throbber
United States Patent £19]
`Ariola et al.
`
`Ill
`
`1111~11111111 ~11111111111~ 11111111111
`US005697906A
`5,697,906
`[llJ Patent Number:
`[45] Date of Patent:
`Dec. 16, 1997
`
`[54]
`
`INTRA-AORTIC BALLOON CATHETER
`
`[75]
`
`Inventors: John Ariola, Norton; Kevin R. Heath.
`Weston, both of Mass.
`
`[73] Assignee: Boston Sciendfic Corporation, Natick,
`Mass.
`
`[21] Appl. No.: 816,200
`
`[22] Filed:
`
`Mar. 18, 1997
`
`Related U.S. Application Data
`
`[63] Continuation of Ser. No. 556,533, Nov. 13, 1995, aban-
`doned.
`Int. Cl.6
`.................................................... A61M 25100
`[51]
`[52] U.S. CI. ................................................................ 604/96
`[58] Field of Search ................................ 604/53. 96, 194,
`604/282; 606/194; 128/658, 772
`
`[56]
`
`References Cited
`
`5,243,996
`5,308,319
`5,341,818
`5,346,505
`5,397,306
`5,411,476
`5,439,443
`5,441,489
`5,449,343
`5,456,665
`5,460,607
`5,480,383
`5,505,699
`5,507,766
`
`9/1993 Hall ......................................... 1281772
`5/1994 Ide et al .................................... 600/18
`8/1994 Abrams et al .......................... 128/772
`9/1994 Leopold .................................. 606/194
`3/1995 Nobuyoshi et al ....................... 604196
`5/1995 Abrams et al ............................ 604195
`. ........................... 604196
`8/1995 Miyata et al.
`8/1995 Utsumi et al ........................... 6041180
`9/1995 Samson et al ............................ 604/96
`10/1995 Postell et al .............................. 604196
`............................ 604196
`l0/1995 Miyata et al.
`1/1996 Bagaaisan et al. ....................... 604196
`411996 Forman et al ............................ 604196
`411996 Kugo et al .............................. 606/194
`
`FOREIGN PJITENT DOCUMENTS
`
`340 304 A1 1111989 European Pat. Off ..
`WO 93/17750
`9/1993 WIPO .
`WO 95/24236
`9/1995 WIPO.
`
`Primary EXaminer-Manuel Mendez
`Attome)i Agen~ or Finn-Nawrock:i, Rooney & Sivertson,
`P.A.
`
`U.S. PATENT DOCUMENTS
`
`[57]
`
`ABSTRACT
`
`5/1982 Hanson et al ........................... 128/1 D
`4,327,709
`4,362,150 12/1982 Lombardi, Jr. et al. ................ 128/1 D
`2/1986 Schiff et al. ............................ 128/1 D
`4,569,332
`3/1987 Neuman et al ......................... 128/1 D
`4,646,719
`9/1990 Taylor et al. ........................... 128/657
`4,955,384
`4,994,018
`2/1991 Saper ........................................ 600/18
`2/1992 Montafis et al ........................... 604196
`5,090,957
`5/1992 Milder et al .............................. 600118
`5,116,305
`
`An improved intra-aortic balloon catheter having an outer
`tube of a polymeric material and an inner tube of superelas(cid:173)
`tic metal material with varying flexibility. The inner tube has
`a proximal end and a distal end The inner tube is more
`flexible proximate the distal end than the proximal end.
`
`14 Claims, 2 Drawing Sheets
`
`24
`
`12
`
`r/4
`~iiOiiiiilt- -=~==/5~~-------,.---------'-------~26
`38./
`19
`
`"'-10
`
`B
`
`]
`
`38
`
`A
`
`\_39
`
`20
`
`

`
`U.S. Patent
`
`Dec. 16, 1997
`
`Sheet 1 of 2
`
`5,697,906
`
`~
`
`~
`•
`-~
`~
`
`'
`'
`
`'
`
`I I
`~
`
`\ Q)
`
`1"1')
`
`0 -/
`
`1\Q)
`
`1"1')
`
`~ en
`•
`-~
`~
`
`u
`
`Ll 0
`
`IC)
`
`0
`(\J
`
`

`
`U.S. Patent
`
`Dec. 16, 1997
`
`Sheet 2 of 2
`
`5,697,906
`
`C\1
`1.()
`
`

`
`5,697,906
`
`1
`INTRA-AORTIC BALLOON CATHETER
`
`This application is a continuation of U.S. Ser. No.
`08/556,533, filed Nov. 13, 1995, now abandoned entitled
`''Intra-Aortic Balloon Catheter".
`
`FIELD OF THE INVENTION
`The present invention generally relates to the field of
`intravascular medicine, and more particularly to the field of
`catheters such as intra-aortic balloon catheters used for
`assisting the pumping action of the heart.
`
`2
`Metallic inner tubes have also been utilized. For example,
`stainless steel inner tubes are relatively less :flexible than
`plastic tubes, but due to the rigidity of stainless steel tubes,
`they do not as easily track a guidewire. In addition, stainless
`5 steel inner tubes are susceptlble to kinking at a relatively
`large kink radius. Superelastic metal alloy inner tubes can
`also be utilized to provide the finished catheter with a
`somewhat higher :flexibility or steerability than stainless
`steel versions. Superelastic metal alloy tubes can also have
`10 greater pushability than plastic inner tubes having the same
`wall thickness.
`One example of an intra-aortic balloon catheter having a
`superelastic metal alloy inner tube is disclosed in U.S. Pat.
`No. 5,456,665 to Postell et al., the disclosure of which is
`incorporated herein by reference. This catheter comprises a
`metal alloy inner tube which bas uniform longitudinal
`:flexibility. The metal alloy inner tube can be comprised of
`nitinol, which allows the inner tube to be more kink-resistant
`than those made from stainless steel, and thinner than those
`formed from plastic or metal ribbon wrapped plastic.
`The inner tube construction of Postell et al. does not
`provide a tube having varying :flexibility along its length.
`Consequently, the proximal end of the inner tube will be as
`:flexible as the distal end of the tube. It is preferable,
`however. that the proximal end of the inner tube be more
`rigid than the extreme distal end of the inner tube. Such a
`variation in :flexibility would provide high pushability along
`the majority of the length of the catheter, and high flexibility
`or steerability at the distal end of the catheter which must
`negotiate the vasculature tracking the guidewire.
`
`SUMMARY OF THE INVENTION
`
`BACKGROUND OF THE INVENTION
`The use of balloon catheters for treatment in the vascular
`system of the body is well known in the field of medicine. 15
`Intra-aortic balloon catheters are used in applications where
`a patient's heart requires assistance to circulate blood
`through such patient's vasculature.
`Over-the-wire intra-aortic balloon catheters have become
`a widely used type of intra-aortic balloon catheter. Over- 20
`the-wire balloon catheters are generally dual-lumen balloon
`catheters, including a shaft having an inner tube extending
`longitudinally from the proximal to the distal end of the
`catheter. The inner tube defines a guidewire lumen also
`extending longitudinally from the proximal to the distal end 25
`of the catheter to facilitate movement of the catheter over a
`guidewire. An in:flatablelde:flatable balloon is positioned
`such that its distal end is sealably attached to the distal end
`of the inner tube. The shaft of the intra-aortic balloon
`catheter also includes an outer tube extending longitudinally 30
`from the proximal end of the catheter to the proXima.I end of
`the balloon where it is sealably attached. The inner tube is
`generally coaxially disposed within the outer tube to define
`a :fluid :flow lumen or gas lumen therebetween from the
`The present invention relates to an improved intra-aortic
`proximal end of the catheter to the interior of the balloon. A 35 balloon catheter having an outer tube and an inner tube. The
`hub assembly is sealably attached to the proximal end of the
`inner tube is constructed utilizing kink-resistant superelastic
`metal material having varying :flexibility of the length
`shaft to provide means for supplying fluid pressure to the
`balloon through the gas lumen from an external pump.
`thereof and a high degree of pusbability. The inner tube is
`Generally, intra-aortic balloon catheters are constructed of
`most :flexible nearest its distal tip. The :flexible tip improves
`polymeric materials, such as a polyurethane balloon and 40 the steerability of the catheter and reduces the likelihood of
`outer tube, and a polymeric, stainless steel, or metal alloy
`vessel trauma during placement The flexibility of the tip end
`of the improved intra-aortic balloon catheter inner tube can
`inner tube.
`In operation, the intra-aortic balloon catheter is usually
`be designed to approach that of prior plastic inner tubes,
`introduced percutaneously into the femoral artery over a
`while the proximal end can have the pushability of prior
`guidewire, and advanced through the vasculature until the 45 catheters having metallic inner tubes.
`Although reference throughout this specification may be
`distal tip of the balloon is positioned just below or distal to
`the left subclavian artery. Care must be taken during inser-
`specifically made to intra-aortic balloon catheters, these
`tion to avoid any trauma or perforation, particularly when
`references are applicable to other catheter types such as
`the balloon is passing the branches, arteries or curves of the
`guide catheters, diagnostic catheters, coronary, neuro, gen-
`vasculature. Once in position, a balloon pump can be 50 eral periphery, and vascular type catheters.
`operated synchronously with the patient's heart beat In
`The present invention provides a dual-lumen intra-aortic
`particular, the balloon can be inflated and deflated to assist
`balloon catheter design which includes a shaft having an
`blood circulation from the heart by causing inflation to occur
`inner tube extending longitudinally from the proximal to the
`as the aortic valve is closing, and causing deflation to occur
`distal end of the catheter. The inner tube defines a guidewire
`ss lumen designed to accommodate a guidewire to facilitate
`just prior to the onset of systole.
`It is often difficult to advance a balloon assembly over a
`placement of the catheter. The inner tube is formed of a
`highly elastic, kink-resistant metal material such as nitinol
`guidewire for any great distance. Prior art designs which
`utilized plastic inner tubes are very fleXIble, but have poor
`having varying :flexibility and a high degree of pushability.
`circumferential rigidity. Typically, thick plastic walls were
`The inner tube is more flexible nearest its tip.
`required to provide adequate compressive strength to obtain 60
`An inflatable/de:flatable balloon is positioned such that the
`distal end of the balloon is sealably attached to the inner tube
`sufficient pushability. However, using thick-walled inner
`tubes results in a reduction in the gas lumen cross-sectional
`proximate its distal end. The shaft of the intra-aortic balloon
`area for an outer tube of a given inside diameter. The
`catheter of the present invention also includes an outer tube
`extending longitudinally from the proximal end of the
`reduction in cross-sectional area undesirably slowed defla-
`tion and inflation of the balloon. Metal ribbon wrapped 65 catheter to the proximal end of the balloon where it is
`sealably attached. The outer tube and balloon can preferably
`plastic inner lumens can also be used, but the added thick-
`ness of the metal wrap reduces the available gas lumen area
`be constructed of a polyurethane.
`
`

`
`5,697,906
`
`3
`The inner tube is coaxially disposed within the outer tube
`defining a :O.uid :How or gas lumen therebetween. A hub
`assembly is sealably attached to the proximal end of the
`shaft to provide means for supplying fluid pressure to the
`balloon through the gas lumen.
`In a preferred embodiment. the inner tube is comprised of
`three regions of flexibility over its longitudinal length. a high
`flexibility region distal, a transition region intermediate, and
`a low flexibility region proximal. The inner tube is prefer(cid:173)
`ably formed of a kink-resistant. superelastic metal material
`such as nitinol.
`A method of forming the three regions of flexibility of the
`inner tube is also provided. According to this method, the
`inner tube is manufactured from nitinol and the three regions
`of flexibility are formed by selective heat treatment of the
`inner tube in a high temperature salt bath. The method
`includes the steps of providing a nitinol tube having a
`predetermined austenite finish temperature as a starting
`material. A salt bath is then heated to a desired temperature.
`The nitinol tube is then dipped in the salt bath such that two
`of the three regions are submerged. The process of heating
`the nitinol tube raises its austenite finish temperature. and
`through a physical change in its material properties, the
`flexibility of the nitinol tube is increased. Since the third
`region is not submerged it will retain its original austenite
`finish temperature. The tube is then extracted slowly at a
`predetermined rate from the salt bath until only one region
`is submerged. After continued heat treatment of this single
`region to a desired austenite finish temperature, the nitinol
`tube is then removed from the salt bath.
`In an alternative version of the method of the present
`invention, the entire nitinol tube is initially submerged in the
`salt bath to achieve an overall desired austenite finish
`temperature. The tube is then removed, then reinserted and
`extracted slowly from the salt bath following the process
`described above until only the third region is submerged. In
`yet another alternative version of the method of the present
`invention, the entire nitinol tube is alternately held. then
`extracted at desired rates from the salt bath to create any
`desired number of austenite finish temperature transition
`regions and constant temperature regions along the length of
`the inner tube.
`
`BRIEF DESCRIPTION OF TilE DRAWINGS
`
`FIG. 1 is a schematic elevational view of the intra-aortic
`balloon catheter assembly of the present invention;
`FIG. 2 is a simplified partial cross-sectional view of the
`intra-aortic balloon catheter assembly of FIG. 1 showing the
`balloon assembly;
`FIG. 3 is a simplified partial cross-sectional view of the
`intra-aortic balloon catheter assembly of FIG. 1 showing the
`hub assembly; and
`FIG. 4 is an elevational view of the inner tube of the
`intra-aortic balloon catheter assembly of FIG. 1 having
`varying flexibility zones depicted thereon.
`
`35
`
`10
`
`4
`14 has a proximal end 15 and a distal end 19.Agas input and
`output tube 18 includes a proximal end 20 configured for
`connection to a balloon in:Oationlde:Oation pump and a distal
`end 22 connected to hub U. Catheter 10 has a proximal end
`5 24 and a distal end including a distal tip member 26.
`Proximal end 24 includes a fixture defining the proximal end
`of an inner tube 38 having guidewire lumen 28 (shown in
`FIGS. 2 and 3). Guidewire lumen 28 extends longitudinally
`through catheter 10.
`Catheter 10 can include a repositioning shield 30 having
`a proximal end 32 connected to hub U and a distal end 34
`configured to be connected to a proximal end of a catheter
`introducer (not shown). As generally known and understood
`in the art, the repositioning shield is easily axially com-
`15 pressible to allow balloon 14 and shaft 16 to be moved
`longitudinally relative to the catheter introducer.
`FIG. 2 is a longitudinal cross-sectional view of balloon 14
`of catheter 10 of FIG. 1. As shown in FIG. 2, shaft 16
`includes an outer tube 36 and an inner tube 38, generally
`20 concentrically disposed through outer tube 36. Inner tube 38
`includes a distal end 39. Outer tube 36 includes a distal end
`40. which is sealably connected to the proximal end 15 of
`balloon 14. Inner tube 38 extends distally through outer tube
`16 and balloon 14 to distal tip member 26. Inner tube 38 is
`25 preferably formed from a superelastic metal alloy. such as
`nitinol.
`A gas lumen 42, in fluid communication with the inside of
`the balloon 14, is defined between outer tube 36 and inner
`30 tube 38. Inner tube 38 defines guidewire lumen 28 there(cid:173)
`through to distal tip member 26. Tip member 26 defines the
`remaining distal portion of guidewire lumen 28. The distal
`end 19 of balloon 14 is adhered to distal tip member 26
`proximally. A strain relief 44 can be placed around inner
`tube 38, where tube 38 extends from distal tip member 26.
`Distal tip member 26 can include a marker band 46 to assist
`the physician in locating the distal tip of catheter 10 by
`radiological means.
`FIG. 3 is a partial cross-sectional view of catheter 10
`40 taken where shaft 16 and repositioning shield 30 are con(cid:173)
`nected to hub U. As shown in FIG. 3, outer tube 36 includes
`a proximal end 48 connected to hub 12 and extending
`distally therefrom. Inner tube 38 also includes a proximal
`end 50 connected to hub 12 and extending distally therefrom
`45 through outer tube 36. A typical guidewire 52 extends
`through guidewire lumen 28. Inner tube 38 defines most of
`guidewire lumen 28, however, the portion of guidewire
`lumen 28 extending between proximal end 50 of tube 38 and
`proximal end24 of catheter 10 is defined by hub 12. Hub 12
`50 also defines a portion of gas lumen 42 fluidly connecting that
`portion of gas lumen 42 defined by outer tube 36 and inner
`tube 38 with a lumen extending through gas tube 18. For
`clarity, strain relief 17 is not shown in FIG. 3.
`The balloon 14 and outer tube 36 are preferably formed
`55 from polyurethane, and are preferably formed in one con(cid:173)
`tinuous piece having no adhesive joint at the proximal end
`of balloon 14. As well known in the art of balloon
`catheterization, numerous other materials may be used to
`form outer tube 38 and/or balloon 14. Also, balloon 14 need
`60 not be formed in one piece with outer tube 38. Distal tip
`member 26 is preferably formed from polyurethane. but may
`be formed from any other suitably biocompatible flexible
`material.
`FIG. 4 is a partial elevational view of the intra-aortic
`balloon catheter 10 of FIG. 1, showing the inner tube 38. The
`inner tube 38 includes three regions, a high flexibility region
`A. a transition region B. and a low flexibility region C. The
`
`DEfAaED DESCRIPTION OF THE
`PREFERRED EMBODIMENTS
`Referring now to the drawings. wherein like reference
`numerals refer to like elements throughout the several
`views, FIG. 1 shows an elevational view of the intra-aortic
`balloon catheter 10 in accordance with the present invention.
`Catheter 10 includes a hub U, a balloon 14 and a shaft 16 65
`extending therebetween. A strain relief 17 can provide a
`transition in flexibility between hub 12 and shaft 16. Balloon
`
`

`
`5,697,906
`
`15
`
`20
`
`5
`three zones of flexibility of inner tube 38 result in a high
`degree of pushability, while maintaining a more flexible tip.
`In a preferred embodiment, the inner tube 38 is formed of
`nitinol, and the three regions of flexibility are defined by
`treatment of inner tube 38 in a high temperature salt bath. A 5
`nitinol tube having an austenite finish temperature of
`19°-20° C. as starting material is first provided. A salt bath
`is then heated to a temperature in the range of 450° C. to
`550° C. The nitinol tube is then immersed in the salt bath
`such that region A and B are submerged. The process of
`heating the nitinol tube raises its austenite finish
`temperature, and through a physical change in its material
`properties, the flexibility of the nitinol tube is increased.
`Since region C is not submerged it will retain its original
`austenite finish temperature of 19°-20° C. The tube is then
`extracted slowly at a selected rate from the salt bath until
`only region A remains submerged. This extraction time is
`typically in the range of 15-45 minutes. The nitinol tube is
`then removed from the salt bath after section A has achieved
`a selected austenite finish temperature. Although a molten
`salt bath is preferred, other means of heating the nitinol tube
`can be utilized.
`There is an inverse relationship between the necessary
`extraction time and the temperature of the salt bath. A higher
`temperature salt bath, for example, will require a shorter
`extraction time to reach the target austenite finish tempera(cid:173)
`ture. In this preferred embodiment, the final austenite finish
`temperature of region A is 30° C. Region C will have a
`constant austenite finish temperature of 20° C. Region B will
`have an austenite finish temperature that varies from zoo C.
`at the interface to region C, to 30° C. at the interface to
`region A. In this preferred embodiment, it is desirable that
`region A have a length that is approximately two inches, and
`that region B have a length of approximately Z inches. In
`operation, balloon 14 preferably has a length of between
`6-12 inches. It is understood. however, that regions A and B
`and balloon 14 can be varied.
`In an alternative method of treatment, the entire nitinol
`tube is initially submerged in the salt bath to achieve a
`desired austenite finish temperature for region C. The tube is
`then removed, then reinserted and extracted slowly from the
`salt bath following the process described in the preferred 40
`embodiment above until only region A is submerged. The
`extraction time is determined by the desired austenite finish
`temperature for region A. The nitinol tube is then removed
`from the salt bath. It is understood in the alternative embodi(cid:173)
`ment that the austenite finish temperature of region C, 45
`transition region B, or region A can be of any desired value
`as long as the austenite finish temperature of region A is
`greater than the austenite finish temperature of region C.
`In another alternative method of treatment, the nitinol
`tube is extracted at a desired nonconstant rate in order to 50
`create a nonlinear transition region B. In this embodiment,
`transition region B will have a nonlinear variation in aus(cid:173)
`tenite finish temperature as a function of tube length.
`In yet another alternative method, the nitinol tube is
`alternately held, then partially extracted at desired rates, thus
`creating any desired number of austenite finish temperature
`transition regions and constant temperature regions.
`Numerous characteristics and advantages of the invention
`covered by this document have been set forth in the fore(cid:173)
`going description. It will be understood, however, that this
`disclosure is, in many respects, only illustrative. Changes
`may be made in details, particularly in matters of shape, size,
`and arrangement of parts without exceeding the scope of the
`invention. The invention's scope is, of course, defined in the
`language in which the appended claims are expressed.
`What is claimed is:
`l. In a catheter including a shaft having a proximal end,
`a distal end, and a balloon disposed proximate the distal end
`
`6
`of the shaft, wherein the shaft includes an outer tube and
`inner tube disposed therethrough the improvement charac(cid:173)
`terized by:
`the inner tube comprising a nitinol tube having at least a
`first region of flexibility and a second region of flex(cid:173)
`ibility along the longitudinal length thereof wherein the
`first region has a greater flexibility and a higher aus(cid:173)
`tenite finish temperature than the second region.
`2. The catheter in accordance with claim 1, wherein the
`10 austenite finish temperature of the first region is at least
`about 33° C.
`3. The catheter in accordance with claim l, wherein the
`austenite finish temperature of the second region is at most
`about 20° C.
`4. The catheter in accordance with claim l, wherein the
`first region is distal of the second region.
`5. The catheter in accordance with claim 4, wherein the
`inner tube further comprises a third region of flexibility
`disposed longitudinally between the first and second regions
`of flexibility.
`6. The catheter in accordance with claim 5, wherein the
`flexibility of the third region of flexibility has a distal end
`proximate the first region of flexibility and a proximal end
`proximate the second region of flexibility and the flexibility
`of the third region varies between the first and second
`25 regions of flexibility, the third region being most flexible
`proximate the distal end and least flexible proximate the
`proximal end.
`7. The catheter in accordance with claim 6, wherein the
`austenite finish temperature of the third region varies
`30 between at least about 30° C. proximate the distal end to at
`most about 20° C. proximate the proximal end.
`8. An intra-aortic balloon catheter, comprising:
`a shaft having a proximal end and a distal end, the shaft
`including an outer tube and a nitinol tube disposed
`within the outer tube, wherein the nitinol tube defines
`a guidewire lumen therethrough and the inner and outer
`tube define an inflation lumen therebetween;
`a balloon disposed at the distal end of the shaft, wherein
`the inflation lumen is in fluid communication with the
`interior of the balloon; and
`the nitinol tube having at least a first region of flexibility
`and a second region of flexibility wherein the first
`region has a greater flexibility and a higher austenite
`finish temperature than the second region.
`9. The catheter in accordance with claim 8, wherein the
`finish temperature of the first region is at least about 33° C.
`10. The catheter in accordance with claim 8, wherein the
`austenite finish temperature of the second region is at most
`about zoo C.
`11. The catheter in accordance with claim 8, wherein the
`first region is distal of the second region.
`12. The catheter in accordance with claim 11, wherein the
`inner tube further comprises a third region of flexibility
`disposed between the first and second regions of flexibility.
`13. The catheter in accordance with claim 12, wherein the
`55 flexibility of the third region of flexibility has a distal end
`proximate the first region of flexibility and a proximal end
`proximate the second region of flexibility and the flexibility
`of the third region varies between the first and second
`regions of flexibility, the third region being most flexible
`60 proximate the distal end and least flexible proximate the
`proximal end.
`14. The catheter in accordance with claim 13, wherein the
`austenite finish temperature of the third region varies
`between at least about 30° C. proximate the distal end to at
`65 most about 20° C. proximate the proximal end.
`
`35
`
`* * * * *

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket