)(cid:86)(cid:75)(cid:15)(cid:47)(cid:216)(cid:78)(cid:78)(cid:71)(cid:84)(cid:75)(cid:67)(cid:80)(cid:2)(cid:74)(cid:81)(cid:84)(cid:79)(cid:81)(cid:80)(cid:71)(cid:29)(cid:2)(cid:35)(cid:47)(cid:42)(cid:52)(cid:20)(cid:14)(cid:2)(cid:35)(cid:47)(cid:42)(cid:2)(cid:84)(cid:71)(cid:69)(cid:71)(cid:82)(cid:86)(cid:81)(cid:84)(cid:2)(cid:20)(cid:29)(cid:2)(cid:36)(cid:47)(cid:50)(cid:52)(cid:14)(cid:2)(cid:36)(cid:47)(cid:50)(cid:2)(cid:84)(cid:71)(cid:69)(cid:71)(cid:82)(cid:86)(cid:81)(cid:84)(cid:29)(cid:2)(cid:41)(cid:38)(cid:40)(cid:14)(cid:2)(cid:73)(cid:84)(cid:81)(cid:89)(cid:86)(cid:74)(cid:17)(cid:70)(cid:75)(cid:72)(cid:72)(cid:71)(cid:84)(cid:71)(cid:80)(cid:86)(cid:75)(cid:67)(cid:86)(cid:75)(cid:81)(cid:80)(cid:2)(cid:72)(cid:67)(cid:69)(cid:86)(cid:81)(cid:84)(cid:29)(cid:2)
`(cid:54)(cid:41)(cid:40)(cid:14)(cid:124)(cid:86)(cid:84)(cid:67)(cid:80)(cid:85)(cid:72)(cid:81)(cid:84)(cid:79)(cid:75)(cid:80)(cid:73)(cid:2)(cid:73)(cid:84)(cid:81)(cid:89)(cid:86)(cid:74)(cid:2)(cid:72)(cid:67)(cid:69)(cid:86)(cid:81)(cid:84)(cid:29)(cid:2)(cid:54)(cid:41)(cid:40)(cid:36)(cid:52)(cid:14)(cid:2)(cid:54)(cid:41)(cid:40)(cid:15)β(cid:124)(cid:84)(cid:71)(cid:69)(cid:71)(cid:82)(cid:86)(cid:81)(cid:84)(cid:16)
`
`Ligand-receptor pairing specificity (reviewed elsewhere54)
`is summarized in FIG. 2. TGF-βs use the type I (ALK5)
`and type II (TGFBR2) TGF-β receptors to activate the
`SMAD2/3 pathway (FIG. 2, orange pathway). By contrast,
`BMPs and GDFs exhibit broad receptor usage patterns to
`activate the SMAD1/5/8 pathway (FIG. 2, blue pathway).
`Ser/Thr-protein kinase receptor R3 (ALK1), activin recep-
`tor type-1 (ALK2), BMP receptor type-1A (ALK3) and
`BMP receptor type-1B (ALK6) can all function as type I
`
`206 | APRIL 2016 | VOLUME 12
`
`BMP and GDF receptors; BMP receptor type-2 (BMPR2),
`activin receptor type-2A (ACVR2A) and ACVR2B serve
`as type II receptors. Nodal, GDF8 and GDF11 activate
`SMAD2/3 via ALK4, ALK5, or ALK7 type  I recep-
`tors and the ACVR2A and ACVR2B type II receptors.
`Activins utilize ALK4 (βA/βA) and ALK7 (βA/βB and
`βB/βB) for type I receptors, and ACVR2A and ACVR2B
`for type  II receptors (FIG.  2). Importantly, activins
`can also bind to ALK2, but these complexes do not
`normally signal55.
`
`www.nature.com/nrendo
`
`(cid:49)(cid:35)(cid:50)(cid:35)(cid:49)(cid:53)(cid:35)(cid:34)(cid:421)
`
`(cid:49)(cid:40)(cid:37)(cid:39)(cid:51)(cid:50)
`(cid:613)
`
`(cid:400)(cid:398)(cid:399)(cid:406)
`(cid:613)
`
`(cid:13)(cid:31)(cid:33)(cid:44)(cid:40)(cid:43)(cid:43)(cid:31)(cid:45)
`(cid:613)
`
`(cid:17)(cid:52)(cid:32)(cid:43)(cid:40)(cid:50)(cid:39)(cid:35)(cid:49)(cid:50)
`(cid:613)
`
`(cid:12)(cid:40)(cid:44)(cid:40)(cid:51)(cid:35)(cid:34)(cid:421)
`(cid:613)
`
`(cid:1)(cid:43)(cid:43)
`(cid:613)
`
`(cid:479)(cid:613)
`
`Lassen - Exhibit 1025, p. 4
`
`

`

`Pathway antagonism
`
`The BMP pathway is subject to many levels of regula-
`tory activity, including propeptide latency, antagonism
`by secreted receptors and ligands, receptor traffick-
`ing and negative intracellular feedback by SMAD6/7
`(REFS 54,56,57). As examples, noggin58, gremlin59 and
`follistatin60 are secreted antagonists that are expressed
`in skeletal tissues and bind to distinct subsets of BMPs,
`GDFs and/or activins to titrate active ligands out of the
`extracellular environment 61,62 (FIG. 2). GDF8, GDF11
`and TGF-βs can be secreted noncovalently attached to
`their prodomain, requiring additional processing to be
`activated from latency63 (FIG. 2). Receptor availability can
`be regulated by BMP3 (REF. 64), LEFTYA/B mono mers65
`and activin β/inhibin α heterodimers, which occupy but
`do not activate ACVR2A and/or ACVR2B (FIG. 2). This
`regulation dampens activin as well as BMP signalling, as
`ACVR2A and ACVR2B are shared receptors for these
`two ligand subtypes. Inside the cell, BMP and TGF-β
`signalling initiate negative feedback by transcriptional
`upregulation of SMAD6 and SMAD7, which are also
`known as the inhibitory SMADs (I-SMADs). By inter-
`acting with cytoplasmic domains of cell surface recep-
`tors, SMAD6 can sterically interfere with R-SMAD
`phosphorylation and recruit E3 ubiquitin ligases to mark
`signalling machinery for degradation66–70. Although long
`considered an intracellular signalling mediator of the
`canonical BMP pathway, new evidence suggests that
`SMAD8 (also known as SMAD9) is hypermorphic rela-
`tive to SMAD1 and SMAD5, and so attenuates canonical
`BMP signalling71. Additional details on signalling and
`regulatory mechanisms can be found elsewhere21,24,56,72.
`
`Genetics of the BMP pathway
`Developmental skeletogenesis
`
`A skeleton with articulated joints appeared >400 mil-
`lion years ago in Cambrian bony fishes. In modern day
`mammals, the axial skeleton includes the skull, ossicles
`of the middle ear, hyoid bone, ribs, sternum and ver-
`tebrae. The appendicular skeleton comprises the pelvic
`and pectoral girdles and bones in the limbs. All bones
`are formed during development from three embryonic
`lineages: neural crest, paraxial mesoderm and lateral
`plate mesoderm. Some bones, such as those found in the
`skull, form by intramembranous ossification, in which
`migratory cells from the neural crest and paraxial meso-
`derm condense into sheet-like structures, differentiate
`into bone-forming cells called osteoblasts and produce
`mineralized tissue. Most bones, however, form by endo-
`chondral ossification, where a cartilage template pro-
`duced by chondrocytes is segmented by joints, populated
`by haemato poietic progenitors during a primary wave
`of vascularization, remodelled by monocyte-derived
`resorbing cells called osteoclasts, and finally converted
`into bone by osteoblasts. The development of endochon-
`dral bones, therefore, requires the coordination of sig-
`nals from several distinct cell types developing within
`the cartilage rudiment73 (FIG. 3).
`Before bone and joint formation, the mesenchy-
`mal progenitor pool in the emerging limb bud must
`first undergo considerable expansion and patterning74.
`
`NATURE REVIEWS | ENDOCRINOLOGY
`
`REVIEWS
`
`Lineage tracing analysis reveals that most, if not all,
`connective tissue cell types in the limb skeleton and
`some structures in the cranial vault arise from Prx1+
`progenitors75 (Prx1 is also known as Prrx1; FIG. 3a).
`Accordingly, Prx1–Cre75 has become a useful tool for
`conditionally ablating genes selectively in the limb bud
`mesenchyme (FIG. 4a), without the embryonic lethality
`resulting from global-deficiency, such as is the case with
`Bmp2 (REF. 76). Prx1+ progenitors are highly responsive
`to BMP signalling as limb bud outgrowth and patterning
`are disrupted in mice lacking Alk3 (REF. 77), and severely
`impaired in mice with Prx1–Cre-mediated single dele-
`tion of Smad4 or compound deletion of Alk2, Alk3 and
`Alk6 (REFS 78,79). However, limb bud outgrowth ensues
`normally in mice with single or compound deletions
`of Bmp2, Bmp4 and Bmp7 (REFS  80–83), and is only
`modestly impaired by global compound deletions of
`Gdf5 and Gdf6 or Gdf5 and Bmp5 (REFS 84,85), which
`suggests that BMP signals essential for limb bud out-
`growth are normally provided by multiple BMP-like
`ligands. Both genetic methods as well as classic ‘cut and
`paste’ experiments have further demonstrated that tis-
`sue nonautonomous BMP signals essential for limb bud
`patterning and digit specification emerge from ecto-
`dermal cells in the limb bud organizing centre known
`as the apical ectodermal ridge (AER)86. Expression of
`Msx2 is highly enriched in the AER87 and Msx2–Cre
`has been used to make selective compound deletion of
`Bmp2, Bmp4 and Bmp7 (REF. 88). Consistent with a cell
`autonomous role for BMP signalling in the mesenchyme,
`loss of Bmp2, Bmp4 and Bmp7 in the AER (Bmp2; Bmp4;
`Bmp7; Msx1–Cre) has no effect on limb bud outgrowth,
`but instead leads to loss of the AER and striking defects
`in digit patterning88. Digit patterning is also affected by
`mesoderm-derived BMP signalling as overexpression of
`gremlin in the limb bud mesenchyme mediates specifi-
`cation of too few versus too many digits, depending on
`the timing of induction89.
`Although the confluence-sensing mechanism
`remains unclear, the expanding progenitor pool even-
`tually reaches a critical mass and triggers condensation,
`which is required for entry of progenitors into endo-
`chondral differentiation programs and imparts shape
`on presumptive skeletal elements. As these cells become
`specified to the chondrogenic lineage, they upregulate
`Col2a1 and Agc1 (FIG. 3b), and begin depositing a cartil-
`age matrix. Cells at the innermost regions of the con-
`densation upregulate Col10a1 as they differentiate into
`hypertrophic chondrocytes (FIG. 3c).
`Chondrocyte hypertrophy at the centre of the mes-
`enc

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket