throbber
Fibrosis and diseases of the eye
`
`Martin Friedlander
`
`J Clin Invest. 2007;117(3):576-586. https://doi.org/10.1172/JCI31030.
`
`Review Series
`
`Most diseases that cause catastrophic loss of vision do so as a result of abnormal
`angiogenesis and wound healing, often in response to tissue ischemia or inflammation.
`Disruption of the highly ordered tissue architecture in the eye caused by vascular leakage,
`hemorrhage, and concomitant fibrosis can lead to mechanical disruption of the visual axis
`and/or biological malfunctioning. An increased understanding of inflammation, wound
`healing, and angiogenesis has led to the development of drugs effective in modulating
`these biological processes and, in certain circumstances, the preservation of vision.
`Unfortunately, such pharmacological interventions often are too little, too late, and
`progression of vision loss frequently occurs. The recent development of progenitor and/or
`stem cell technologies holds promise for the treatment of currently incurable ocular
`diseases.
`
`Find the latest version:
`
`http://jci.me/31030-pdf
`
`Lassen - Exhibit 1018, p. 1
`
`

`

`Review series
`
`Fibrosis and diseases of the eye
`
`Martin Friedlander
`
`Department of Cell Biology, The Scripps Research Institute, and Division of Ophthalmology, Scripps Clinic, La Jolla, California, USA.
`
`Most diseases that cause catastrophic loss of vision do so as a result of abnormal angiogenesis and wound healing,
`often in response to tissue ischemia or inflammation. Disruption of the highly ordered tissue architecture in the
`eye caused by vascular leakage, hemorrhage, and concomitant fibrosis can lead to mechanical disruption of the
`visual axis and/or biological malfunctioning. An increased understanding of inflammation, wound healing, and
`angiogenesis has led to the development of drugs effective in modulating these biological processes and, in certain
`circumstances, the preservation of vision. Unfortunately, such pharmacological interventions often are too little,
`too late, and progression of vision loss frequently occurs. The recent development of progenitor and/or stem cell
`technologies holds promise for the treatment of currently incurable ocular diseases.
`
`Introduction
`To see well, we must maintain a clear visual axis and normally func-
`tioning cellular phototransduction. Light entering the eye passes 
`through the cornea (the major refractive surface), the lens, the vitre-
`ous (gel in the posterior chamber of the eye), the inner retina, and, 
`finally, into the photoreceptors of the outer retina (Figure 1). These 
`photoreceptors are the site at which photons of light are converted 
`into electrical signals that are transmitted to the visual cortex of the 
`brain by a complex series of synaptic transmissions (Figure 1). To 
`maintain a visual axis through which light can pass undisturbed, 
`a highly ordered tissue structure is required. Any disturbance in 
`normal cell-cell relationships can lead to biological malfunctioning 
`and/or diffraction, absorbance, or reflection of photons, resulting 
`in disturbed or diminished vision.
`Homeostasis of the eye, as in tissues elsewhere in the body, 
`depends on the presence of normal vasculature, ECM, and vari-
`ous cell types. If homeostasis is disturbed by infection, inflam-
`mation, or metabolic disease, visual function becomes impaired. 
`The end result of these conditions is often fibrosis. In the CNS, 
`of which the retina is a part, such wound-healing responses and 
`associated fibrosis are mediated by glial cells, which perform 
`functions in the CNS similar to those performed by fibroblasts 
`in  the  rest  of  the  body.  Therefore,  gliosis  is  frequently  used 
`to  describe  the  glial  cell–mediated  wound-healing  response 
`observed in the CNS, much as fibrosis (which is fibroblast medi-
`ated) is used to describe similar processes in non-CNS tissues. In 
`the skin, fibrosis can lead to a cosmetic blemish in the form of a 
`scar; in the eye this can have disastrous consequences for vision 
`— mechanically disrupting the visual axis or sufficiently disturb-
`ing the tissue microenvironment such that proper cellular func-
`tioning is no longer possible. For example, fibrosis of the cornea 
`can occur after a viral infection, leading to corneal opacification 
`and thereby loss of vision. In the posterior segment of the eye 
`(Figure 1), uncontrolled retinal vascular proliferation, as a result 
`of diabetes-associated retinal hypoxia, can lead to fibrosis and 
`traction retinal detachment, a dreaded complication of advanced 
`diabetic retinopathy (DR). Under the retina, similar fibrosis can 
`
`Nonstandard abbreviations used: ARMD, age-related macular degeneration; 
`CNTF, ciliary neurotrophic factor; DR, diabetic retinopathy; EPC, endothelial  
`progenitor cell; PEX, carboxyterminal, noncatalytic domain of MMP-2; ROP,  
`retinopathy of prematurity; RPE, retinal pigmented epithelium; TIMP, tissue  
`inhibitor of metalloproteinases.
`Conflict of interest: The author has declared that no conflict of interest exists.
`Citation for this article: J. Clin. Invest. 117:576–586 (2007). doi:10.1172/JCI31030.
`
`occur subsequent to subretinal hemorrhage associated with neo-
`vascular age-related macular degeneration (ARMD).
`Collectively, these conditions of fibrosis in the eye lead to vision 
`loss in millions of individuals worldwide. In this Review, I discuss 
`the cellular pathophysiology associated with fibrosis in the anterior 
`and posterior segments of the eye (Figure 1), with a focus on the 
`latter. Therapeutic approaches for treating these disorders, based 
`on advances in our understanding of the biological mechanisms 
`underlying these conditions, are reviewed and then discussed in the 
`context of recent novel advances in the area of cell-based therapies.
`
`Fibrosis in the eye: general considerations
`Fibrosis commonly refers to the response of a tissue to injury. 
`The injury can occur as a result of a mechanical wound or various 
`metabolic malfunctions, including responses to inflammation, 
`ischemia, and degenerative disease. The local response to such 
`injuries includes infiltration by inflammatory cells, neovascular-
`ization, altered vascular permeability, proliferation of fibroblasts 
`and fibroblast-like cells, modification of the ECM, and, ultimately, 
`some sort of resolution of the damaged tissue. The CNS is highly 
`specialized in many ways, including the types of inflammatory 
`and wound-healing cells present. Since the retina is part of the 
`CNS, its response to injury utilizes mechanisms very similar to 
`those observed in the rest of the brain; this is true not only for the 
`wound-healing response but also for utilization of migratory cues 
`functional during development of the neuronal and vascular com-
`ponents of this highly organized tissue (1, 2). As discussed below, 
`the response of the anterior segment of the eye to wound healing 
`more closely resembles the response of non-CNS tissues than do 
`such events in the posterior segment or the eye. Therefore, I refer 
`to such wound-healing events in the anterior segment as fibrosis, 
`whereas comparable events in the retina are referred to as gliosis. 
`Although such distinction is somewhat artificial, it does serve to 
`differentiate between the fibroblasts and glial cells that effect the 
`wound-healing and scar-formation events.
`
`Anterior segment fibrotic diseases of the eye
`Two major diseases of the anterior segment of the eye leading to 
`visual loss are corneal opacification and glaucoma. In glaucoma, 
`there is progressive loss of ganglion cells of the nerve fiber layer; 
`this results in degeneration of the neuronal tracts through which 
`efferent signals travel from the retina to the visual cortex (3). Typi-
`cally associated with increased intraocular pressure, this disease 
`can lead to progressive constriction of the visual fields and, even-
`
`576
`
`The Journal of Clinical Investigation      http://www.jci.org      Volume 117      Number 3      March 2007
`
`Lassen - Exhibit 1018, p. 2
`
`

`

`review series
`
`Figure 1
`Schematic representation of the eye and principal types of retinal neovascularization and fibrosis/gliosis. (A) The anterior segment of the eye,
`consisting primarily of the cornea and iris, is separated from the posterior segment by the lens. The posterior segment consists primarily of the
`vitreous and the retina. (B) The retina is a highly ordered, multilayered structure that is richly vascularized. Ischemic retinopathies, such as DR,
`can lead to ischemia and neovascularization on the surface of the retina. (C) In extreme cases, associated gliosis can lead to tractional retinal
`detachments. Reproduced with permission from the American Academy of Ophthalmology (122). (D) ARMD can be associated with subretinal
`neovascularization originating from the choriocapillaris, and this can lead to subretinal hemorrhage and fibrosis (E).
`
`tually, complete loss of vision. Although increased intraocular 
`pressure can occur from either increased production of intraocu-
`lar fluid or increased resistance to outflow, it is more commonly 
`believed that progressive fibrosis of the tracts through which the 
`intraocular fluid leaves the eye (called the trabecular meshwork) 
`accounts for most of the damage that causes glaucoma. Increased 
`understanding of the molecular basis for malfunctioning of the 
`trabecular meshwork (4) (in particular, the aberrant production 
`of ECM components) and of the fibrosis associated with increased 
`resistance to outflow, holds promise for developing therapeutics 
`for this relentlessly progressive disease (5).
`Although there are those who consider the cornea simply a “dust-
`cover for the retina,” it in fact is a highly organized tissue through 
`
`which light must pass before entering the rest of the eye. The cor-
`nea is covered externally by a stratified nonkeratinizing epithelium 
`and internally by a single layer of transporting endothelium with 
`multiple orthogonal arrays of collagen in between. It is normally 
`avascular due to the high concentration of soluble VEGFR-1 (6) 
`and is surrounded by a transitional margin, the corneal limbus, 
`within which resides nascent endothelium and corneal epithelial 
`stem cells (7), which have high potential for therapeutic value (8). 
`Diseases of the cornea can be genetic (e.g., inherited dystrophies) or 
`acquired secondary to infection (e.g., herpetic keratitis) or inflam-
`mation (e.g., pterygia). Elastoid degeneration of the conjunctiva, 
`resulting in pingueculae and pterygia (fibrovascular growths on 
`the surface of the cornea), can lead to visual loss secondary to 
`
`
`
`The Journal of Clinical Investigation      http://www.jci.org      Volume 117      Number 3      March 2007 
`
`577
`
`Lassen - Exhibit 1018, p. 3
`
`

`

`review series
`
`induced astigmatism and/or obstruction of the visual axis and 
`would be amenable to topically applied inhibitors of fibrosis 
`and/or angiogenesis (9). The final common events in all of these 
`diseases are often inflammatory changes associated with neovas-
`cularization, tissue edema, and, ultimately, fibrosis of the corneal 
`stroma, which leads to opacification and decreased vision (10). 
`Nearly 20 years ago, penetrating keratoplasty (or corneal trans-
`plants) changed the uniformly dismal prognosis for patients with 
`opacified or failed corneas; in a substantial percentage of patients 
`undergoing this procedure, if there are no other associated abnor-
`malities, the visual axis is cleared and vision is restored. Despite 
`advances in the use of antiinflammatory drugs, antibiotics, and 
`hypertonic solutions to reduce corneal edema associated with the 
`immune response to the transplant, there is a substantial failure 
`rate, typically due to recurrent opacification. Recent advances in 
`corneal limbal stem cell biology hold the promise of reducing the 
`failure rate for this procedure (11).
`
`Posterior segment fibrotic diseases of the eye
`General comments. The posterior segment of the eye consists of 
`structures behind the lens; the interior of the back of the eye is 
`filled with vitreous, a viscoelastic material consisting largely of 
`water, collagen, and hyaluronic acid (12). The vitreous serves as 
`a shock absorber, among other things, for the retina, the most 
`posterior tissue in the eye. In addition, the vitreous can provide 
`scaffolding over which glial and endothelial cells migrate from 
`their normal intraretinal position anteriorly over the retinal sur-
`face and/or into the vitreous in certain disease states (e.g., diabetes, 
`proliferative vitreoretinopathy, retinopathy of prematurity [ROP]). 
`The retina consists of multiple layers of neurons, blood vessels, 
`ECM, and various resident and transient cells such as glial cells 
`and monocytes. The vascular supply of the retina consists of the 
`retinal blood vessels (found in three layers on the innermost por-
`tion of the retina) and the choriocapillaris (a rich vascular plexus 
`found in the outermost portion of the retina). The photoreceptors 
`are in the outermost portion of the neurosensory retina and rest 
`on a monolayer of cells, the retinal pigmented epithelium (RPE), 
`discussed further below. The RPE rests on a collagenous basement 
`membrane (Bruch membrane), and directly beneath this structure 
`flows the choriocapillaris, providing blood supply for the outer 
`third of the retina. Although there is a blood-retina barrier and 
`relative immune privilege in this part of the eye, normal inflam-
`matory responses to irritation and hypoxia can be quite robust 
`and can lead to much of the pathology observed in diseases that 
`decrease vision (Figure 1).
`Most diseases that lead to vision loss in industrialized nations 
`do  so  as  a  result  of  abnormalities  in  the  retinal  or  choroidal 
`vasculature. These diseases, characterized by macula edema, reti-
`nal and vitreous hemorrhage, and fibrovascular scarring, include 
`ARMD, DR, ROP, and neovascular glaucoma. The final common 
`pathophysiological denominator in all of these diseases is the 
`retinal response to injury, with chronic wound healing leading to 
`fibrosis. Although the underlying principles of wound healing in 
`other tissues apply to this process in the eye, it is the uniqueness 
`of the cellular composition and anatomical structure of the retina 
`that makes this normal biological process so potentially devastat-
`ing to vision. The photoreceptors are located in the outermost 
`portion of the neurosensory retina, just anterior to the RPE and 
`choriocapillaris. Overlying these cells are the vitreous, nerve fiber 
`layer, inner nuclear layer, numerous capillary plexuses, and Muel-
`
`ler-glial cells and their processes (Figure 1). For light to hit the 
`photoreceptors in an undisturbed manner such that visual images 
`can be formed, it is important that the highly organized architec-
`ture of the retina is preserved. When abnormal blood vessels form 
`in response to inflammatory or hypoxic stimuli, they can leak 
`fluid, causing retinal thickening and edema, and/or bleed, leading 
`to fibrovascular proliferation and tractional retinal detachment. 
`The following discussion focuses on the unique aspects of wound 
`healing, fibrosis, and scar formation as it occurs in the posterior 
`segment of the eye.
`Fibrovascular scarring and gliosis in the retina. In simplest terms, 
`fibrovascular scarring is a consequence of the underlying inflam-
`matory or hypoxia-driven neovascularization and its associated 
`fibrosis. Therefore, prevention of the primary vascular abnormality 
`is the most appropriate therapeutic target to preserve retinal struc-
`ture and function. To understand fibrosis and its consequences in 
`the back of the eye, understanding the unique aspects of retinal 
`fibrosis is necessary. Glial cells are the CNS counterparts of periph-
`eral fibroblasts, with several key distinctions, and are therefore the 
`primary participants in the formation of fibrotic scars in response 
`to retinal injury and disease. In addition to their fibrotic tenden-
`cies, glial cells also perform a myriad of supportive functions for 
`the neurons with which they are intimately associated. In the reti-
`na, this trophic relationship to neurons is extended to the vascular 
`endothelium, with which certain glia are intimately associated in 
`both developing and mature tissue. For example, activated astro-
`cytes form the template over which retinal vascular endothelial 
`cells migrate during formation of the superficial vascular plexus 
`(1, 13); disturbances in the number or distribution of these cells 
`disrupts the normal development of the retinal vasculature (14). 
`Glial cells of the retina include the resident immune cells, microg-
`lial cells, and two types of macroglial cell, the astrocyte and the 
`retina-specific Mueller-glial cell (15). Two broad categories of dis-
`ease account for most of the conditions that lead to fibrovascular 
`scarring in the retina and its associated vision loss — inflammatory 
`diseases (e.g., ARMD) and ischemic diseases (e.g., DR).
`Subretinal fibrosis: ARMD. The leading cause of vision loss in 
`Americans over the age of 65 is ARMD; 12–15 million Americans 
`over the age of 65 have this disease and 10%–15% of them will lose 
`central vision as a direct effect of choroidal (subretinal) neovascu-
`larization and fibrosis. Clinically, most of these individuals develop 
`atrophic changes in the RPE, which performs a myriad of functions 
`associated with normal photoreceptor functioning (16) and is the 
`cellular interface between the underlying choriocapillaris and the 
`outermost portion of the neurosensory retina, the photoreceptors. 
`As the RPE ages or becomes diseased, it can function improperly, 
`and a build-up of subretinal deposits, called drusen, accumulate. 
`These drusen contain, among other things, angiogenic lipids and 
`damaged proteins (17). RPE dysfunction and the accumulation of 
`drusen can lead to thickening of Bruch membrane, and the accu-
`mulation of angiogenic drusen associated with this fibrosis can 
`lead to decreased diffusion of oxygen from the choriocapillaris to 
`the photoreceptors, further exacerbating conditions that can lead 
`to choroidal neovascularization. Once these new abnormal blood 
`vessels begin to grow in the subretinal space, they often hemor-
`rhage, leading to further wound-healing responses and, ultimately, 
`to subretinal fibrosis (Figure 1, D and E). Needless to say, local 
`destruction of photoreceptors, the RPE, and choroidal blood ves-
`sels leads to permanent reduction in macular function and vision. 
`Efforts to develop animal models to study this process have been 
`
`578
`
`The Journal of Clinical Investigation      http://www.jci.org      Volume 117      Number 3      March 2007
`
`Lassen - Exhibit 1018, p. 4
`
`

`

`review series
`
`Table 1
`Molecules with angiogenic activity in the eye
`
`Name
`Angiogenin
`
`Angiopoietin-1
`
`Angiopoietin-2
`
`FGFs
`
`IGF-1
`
`
`Integrins
`
`
`IL-8
`
`PlGF
`
`PDGF-BB
`
`TGF-β
`
`
`TNF-α
`
`
`VE-cadherin
`
`
`VEGF
`
`
`General angiogenic activity
`Increases EC proliferation
`Promotes tubular organization in vitro
`Stabilizes neovessels
`Matures neovessels
`Can be angiogenic or angiostatic (depends
` on cofactors)
`Increases angiogenesis in vitro and in vivo
`
`Expression correlates with angiogenesis
`Expression correlates with tumor metastasis
`
`Some (e.g., αvβ3, and αvβ5) are critical
` for vessel growth and survival
`
`Increases EC proliferation
`Increases angiogenesis
`Specific modulator of EC response to VEGF
` during angiogenesis
`Induces VEGF expression
`Increases angiogenesis
`Low doses increase angiogenesis
`High doses decrease angiogenesis
`Inflammatory
`Increases EC proliferation
`Increases growth factor effects
`High doses decrease angiogenesis
`Critical for EC intracellular adhesion
`Modulates VEGF activity
`
`Critical proangiogenic growth factor
`
`
`Angiogenic activity in the eye
`Increased in vitreous of patients
` with PDR and PVR
`Important role during development
`Important role in pathological NV
`Can increase ischemia-induced NV
`Increased in patients with PDR
`Associated with choroidal and retinal NV
`
`Mediates VEGF-induced NV in ischemic
` retinopathies
`
`αvβ3 mediates basic FGF-increased
` angiogenesis
`αvβ5 mediates VEGF-increased angiogenesis
`Associated with ischemic retinal NV
`Associated with inflammation
`Increased in human CNV
`Inhibition increased NV in mouse
`Might mediate pericyte recruitment
`Might mediate vascular stabilization
`Increases vascular permeability in the retina
` by increased MMP9
`
`Clinical use
`Possible tumor prognostic
` marker
`Might prevent vessel
` permeability in the eye
`Under evaluation for
` potential clinical use
`Under evaluation for
` potential clinical use
`Somatostatin analogs in
` clinical trials to treat diabetic
` retinopathy
`Integrin antagonists are being
` tested as potent angiostatics
`
`Under evaluation for potential
` clinical use
`Under evaluation for potential
` clinical use
`Under evaluation for potential
` clinical use
`Under evaluation for potential
` clinical use
`
`Associated with various ocular diseases
` with related NV
`
`Infliximab (TNF-α–specific
` antibody)
`
`Retinal vascular development
`
`
`Vascular development, pathological NV
`
`
`Inhibitory antibodies and
` T2-TrpRS are antiangiogenics
` for tumors or ocular diseases
`Multiple anti-VEGF treatments
` in the clinic or clinical trials
`
`NV, neovascularization; PlGF, placental growth factor; PDR proliferative DR; PVR, proliferative vitreoretinopathy, VE-cadherin, vascular endothelial cadherin.
`
`hampered by the fact that rodents do not seem to faithfully mimic 
`the human disease, although transgenic mice have provided some 
`use in this regard (18).
`Advances in therapeutic options available to treat neovascular 
`ARMD have provided some benefit to small subsets of patients 
`with this disease (19, 20). Most drugs currently in clinical trials or 
`approved for treating ARMD-associated choroidal neovasculariza-
`tion are directed at inhibiting promoters of angiogenesis, such as 
`VEGF. There is extensive literature covering these approaches, and 
`I refer the reader to several excellent recent reviews (refs. 16, 19). 
`Unfortunately, inhibiting angiogenic cytokines does not address 
`the underlying pathophysiology — ischemia and inflammatory 
`stimuli. Efforts to minimize sub- and epiretinal fibrosis have met 
`with limited success and, in any event, would represent a thera-
`peutic intervention occurring too late to rescue vision, since such 
`scarring would have already led to photoreceptor death.
`Epiretinal fibrosis: DR. The leading cause of visual loss for Ameri-
`cans  under  the  age  of  65  is  diabetes;  6%–8%  of  the  American 
`population is diabetic, and 40,000 patients each year suffer visual 
`loss from complications of the disease, often as a result of reti-
`nal edema or neovascularization (21). Virtually every diabetic has 
`some form of DR after 20 years of the disease (21). Ischemia occurs 
`as a result of the diabetic microvasculopathy that includes peri-
`
`cyte cell death, microaneurysms, intraretinal microvascular abnor-
`malities, altered vascular permeability, and macular edema (22). 
`As the hypoxia increases, neovascularization can occur, leading to 
`intraretinal, subhyaloid (between the retinal surface and posterior 
`vitreous base) and vitreous hemorrhage (Figure 1B). These prolif-
`erating blood vessels are accompanied by fibrosis that occurs as a 
`consequence of glial cell activation and proliferation (gliosis) (Fig-
`ure 1C). As abnormal vessels continue to proliferate on the retinal 
`surface, they can extend into the vitreous and contract, causing 
`traction on the retinal surface and leading to retinal detachment, a 
`dreaded complication of proliferative DR. Retinal neovasculariza-
`tion and associated gliosis and fibrosis are also observed in ROP 
`(23) and as a complication of surgery to treat retinal detachment 
`(24, 25). Surgical intervention and laser obliteration of the periph-
`eral retina (to decrease the metabolic demand and thereby match 
`up supply and demand) are the current treatments and are of 
`limited benefit. Although animal models of ischemic retinopathy 
`have been very useful in helping to develop a better understanding 
`of factors that control retinal vascular proliferation (24, 26), the 
`rodent does not develop the associated preretinal fibrosis, limiting 
`its utility in studying the gliosis observed in the human condition. 
`Given that abnormal vascular proliferation serves as the stimulus 
`for pathological fibrotic responses in these diseases, the following 
`
`
`
`The Journal of Clinical Investigation      http://www.jci.org      Volume 117      Number 3      March 2007 
`
`579
`
`Lassen - Exhibit 1018, p. 5
`
`

`

`review series
`
`discussion focuses on known basic molecular and/or biological 
`pathways of angiogenesis and rational approaches to therapeutic 
`interventions based on this knowledge.
`
`Neovascularization of the retina leads to gliosis
`and fibrous scarring
`General considerations. The ocular response to hypoxia and inflam-
`matory insults typically leads to retinal or choroidal neovascu-
`larization. During development, this process is highly regulat-
`ed and leads to the establishment of a well organized, mature 
`vasculature (1). In the adult eye, this is often not the case, and 
`associated glial cells (e.g., astrocytes, microglia, and Mueller-glial 
`cells) proliferate with the endothelial cells, leading to fibrosis and 
`scar formation. To understand this gliotic response, it is impor-
`tant to understand angiogenesis.
`In the normal adult, angiogenesis (defined as the growth of 
`new blood vessels from preexisting ones) is tightly regulated and 
`limited to wound healing, pregnancy, and uterine cycling. Our 
`understanding of the molecular events involved in the angiogenic 
`process has advanced substantially since the purification of the 
`first angiogenic molecules nearly two decades ago (27). This pro-
`cess, under physiologic conditions, can be activated by specific 
`angiogenic molecules (Table 1), such as basic and acidic FGF (28), 
`VEGF (29), angiogenin (30), TGF-β (31), IFN-β (32), TNF-α (33), 
`and PDGF (34). Angiogenesis can also be suppressed by inhibitory 
`molecules (Table 2), such as IFN-α (35), thalidomide (36), throm-
`bospondin-1 (37), angiostatin (38), endostatin (39), a naturally 
`occurring form of the carboxyterminal, noncatalytic domain of 
`MMP-2 (PEX) (40), transfer RNA (tRNA) synthetases (41, 42), and 
`pigment epithelium–derived factor (43). It is the balance of these 
`naturally occurring stimulators and inhibitors of angiogenesis 
`that is thought to tightly control the normally quiescent capillary 
`vasculature (44). When this balance is upset, as in certain disease 
`states (e.g. DR), capillary endothelial cells are induced to prolifer-
`ate, migrate, and differentiate.
`The role of cell adhesion molecules, such as integrins, in regulat-
`ing the relationship between proliferating vascular cells and their 
`environment, has been the focus of many studies (45). At least three 
`cytokine-dependent pathways of angiogenesis have been described 
`and defined by their dependency on distinct vascular cell integrins, 
`αvβ3 (46), αvβ5 (47), and αvβ1 (48). Cell migration through the ECM 
`also depends on proteolysis of the matrix. Integrins (32, 49, 50), 
`MMPs (51–53), and tissue inhibitors of metalloproteinases (TIMPs) 
`(54) are found throughout the eye, where they interact with each 
`other (40) to maintain a quiescent vasculature until the balance is 
`upset, resulting in pathological angiogenesis. Signaling molecules, 
`including SRC tyrosine kinases (55), modify endothelial cell behav-
`ioral responses to changes in the microenvironment, and similar 
`pathways are operational in migrating neurons, differentiating 
`progenitor cells, and glial cells (56). Vascular endothelial cells are 
`protected from apoptotic stimuli by αv integrin subunit interaction 
`with RAF kinase (57). This response is differentially regulated by 
`two distinct pathways, one involving FGF and the other involving 
`VEGF-stimulated endothelial cell apoptosis (47).
`Ocular angiogenesis. Several reports suggest that VEGF is the domi-
`nant angiogenic stimulus in experimentally induced iris neovascu-
`larization (58, 59) as well as endogenous neovascular retinopathies 
`(60–62). Although there clearly is a direct correlation between intra-
`ocular VEGF levels and ischemic retinopathic ocular neovasculariza-
`tion, a role for FGF cannot be ruled out (63–65). Substantial inhibi-
`
`tion of retinal vascular proliferation in a mouse model of hypoxic 
`retinopathy is observed with antibody (66) and aptamer (67) antag-
`onists of VEGF as well as with selective PKC antagonists (68).
`Although normal human ocular blood vessels do not ordinar-
`ily display αvβ3 or αvβ5 integrins, only αvβ3 has been consistently 
`observed in ocular tissue from patients with ARMD, whereas both 
`αvβ3 and αvβ5 were present in tissues from patients with prolif-
`erative DR (49). Systemically administered peptide antagonists 
`of both integrins blocked new blood vessel formation in a mouse 
`model of retinal angiogenesis (49, 69, 70), reinforcing the con-
`cept that both integrins might have a role in active fibrovascu-
`lar proliferation of the type seen in proliferative DR. Consistent 
`with the concept that integrins such as αvβ3 and αvβ5 are required 
`for proliferating endothelial cells to successfully navigate the 
`extracellular milieu is the observation that these integrins can 
`selectively bind MMPs, including PEX (40). Small-molecule PEX 
`mimetics also bind αvβ3, preventing binding of MMP2, and there-
`by mimicking the action of PEX (71, 72). Clearly, interactions 
`between developing vasculature and the ECM are critical during 
`normal and abnormal angiogenesis (73).
`The  antiangiogenic  activity  of  several  compounds  exhibits 
`strain-related differences in various animal models of angiogen-
`esis (74). Steroids (75), in particular an angiostatic steroid devoid 
`of glucocorticoid activity (anecortave acetate) (76, 77), pigment 
`epithelium–derived factor (43), MMP antagonists (78), and soma-
`tostatin analogs (79–81) have demonstrated potent antiangiogen-
`ic activity in various animal models of ocular neovascularization. 
`Laser photocoagulation has been effective in preventing severe 
`visual loss in subgroups of high-risk diabetic patients but, with 
`few exceptions, has not been effective at preventing visual loss 
`in patients with choroidal neovascularization due to ARMD or 
`inflammatory eye diseases such as ocular histoplasmosis. Photo-
`dynamic therapy using nonthermal lasers to activate photoacti-
`vateable dyes reduces severe vision loss in a small subset of ARMD 
`patients (82). Very recent substantial advances in the use of anti-
`angiogenic monotherapy, principally VEGF antagonists, have led 
`to the reduction of severe vision loss in a subset of patients with 
`ARMD (83). Although slowing, or even minimally improving, 
`vision loss in some patients, this approach does not offer relief 
`for the underlying condition or the ischemia driving the neovas-
`cularization. Thus, a substantial challenge in developing effective 
`treatments for these diseases remains the relief of retinal isch-
`emia. Combination therapy holds great promise in this area (84) 
`but remains relatively unexplored.
`Retinal neovascularization leads to gliosis. Retinal glial cells, and 
`astrocytes in particular, have an important role in establishing and 
`maintaining the highly ordered retinal vasculature (1, 14). Retinal 
`injury due to hypoxia or inflammatory changes, similar to injuries 
`in other tissues, is typically associated with neovascularization and 
`fibrosis (85). Reactive gliosis can be both neuro- and vasculopro-
`tective but can also directly contribute to scar formation and trac-
`tional lesions that lead to vision loss. Therefore, if we are to better 
`control the retinal response to injury, a better understanding of 
`the regulation of glial cell proliferation is necessary. A number of 
`studies have examined the control of Mueller-glial cell prolifera-
`tion and activation after retinal injury, and a role for p27Kip1 has 
`been demonstrated in the regulation of Mueller-glial cell prolifera-
`tion during injury-associated gliosis (86). These cells not only par-
`ticipate in glial scar formation after injury but can also upregulate 
`the production of trophic factors that facilitate neuronal survival 
`
`580
`
`The Journal of Clinical Investigation      http://www.jci.org      Volume 117      Number 3      March 2007
`
`Lassen - Exhibit 1018, p. 6
`
`

`

`review series
`
`Table 2
`Molecules with antiangiogenic activity in the eye
`
`Name
`
`General antiangiogenic activity
`
`Antiangiogenic activity in the eye
`
`ECM-derived molecules
`Ef

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket