throbber
R E V I E W S
`
`Recent insights into targeting the
`IL-6 cytokine family in inflammatory
`diseases and cancer
`
`Simon A. Jones1,2* and Brendan J. Jenkins3,4*
`
`Abstract | The IL-6 family of cytokines consists of IL-6, IL-11, IL-27 , IL-31, oncostatin M (OSM),
`leukaemia inhibitory factor (LIF), ciliary neurotrophic factor (CNTF), cardiotrophin 1 (CT-1) and
`cardiotrophin- like cytokine factor 1 (CLCF1). Membership of this cytokine family is defined by
`usage of common β- receptor signalling subunits, which activate various intracellular signalling
`pathways. Each IL-6 family member elicits responses essential to the physiological control
`(cid:81)(cid:72)(cid:124)(cid:75)(cid:79)(cid:79)(cid:87)(cid:80)(cid:71)(cid:2)(cid:74)(cid:81)(cid:79)(cid:71)(cid:81)(cid:85)(cid:86)(cid:67)(cid:85)(cid:75)(cid:85)(cid:14)(cid:2)(cid:74)(cid:67)(cid:71)(cid:79)(cid:67)(cid:86)(cid:81)(cid:82)(cid:81)(cid:75)(cid:71)(cid:85)(cid:75)(cid:85)(cid:14)(cid:2)(cid:75)(cid:80)(cid:72)(cid:78)(cid:67)(cid:79)(cid:79)(cid:67)(cid:86)(cid:75)(cid:81)(cid:80)(cid:14)(cid:2)(cid:70)(cid:71)(cid:88)(cid:71)(cid:78)(cid:81)(cid:82)(cid:79)(cid:71)(cid:80)(cid:86)(cid:2)(cid:67)(cid:80)(cid:70)(cid:2)(cid:79)(cid:71)(cid:86)(cid:67)(cid:68)(cid:81)(cid:78)(cid:75)(cid:85)(cid:79)(cid:16)(cid:2)
`(cid:35)(cid:69)(cid:69)(cid:81)(cid:84)(cid:70)(cid:75)(cid:80)(cid:73)(cid:78)(cid:91)(cid:2)(cid:14)(cid:124)(cid:70)(cid:75)(cid:85)(cid:86)(cid:81)(cid:84)(cid:86)(cid:75)(cid:81)(cid:80)(cid:2)(cid:81)(cid:72)(cid:2)(cid:86)(cid:74)(cid:71)(cid:85)(cid:71)(cid:2)(cid:69)(cid:91)(cid:86)(cid:81)(cid:77)(cid:75)(cid:80)(cid:71)(cid:2)(cid:67)(cid:69)(cid:86)(cid:75)(cid:88)(cid:75)(cid:86)(cid:75)(cid:71)(cid:85)(cid:2)(cid:81)(cid:72)(cid:86)(cid:71)(cid:80)(cid:2)(cid:82)(cid:84)(cid:81)(cid:79)(cid:81)(cid:86)(cid:71)(cid:85)(cid:2)(cid:69)(cid:74)(cid:84)(cid:81)(cid:80)(cid:75)(cid:69)(cid:2)(cid:70)(cid:75)(cid:85)(cid:71)(cid:67)(cid:85)(cid:71)(cid:2)(cid:67)(cid:80)(cid:70)(cid:2)(cid:69)(cid:67)(cid:80)(cid:69)(cid:71)(cid:84)(cid:2)(cid:29)(cid:2)
`the pathological importance of this is exemplified by the successful treatment of certain
`autoimmune conditions with drugs that target the IL-6 pathway. Here, we discuss the emerging
`roles for IL-6 family members in infection, chronic inflammation, autoimmunity and cancer and
`review therapeutic strategies designed to manipulate these cytokines in disease.
`
`Lymphokines
`A subset of cytokines that are
`released by lymphocytes.
`
`1Division of Infection and
`Immunity, School of Medicine,
`Cardiff University, Cardiff,
`Wales, UK.
`
`2Systems Immunity,
`University Research Institute,
`School of Medicine, Cardiff
`University, Cardiff, Wales, UK.
`
`3Centre for Innate Immunity
`and Infectious Diseases,
`Hudson Institute of Medical
`Research, Clayton, Victoria,
`Australia.
`
`4Department of Molecular
`and Translational Science,
`Faculty of Medicine, Nursing
`and Health Sciences, Monash
`University, Clayton, Victoria,
`Australia.
`
`*e- mail: JonesSA@
`cardiff.ac.uk;
`brendan.jenkins@
`hudson.org.au
`
`https://doi.org/10.1038/
`s41577-018-0066-7
`
`Cytokines contribute to all aspects of human biology
`and have evolved to enable the sensing and interpreta-
`tion of environmental cues relevant to the maintenance
`of normal host physiology1. Although these secretory
`proteins are best known for their role as custodians of
`immune homeostasis and the inflammatory response
`to infection, trauma or injury, their diverse functions
`also affect embryonic development, cognitive func-
`tion and behaviour, tissue integrity and ageing. In this
`regard, cytokines often display pleiotropic or overlapping
`functional properties1.
`The IL-6 cytokine family comprises IL-6, IL-11,
`IL-27, IL-31, oncostatin M (OSM), leukaemia inhibi-
`tory factor (LIF), ciliary neurotrophic factor (CNTF),
`cardiotrophin 1 (CT-1) and cardiotrophin- like cytokine
`factor 1 (CLCF1), and among all cytokine families, it
`arguably displays the highest degree of functional pleio-
`tropy and redundancy in eliciting responses relevant to
`health and disease2. Members of this family play prom-
`inent roles in chronic inflammation, autoimmunity,
`infectious disease and cancer (BOX 1), where they often
`act as diagnostic or prognostic indicators of disease
`activity and response to therapy1,3–6. Moreover, IL-6
`family cytokines are now viewed as major therapeutic
`targets for clinical intervention3–9. This is epitomized
`by the treatment of chronic immune- related conditions,
`such as inflammatory arthritis, giant cell arteritis and
`Castleman disease, with drugs that target IL-6 (REFS5,10–12).
`In this Review, we draw on recent advances to provide
`a timely update on the biology of IL-6 family cytokines
`
`and their clinical potential as therapeutic targets or
`disease modifiers in autoimmunity, inflammation,
`infection and cancer.
`
`What constitutes IL-6 family membership?
`IL-6 remains the archetypal member of the IL-6 cytokine
`family and regulates a diverse array of functions relevant
`to haematopoiesis, tissue homeostasis, metabolism and
`immunity5,13 (BOXES 1,2). Since the discovery of IL-6,
`subsequent investigations have revealed a high degree of
`functional redundancy among IL-6 family cytokines14.
`As a consequence, cytokines within this family are
`often described with activities attributed to lymphokines,
`adipokines or myokines, which reflect their broad expres-
`sion and cellular distribution among all major cell types
`within the body. This redundancy is characterized by a
`precise hierarchical involvement in inflammation, meta-
`bolism, development, tissue regeneration, neurogenesis
`and oncogenesis15 (BOXES 1,2).
`A defining feature of this cytokine family is its usage
`of common cytokine receptor subunits. These recep-
`tor complexes comprise the shared signal- transducing
`receptor β- subunit, membrane glycoprotein 130 (gp130;
`also known as IL-6Rβ), together with either a ligand-
`binding non- signalling receptor α- subunit or a signal-
`ling receptor β- subunit that resembles gp130 (REFS2,15,16)
`(FIG. 1). The receptor signalling complexes for IL-6 and
`IL-11 contain a gp130 homodimer, whereas other fam-
`ily members signal via a heterodimeric receptor com-
`plex containing gp130 and an alternative signalling
`
`NATURE REVIEWS | IMMUNOLOGY
`
`
` VOLUME 18 | DECEMBER 2018 | 773
`
`Lassen - Exhibit 1020, p. 1
`
`

`

`R E V I E W S
`
`Box 1 | Signalling mechanisms for IL-6 family cytokines and links with physiological and disease processes
`
`Intracellular signalling mechanisms linked to the membrane glycoprotein
`130 (gp130) receptor system are triggered via activation of receptor-
`associated cytoplasmic tyrosine kinases (Janus kinase 1 (JAK1), JAK2
`and non- receptor tyrosine- protein kinase 2 (TYK2)). Activation of these
`proteins leads to distinct patterns of tyrosine phosphorylation and
`subsequent activation of the latent transcription factors signal transducer
`and activator of transcription 1 (STAT1), STAT3 and, to a lesser extent,
`STAT5. Additional signalling mechanisms associated with cytokine
`activation of the gp130 receptor system include processes controlled
`through the tyrosine- protein phosphatase SH- PTP2 (SHP2). The activation
`of this protein promotes signalling through the RAS–RAF pathway
`and the SRC–YAP–NOTCH pathway. Activation of the RAS–RAF
`cascade also regulates several downstream modifiers that include
`the phosphory lation of mitogen- activated protein kinases (MAPKs)
`
`and the RAC serine/threonine-protein kinase (AKT) and mechanistic target
`of rapamycin complex 1 (mTORC1) pathways and activities associated with
`the transcription factors nuclear factor NF- IL-6 (a CAAT/enhancer
`binding protein (C/EBP) family member) and activator protein 1 (AP-1)
`(a heterodimer of proto- oncogene JUN and proto- oncogene FOS). Other
`kinases with less defined involvements with this receptor system include
`serine/threonine- protein kinase SAK (also known as PLK4), tyrosine-protein
`kinase HCK, tyrosine- protein kinase FES/FPS (FES), tyrosine-protein kinase
`BTK and tyrosine- protein kinase TEC16. Each of these signal transduction
`mechanisms controls various biological processes, as indicated. The heat
`map depicted in the right- hand panel details how individual IL-6 cytokine
`family members contribute to specific physiological and immunological
`processes and emphasizes their relative importance in certain disease
`settings (depicted below the blue line).
`
`Intracellular cytokine receptor signals and downstream activities
`
`IL-6 family cytokine
`
`IL-6
`
`(cid:43)(cid:46)(cid:15)(cid:19)(cid:19)
`
`IL-27
`
`(cid:43)(cid:46)(cid:15)(cid:21)(cid:19)
`
`O S M
`
`LIF
`
`(cid:37) (cid:48)(cid:54)(cid:40)
`
`(cid:37)(cid:54)(cid:15)(cid:19)
`
`(cid:37)(cid:46)(cid:37)(cid:40)(cid:19)
`
`JAK
`
`SHP2
`
`(cid:114)(cid:2)(cid:53)(cid:54)(cid:35)(cid:54)(cid:19)
`(cid:114)(cid:2)(cid:53)(cid:54)(cid:35)(cid:54)(cid:21)
`(cid:114)(cid:2)(cid:53)(cid:54)(cid:35)(cid:54)(cid:23)
`
`(cid:114)(cid:2)(cid:52)(cid:35)(cid:53)
`(cid:114)(cid:2)(cid:52)(cid:35)(cid:40)
`(cid:114)(cid:2)(cid:47)(cid:35)(cid:50)(cid:45)
`
`(cid:114)(cid:2)(cid:35)(cid:45)(cid:54)
`(cid:114)(cid:2)(cid:50)(cid:43)(cid:21)(cid:45)
`(cid:114)(cid:2)(cid:10)(cid:79)(cid:54)(cid:49)(cid:52)(cid:37)(cid:19)(cid:11)
`
`(cid:114)(cid:2)(cid:53)(cid:52)(cid:37)
`(cid:114)(cid:2)(cid:59)(cid:35)(cid:50)
`(cid:114)(cid:2)(cid:48)(cid:49)(cid:54)(cid:37)(cid:42)
`
`(cid:114) Proliferation
`(cid:114) Survival
`(cid:114) Differentiation
`(cid:114) Migration
`(cid:114) Maturation
`(cid:114) Self-renewal
`(cid:114) Immune regulation
`(cid:114) Angiogenesis
`(cid:114) Metabolism
`(cid:114) Oxidative stress
`
`Proliferation
`
`(cid:114) Proliferation
`(cid:114)(cid:2)(cid:54)(cid:75)(cid:85)(cid:85)(cid:87)(cid:71)(cid:2)
`generation
`
`(cid:114) Proliferation
`(cid:114) Survival
`(cid:114) Apoptosis
`(cid:114) Growth
`(cid:114) Fate
`(cid:114) Metabolism
`(cid:114) Oxidative stress
`
`Innate immunity
`
`Adaptive immunity
`
`(cid:54)(cid:75)(cid:85)(cid:85)(cid:87)(cid:71)(cid:2)(cid:74)(cid:81)(cid:79)(cid:71)(cid:81)(cid:85)(cid:86)(cid:67)(cid:85)(cid:75)(cid:85)
`
`Haematopoeisis
`
`Oncogenesis
`
`Pain
`
`Mental well-being
`
`(cid:48)(cid:71)(cid:87)(cid:84)(cid:81)(cid:86)(cid:84)(cid:81)(cid:82)(cid:74)(cid:75)(cid:69)(cid:2)(cid:72)(cid:67)(cid:69)(cid:86)(cid:81)(cid:84)
`
`(cid:37)(cid:67)(cid:80)(cid:69)(cid:71)(cid:84)
`
`Autoimmunity
`
`(cid:43)(cid:80)(cid:561)(cid:67)(cid:79)(cid:79)(cid:67)(cid:86)(cid:75)(cid:81)(cid:80)
`
`(cid:37)(cid:81)(cid:80)(cid:86)(cid:84)(cid:75)(cid:68)(cid:87)(cid:86)(cid:75)(cid:81)(cid:80)
`
`Less
`
`More Unknown
`
`CLCF1, cardiotrophin-like cytokine factor 1; CNTF, ciliary neurotrophic factor; CT-1, cardiotrophin 1; LIF, leukaemia inhibitory factor; OSM, oncostatin M;
`PI3K, phosphoinositide 3-kinase.
`
`β- subunit (FIG. 1). The exception to this ‘gp130 rule’ is
`IL-31, which binds a cytokine receptor complex con-
`taining the OSM- specific receptor subunit- β (OSMRβ)
`and a cognate IL-31-binding receptor termed IL-31
`receptor subunit- α (IL-31Rα)17–19.
`Phylogenetic analysis of cytokine families reveals that
`members of the IL-6 family share a close relationship
`with IL-12 family cytokines20–22. This link is illustrated
`by the heterodimeric composition of IL-27 (comprising
`IL-27p28 (also known as IL-27α) and Epstein–Barr virus-
`induced gene 3 protein (EBI3; also known as IL-27β)),
`which is structurally related to the IL-12 (IL-12p40 (also
`known as IL-12β)–IL-12p35 (also known as IL-12α)),
`IL-23 (IL-23p19 (also known as IL-23α)–IL-12p40),
`IL-35 (IL-12p40–EBI3) and IL-39 (IL-23p19–EBI3)
`hetero dimers23–25. Interestingly, both IL-27p28 and IL-35
`can also signal via gp130 (REFS26,27), although the biolog-
`ical importance of this engagement with gp130 requires
`further substantiation, and thus their membership to the
`IL-6 family of cytokines is premature.
`The functional diversity and redundancy associated
`with IL-6 family cytokines is partially explained by the
`
`presence of the ubiquitously expressed common gp130
`signal- transducing receptor (FIG. 1). Use of the common
`gp130 receptor subunit contributes to the regulation
`of a wide range of overlapping activities that are con-
`trolled by IL-6 family cytokines. As a consequence,
`these cytokines play key roles in many physiological
`processes, including development, as evidenced by the
`embryonic lethality of gp130-deficient mice28. In con-
`trast to gp130, the receptor subunits specific to individ-
`ual family members display a more restricted cellular
`expression profile, and the phenotype of mice lacking
`individual cytokine family members or their associated
`receptor subunits is often less severe than their apparent
`pleiotropic properties would suggest28–31.
`While the tissue distribution of these receptors offers
`some distinction as to how individual family members
`act in defined cellular compartments, certain cytokines
`within the family have evolved several mechanisms that
`amplify or broaden their cellular activities. For example,
`human OSM can signal via gp130–LIF receptor (LIFR)
`or gp130–OSMRβ complexes to mediate responses typi-
`cally associated with LIF (for example, haematopoiesis)17.
`
`Adipokines
`A subset of cytokines that are
`secreted by adipose tissue and
`are sometimes called
`adipocytokines.
`
`Myokines
`Cytokines produced and
`released by myocytes in
`response to muscle
`contraction.
`
`774 | DECEMBER 2018 | VOLUME 18
`
`www.nature.com/nri
`
`Lassen - Exhibit 1020, p. 2
`
`

`

`Box 2 | IL-6 family cytokines as regulators of metabolic processes
`
`IL-6 family cytokines
`
`IL-6
`
`IL-11
`
`IL-27
`
`IL-31
`
`O S M
`
`LIF
`
`C N TF
`
`C T-1
`
`C L C F1
`
`Bone metabolism
`
`Energy metabolism
`
`Glucose metabolism
`
`Lipid metabolism
`
`Iron transport
`
`Thermogenesis
`
`Contribution
`
`Less
`
`More
`
`Unknown
`
`CLCF1, cardiotrophin-like cytokine factor 1.
`
`Members of the IL-6
`cytokine family perform
`integral roles in health and
`disease, and their capacity
`to influence the
`maintenance of immune
`homeostasis and well-
`being can occur via
`regulation of various
`metabolic processes.
`(cid:54)(cid:74)(cid:71)(cid:124)(cid:70)(cid:71)(cid:82)(cid:75)(cid:69)(cid:86)(cid:71)(cid:70)(cid:2)(cid:74)(cid:71)(cid:67)(cid:86)(cid:2)(cid:79)(cid:67)(cid:82)(cid:2)
`summarizes the relative
`contribution of individual
`members of the IL-6
`cytokine family to
`metabolism and
`emphasizes the types of
`metabolic processes that they affect. Certain family members, such as IL-6 and oncostatin
`M (OSM), elicit these effects in various stromal tissue compartments (for example, muscle,
`liver, bone and brain) and inflammatory cells (for example, lymphocytes and
`macrophages)242–244. On the other hand, IL-27 displays a more restricted activity profile on
`select immune cell types, where it controls the expression of enzymes responsible for
`oxysterol generation in effector and regulatory CD4+(cid:2)(cid:54)(cid:124)(cid:69)(cid:71)(cid:78)(cid:78)(cid:85)245. Importantly, several of
`these associations with metabolism have been identified through clinical observations in
`patients receiving biological drugs. For example, hypoferraemia is a common response to
`systemic infection, and patients with autoimmune conditions, such as rheumatoid arthritis,
`frequently suffer from inflammatory anaemia246. Here, biological drugs against IL-6
`(cid:10)(cid:72)(cid:81)(cid:84)(cid:124)(cid:71)(cid:90)(cid:67)(cid:79)(cid:82)(cid:78)(cid:71)(cid:14)(cid:2)(cid:86)(cid:81)(cid:69)(cid:75)(cid:78)(cid:75)(cid:92)(cid:87)(cid:79)(cid:67)(cid:68)(cid:11)(cid:2)(cid:69)(cid:81)(cid:79)(cid:68)(cid:67)(cid:86)(cid:2)(cid:86)(cid:74)(cid:71)(cid:2)(cid:70)(cid:71)(cid:88)(cid:71)(cid:78)(cid:81)(cid:82)(cid:79)(cid:71)(cid:80)(cid:86)(cid:2)(cid:81)(cid:72)(cid:2)(cid:67)(cid:80)(cid:67)(cid:71)(cid:79)(cid:75)(cid:67)(cid:2)(cid:67)(cid:80)(cid:70)(cid:2)(cid:75)(cid:80)(cid:74)(cid:75)(cid:68)(cid:75)(cid:86)(cid:2)(cid:86)(cid:74)(cid:71)(cid:2)
`hepatic-derived generation of hepcidin and haptoglobin247,248. These latter responses are
`also associated with OSM and leukaemia inhibitory factor (LIF)249. Further roles for IL-6 in
`metabolic processes have been identified in Il6−/− mice, which develop mature- onset
`obesity, hypertriglyceridaemia and glucose intolerance, and patients on tocilizumab
`experience changes in serum cholesterol and triglyceride levels, along with increases in
`body weight10,250,251. The control of adipogenesis and lipolysis is also attributed to other IL-6
`family cytokines, and these are reviewed elsewhere252–254. For instance, ciliary neurotrophic
`factor (CNTF) treatment in mice reduced adiposity and body weight and improved various
`(cid:82)(cid:67)(cid:84)(cid:67)(cid:79)(cid:71)(cid:86)(cid:71)(cid:84)(cid:85)(cid:2)(cid:81)(cid:72)(cid:2)(cid:70)(cid:75)(cid:67)(cid:68)(cid:71)(cid:86)(cid:71)(cid:85)(cid:2)(cid:67)(cid:80)(cid:70)(cid:2)(cid:74)(cid:71)(cid:82)(cid:67)(cid:86)(cid:75)(cid:69)(cid:2)(cid:85)(cid:86)(cid:71)(cid:67)(cid:86)(cid:81)(cid:85)(cid:75)(cid:85)(cid:14)(cid:2)(cid:67)(cid:2)(cid:72)(cid:75)(cid:80)(cid:70)(cid:75)(cid:80)(cid:73)(cid:2)(cid:86)(cid:74)(cid:67)(cid:86)(cid:2)(cid:78)(cid:71)(cid:70)(cid:2)(cid:86)(cid:81)(cid:2)(cid:86)(cid:74)(cid:71)(cid:124)(cid:70)(cid:71)(cid:88)(cid:71)(cid:78)(cid:81)(cid:82)(cid:79)(cid:71)(cid:80)(cid:86)(cid:2)(cid:81)(cid:72)(cid:2)
`recombinant CNTF therapy (axokine), which suppressed appetite, increased energy
`expenditure and caused sustained weight loss in humans255–257. Consistent with a role for
`IL-6 family cytokines in regulating energy and glucose metabolism, acute infusion of IL-6 in
`mice increased glucose uptake and fatty acid oxidation in skeletal muscle, which was
`(cid:67)(cid:85)(cid:85)(cid:81)(cid:69)(cid:75)(cid:67)(cid:86)(cid:71)(cid:70)(cid:2)(cid:89)(cid:75)(cid:86)(cid:74)(cid:2)(cid:75)(cid:79)(cid:82)(cid:84)(cid:81)(cid:88)(cid:71)(cid:70)(cid:2)(cid:75)(cid:80)(cid:85)(cid:87)(cid:78)(cid:75)(cid:80)(cid:2)(cid:85)(cid:71)(cid:80)(cid:85)(cid:75)(cid:86)(cid:75)(cid:88)(cid:75)(cid:86)(cid:91)(cid:2)(cid:67)(cid:80)(cid:70)(cid:124)(cid:82)(cid:84)(cid:81)(cid:86)(cid:71)(cid:69)(cid:86)(cid:75)(cid:81)(cid:80)(cid:2)(cid:72)(cid:84)(cid:81)(cid:79)(cid:2)(cid:70)(cid:75)(cid:71)(cid:86)(cid:15)(cid:2)(cid:75)(cid:80)(cid:70)(cid:87)(cid:69)(cid:71)(cid:70)(cid:2)(cid:81)(cid:68)(cid:71)(cid:85)(cid:75)(cid:86)(cid:91)258.
`Here, IL-6 released from contracting muscle drives the production of glucagon- like
`peptide 1 (GLP-1) within the gut and pancreas and contributes to the maintenance of
`glucose homeostasis through GLP-1 control of insulin secretion259. An important aspect
`of these metabolic- associated outcomes regulated by IL-6 family members is their link with
`alterations in mitochondrial activity. These include changes in mitochondrial remodelling
`because of cachexia, alterations in mitochondrial calcium mobilization and membrane
`(cid:82)(cid:81)(cid:86)(cid:71)(cid:80)(cid:86)(cid:75)(cid:67)(cid:78)(cid:124)(cid:67)(cid:80)(cid:70)(cid:2)(cid:86)(cid:74)(cid:71)(cid:2)(cid:84)(cid:71)(cid:73)(cid:87)(cid:78)(cid:67)(cid:86)(cid:75)(cid:81)(cid:80)(cid:2)(cid:81)(cid:72)(cid:2)(cid:86)(cid:74)(cid:71)(cid:84)(cid:79)(cid:81)(cid:73)(cid:71)(cid:80)(cid:71)(cid:85)(cid:75)(cid:85)(cid:2)(cid:86)(cid:74)(cid:84)(cid:81)(cid:87)(cid:73)(cid:74)(cid:2)(cid:84)(cid:71)(cid:73)(cid:87)(cid:78)(cid:67)(cid:86)(cid:75)(cid:81)(cid:80)(cid:2)(cid:81)(cid:72)(cid:2)(cid:79)(cid:75)(cid:86)(cid:81)(cid:69)(cid:74)(cid:81)(cid:80)(cid:70)(cid:84)(cid:75)(cid:67)(cid:78)(cid:2)(cid:68)(cid:84)(cid:81)(cid:89)(cid:80)(cid:2)
`fat uncoupling protein 1 (REFS260–266).
`
`R E V I E W S
`
`In addition to these classical mechanisms of cytokine
`receptor signalling, several members of the IL-6 family
`employ alternative modes of gp130 activation termed
`cytokine trans- signalling (relevant to IL-6, IL-11 and
`CNTF) and trans- presentation (relevant to IL-6) (BOX 3).
`These alternative modes of cytokine signalling are best
`epitomized by the action of IL-6, and we refer the
`reader to several recent articles that review the regula-
`tion and biological properties of classical IL-6 receptor
`(IL-6R) signalling and IL-6 trans- signalling in health
`and disease5,15,17,37–40. Briefly, classical IL-6R signalling
`describes activities mediated via the membrane- bound
`IL-6R complex and is restricted to cells that express
`both IL-6Rα and gp130 (REF.37). By contrast, IL-6 trans-
`signalling denotes a process that involves IL-6 binding
`to a soluble form of IL-6Rα (sIL-6R), which maintains
`the circulating half- life of IL-6 and increases its bio-
`availability41,42. Interestingly, sIL-6R shares sequence
`identity with both IL-12p40 and EBI3, and once bound
`with IL-6 resembles a heterodimeric cytokine sim-
`ilar to IL-12-related cytokines5,20,43. In this regard, the
`IL-6–sIL-6R complex is able to directly engage and acti-
`vate membrane- bound gp130 to facilitate IL-6 signalling
`in cell types that would not normally respond to IL-6
`(REF.37). Thus, trans- signalling serves to broaden the tar-
`get cell repertoire of IL-6 and is considered the primary
`mechanism for IL-6 involvement in numerous chronic
`diseases and cancers5,37,39. Intriguingly, similar cytokine
`trans- signalling mechanisms have been described for
`IL-11 and CNTF, and recent in vitro observations imply
`that both IL-27p28 and EBI3 can also induce sIL-6R-
`mediated forms of trans- signalling2,15,36,44–46 (BOX  3).
`While the in vivo consequences of these latter signal-
`ling modes require further evaluation, the identifica-
`tion of soluble variants of gp130 (sgp130) in human
`serum, urine and inflammatory exudates that antago-
`nize both IL-6 and IL-11 trans- signalling emphasizes
`the biological importance of these alternative signalling
`mechanisms17,37,40,46.
`
`Regulation of intracellular signalling
`All IL-6-related cytokine receptor complexes transduce
`intracellular signals via t he Janus kinase–signal transducer and
`activator of transcription pathway (JAK–STAT pathway),
`where receptor- associated JAKs (namely, JAK1, JAK2 and
`TYK2) activate the latent transcription factors STAT1,
`STAT3 and (to a lesser extent) STAT5 (REFS6,9,16) (BOX 1).
`Other signalling intermediates activated in response
`to IL-6 family cytokines include, first, the protein
`tyrosine phosphatase SH- PTP2 (SHP2; also known as
`PTPN11), which promotes activation of the RAS–RAF–
`extracellular- signal-regulated kinase 1 (ERK1)/ERK2
`mitogen- activated protein kinase (MAPK) and the
`phosphoinositide 3-kinase (PI3K)–protein kinase B
`(PKB; also known as AKT) pathways, and, second, the
`transcription factor nuclear factor NF- IL-6 (also known
`as C/EBPβ)16 (BOX 1). Recently, IL-6-induced and IL-11-
`induced activation of PI3K was shown to regulate the
`mechanistic target of rapamycin (mTOR) complex 1
`(mTORC1) system, which controls telomerase activity
`and protein synthesis and influences various cellular
`processes including metabolism and redox stress47,48
`
`Receptor promiscuity can also elicit defined forms of
`cytokine receptor crosstalk. For instance, CNTF displays
`a low affinity interaction with IL-6 receptor subunit- α
`(IL-6Rα) that can lead to the formation and activation of
`an IL-6Rα–gp130–LIFR signalling receptor complex2,32.
`Such cross- regulation may afford CNTF the capacity
`to control IL-6-related processes not normally associ-
`ated with its primary involvement in the nervous sys-
`tem (for example, metabolism, bone remodelling and
`immune regulation)33,34 (BOXES 1,2). The complexities of
`IL-6Rα usage also extend to cytokines beyond the IL-6
`cytokine family, with a recent example being IL-27p28,
`which moderates inflammatory activities through
`engagement of an IL-6Rα–gp130 receptor system27,35,36.
`
`Janus kinase–signal
`transducer and activator of
`transcription pathway
`(JAK–STAT pathway). A
`cytokine receptor signalling
`mechanism used by certain
`cytokines to sense and
`interpret environmental cues
`during inflammation and
`immune homeostasis.
`
`NATURE REVIEWS | IMMUNOLOGY
`
`
` VOLUME 18 | DECEMBER 2018 | 775
`
`Lassen - Exhibit 1020, p. 3
`
`

`

`R E V I E W S
`
`a
`
`b gp130 homodimer receptors
`
`c gp130 heterodimer receptors
`
`LIF
`
`CT-1 OSM
`
`IL-31
`
`IL-27
`
`CLCF1 CNTF
`
`Unpaired 3
`
`IL-6
`
`IL-11
`
`Domeless
`
`Hopscotch
`
`Stat92E
`
`OSMRβ
`
`IL-6R
`
`IL-11R
`
`LIFR
`
`IL-31Rα
`
`IL-27Rα
`
`gp130
`
`CNTFRα
`(GPI anchored)
`
`Fig. 1 | Cytokine receptor usage by the IL-6 family of cytokines. Members of the IL-6 cytokine family share a common
`ancestral link to an innate immune sensing mechanism found in Drosophila melanogaster (part a). This system consists of
`Unpaired 3 (IL-6-like), Domeless (gp130-like), Hopscotch (Drosophila melanogaster homologue of mammalian Janus kinase
`(cid:10)(cid:44)(cid:35)(cid:45)(cid:11)(cid:11)(cid:2)(cid:67)(cid:80)(cid:70)(cid:2)(cid:85)(cid:75)(cid:73)(cid:80)(cid:67)(cid:78)(cid:2)(cid:86)(cid:84)(cid:67)(cid:80)(cid:85)(cid:70)(cid:87)(cid:69)(cid:71)(cid:84)(cid:2)(cid:67)(cid:80)(cid:70)(cid:2)(cid:67)(cid:69)(cid:86)(cid:75)(cid:88)(cid:67)(cid:86)(cid:81)(cid:84)(cid:2)(cid:81)(cid:72)(cid:2)(cid:86)(cid:84)(cid:67)(cid:80)(cid:85)(cid:69)(cid:84)(cid:75)(cid:82)(cid:86)(cid:75)(cid:81)(cid:80)(cid:2)(cid:82)(cid:84)(cid:81)(cid:86)(cid:71)(cid:75)(cid:80)(cid:2)(cid:67)(cid:86)(cid:2)(cid:27)(cid:20)(cid:39)(cid:2)(cid:10)(cid:53)(cid:86)(cid:67)(cid:86)(cid:27)(cid:20)(cid:39)(cid:29)(cid:2)(cid:67)(cid:78)(cid:85)(cid:81)(cid:2)(cid:84)(cid:71)(cid:72)(cid:71)(cid:84)(cid:84)(cid:71)(cid:70)(cid:2)(cid:86)(cid:81)(cid:2)(cid:67)(cid:85)(cid:2)(cid:47)(cid:67)(cid:84)(cid:71)(cid:78)(cid:78)(cid:71)(cid:11)(cid:16)(cid:2)(cid:43)(cid:80)(cid:2)(cid:79)(cid:67)(cid:79)(cid:79)(cid:67)(cid:78)(cid:85)(cid:14)(cid:2)
`all cytokines within the family activate cells through receptor complexes that contain the signal- transducing receptor
`β- subunit membrane glycoprotein 130 (gp130) (parts b and c). Three distinct forms of cytokine receptor arrangements are
`utilized by these cytokines. Receptor complexes for IL-6 and IL-11 (part b) contain a cognate non- signalling receptor
`α- subunit and gp130 (termed a gp130 homodimer receptor complex), with gp130 existing as a homodimer to elicit
`signalling. On the basis of the proposed structural arrangement of the IL-6 receptor (IL-6R), a functioning receptor is
`composed of an IL-6–IL-6R–gp130 complex that is clustered into a dimer structure16,268(cid:16)(cid:2)(cid:36)(cid:91)(cid:124)(cid:69)(cid:81)(cid:80)(cid:86)(cid:84)(cid:67)(cid:85)(cid:86)(cid:14)(cid:2)(cid:84)(cid:71)(cid:69)(cid:71)(cid:82)(cid:86)(cid:81)(cid:84)(cid:2)(cid:69)(cid:81)(cid:79)(cid:82)(cid:78)(cid:71)(cid:90)(cid:71)(cid:85)(cid:2)
`for leukaemia inhibitory factor (LIF), cardiotrophin 1 (CT-1), oncostatin M (OSM) and IL-27 (part c) comprise gp130 and
`a second receptor subunit, which contains structural features similar to gp130 (termed a gp130 heterodimer receptor
`complex). These include LIF receptor (LIFR), OSM- specific receptor subunit- β (OSMRβ) and IL-27 receptor subunit- α
`(IL-27Rα). The receptor for ciliary neurotrophic factor (CNTF) and cardiotrophin- like cytokine factor 1 (CLCF1) comprises
`three individual receptor subunits formed between CNTF receptor subunit- α (CNTFRα), LIFR and gp130. Currently , IL-31
`remains the only exception to this ‘gp130 rule’, and the IL-31 receptor consists of IL-31 receptor subunit- α (IL-31Rα) and
`OSMRβ. These alternative receptors provide cytokine specificity and couple directly to signal transduction pathways
`required for cellular activation (BOX 1)(cid:16)(cid:2)(cid:41)(cid:50)(cid:43)(cid:14)(cid:2)(cid:73)(cid:78)(cid:91)(cid:69)(cid:81)(cid:85)(cid:91)(cid:78)(cid:82)(cid:74)(cid:81)(cid:85)(cid:82)(cid:74)(cid:67)(cid:86)(cid:75)(cid:70)(cid:91)(cid:78)(cid:75)(cid:80)(cid:81)(cid:85)(cid:75)(cid:86)(cid:81)(cid:78)(cid:29)(cid:2)(cid:43)(cid:46)(cid:15)(cid:19)(cid:19)(cid:52)(cid:2)(cid:14)(cid:2)(cid:43)(cid:46)(cid:15)(cid:19)(cid:19)(cid:2)(cid:84)(cid:71)(cid:69)(cid:71)(cid:82)(cid:86)(cid:81)(cid:84)(cid:16)
`
`(BOX 1). The diverse signalling networks activated by
`IL-6 also extend to NOTCH and Yes- associated protein
`(YAP), which upon gp130–SRC kinase- dependent acti-
`vation facilitate epithelial cell proliferation and tissue
`remodelling or regeneration49 (BOX 1).
`The pathophysiological consequences of dysregulated
`gp130 activation on immune homeostasis and suscep-
`tibility to infection, autoimmunity or cancer have been
`widely reported, thus highlighting the importance of
`restricting the magnitude or duration of IL-6 cytokine
`family signalling in disease50–54. In this respect, multiple
`negative regulatory mechanisms have evolved to curtail
`gp130-dependent signalling. These include receptor
`internalization, deactivation of receptors and signal-
`ling intermediates by protein tyrosine phosphatases,
`microRNA (miRNA)-mediated translational repression
`and degradation of target mRNAs encoding cytokines or
`their receptors and the STAT- driven induction of protein
`inhibitor of activated STAT protein (PIAS) and suppressor
`of cytokine signalling (SOCS) factors9,16,55,56. Among these,
`SOCS3 plays the predominant negative regulatory role by
`inhibiting JAK–STAT3 activation and targeting cytokine
`receptor complexes for proteasome degradation55.
`Considering the global cellular processes activated
`by the above signalling cascades, it is not surprising
`
`that IL-6 family cytokines display widespread func-
`tional pleiotropy (BOX 1). So, how do individual family
`members acquire unique biological specificity? Early
`investigations of STAT factors and their interaction with
`the genome provided evidence of cooperative mecha-
`nisms with other transcription factors, competition for
`overlapping transcription factor binding sites in gene
`promoter regions and interaction with other transcrip-
`tional co- activators or co- repressors9,55,57. For example,
`the STAT3-mediated transcriptional output of IL-6
`family cytokines can be influenced by the interaction of
`STAT3 with co- activators (such as p300–CREB- binding
`protein (CBP)) and other transcription factors, includ-
`ing nuclear factor- κB (NF- κB). NF- κB complexes with
`STAT3 in an unphosphorylated state to drive a distinct
`transcriptional signature enriched for genes involved
`in oncogenic and immune responses58. Interestingly,
`there is also an alternative mode of transcriptional con-
`trol employed by STAT3. This occurs downstream of
`IL-6 and IL-11 and involves the induction of specific
`miRNAs implicated in tumorigenesis and epithelial–
`mesenchymal transition (EMT) (for example, miR-21
`and miR-200 family members)59,60.
`Another mechanism by which individual IL-6 fam-
`ily members achieve biological specificity involves
`
`776 | DECEMBER 2018 | VOLUME 18
`
`www.nature.com/nri
`
`Lassen - Exhibit 1020, p. 4
`
`

`

`Box 3 | Receptor signalling mechanisms used by the IL-6 family of cytokines
`
`Several members of the IL-6 family adopt alternative modes of cellular activation via
`membrane glycoprotein 130 (gp130). For example, IL-6 classical cytokine receptor
`signalling transduced via a gp130 homodimer is facilitated by membrane- bound forms of
`IL-6 receptor subunit- α (IL-6Rα) and gp130 (for schematic purposes, only one gp130
`molecule is shown). Soluble forms of the cognate non- signalling receptor α- subunits for
`IL-6 (sIL-6Rα), IL-11 (sIL-11R) and ciliary neurotrophic factor (CNTF) (sCNTFR) are readily
`detected in serum. These soluble receptors retain cytokine- binding kinetics and form
`receptor–ligand complexes that activate cells through binding interactions with
`cell-associated gp130. Cytokine binding to soluble receptors also increases the
`circulating half- life of the cytokine and offers protection from proteolytic degradation40.
`These forms of cellular activation are termed cytokine trans- signalling and provide a
`mechanism to broaden the types of cells that are responsive to IL-6, IL-11 or CNTF2.
`Recent evidence has identified another form of receptor engagement termed IL-6 trans-
`presentation267. Here, IL-6 bound to membrane- bound IL-6Rα is displayed on the surface
`of cells (for example, specialized dendritic cells) and presented to gp130 expressed on a
`nearby cell type (for example, a lymphocyte) to elicit signalling via a gp130 homodimer
`(for schematic purposes, only one gp130 molecule is shown). These additional forms of
`cytokine receptor signalling contribute to the regulation of innate and adaptive
`immunity and direct responses in target cells that lack specific receptors for these
`cytokines. Also shown are the numerous cellular processes associated with each of
`these signalling modes.
`
`IL-6 +
`sIL-6Rα
`
`IL-11 +
`sIL-11R
`
`CNTF +
`sCNTFR
`
`e.g. IL-6
`
`IL-

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket