throbber
3ĆV Accelerometer Featuring TLV2772
`
`Application Report
`
`1998
`
`Advanced Analog Products
`
`SLVA040
`
`APPLE 1040
`
`1
`
`

`

`IMPORTANT NOTICE
`
`Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
`any product or service without notice, and advise customers to obtain the latest version of relevant information to
`verify, before placing orders, that information being relied on is current and complete. All products are sold subject
`to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to
`warranty, patent infringement, and limitation of liability.
`
`TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
`accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI
`deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
`performed, except those mandated by government requirements.
`
`CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
`DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
`APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
`WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL
`APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY
`AT THE CUSTOMER’S RISK.
`
`In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards
`must be provided by the customer to minimize inherent or procedural hazards.
`
`TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
`that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
`intellectual property right of TI covering or relating to any combination, machine, or process in which such
`semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s
`products or services does not constitute TI’s approval, warranty or endorsement thereof.
`
`Copyright  1998, Texas Instruments Incorporated
`
`2
`
`
`
`2
`
`

`

`3-V Accelerometer Featuring TLV2772
`
`Application Report
`
`Jim Karki
`Advanced Analog Products
`Advanced Analog Applications Group
`Abstract
`This paper describes a complete solution for digital measurement of acceleration. An AMP accelerometer
`sensor is used for the conversion between mechanical acceleration and electrical analog. This electrical signal
`is then conditioned using Texas Instruments’ TLV2772 op amp (on the Universal Op Amp EVM), digitized using
`the TLV1544 ADC EVM, and processed with the TMS320C5X EVM. This provides the user with a quick and easy
`way to evaluate a complete 3-axis accelerometer solution.
`
`Contents
`
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`1 Introduction
`5
`2 System Description
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`6
`2.1 Sensor
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`7
`2.2 Signal Conditioning
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`7
`2.3 ADC
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`7
`2.4 Processor, Memory, and Display
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`7
`3 System Specification Requirements
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`7
`3.1 G-Force Measurement Requirements
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`7
`3.2 Power Requirements
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`7
`4 Sensor and Signal Conditioning Design
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`8
`4.1 Hand Analysis
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`8
`4.2 Spice Simulation
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`11
`5 Circuit Realization
`14
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`5.1 Test of Signal Conditioning Circuit
`17
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`5.2 Test of Shock Sensor and Signal Conditioning Circuit
`17
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`5.3 TLV1544 EVM
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`18
`5.4 Interfacing the TLV1544 EVM to the TMS320C5C EVM
`19
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`5.5 The TMS320C5X EVM
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`19
`6 Error and Noise Analysis
`20
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`6.1 System Gain Error Analysis
`20
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`6.2 System Noise Analysis
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`21
`7 System Test and Evaluation
`23
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`8 Calibration Data/Analysis
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`24
`8.1 Calibration
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`24
`9 References
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`27
`Appendix A. Source Code Listings
`28
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`
`
`
`3
`
`3
`
`

`

`3-V Accelerometer Featuring TLV2772
`
`Figures
`
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`1–1 Typical Analog Data Collection System
`5
`2–1 Accelerometer System Diagram
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`6
`4–1 1-Axis Accelerometer Sensor and Signal Conditioning Circuit
`. . . . . . . . . . . . . . . . . . . . . . . . . . . .
`8
`4–2 DC Circuit Model
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`8
`4–3 AC Circuit Model
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`9
`4–4 Bode Plot H1(s) = Vp/Vi
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`10
`4–5 Bode Plot of H2(s) = Vo/Vp
`10
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`4–6 Bode Plot of H3(s) = Vadc/Vo
`11
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`4–7 Bode Plot of H(s) = Vadc/Vi
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`11
`4–8 TLV2772 Sub-Circuit Model
`12
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`4–9 SPICE Simulation Schematic
`13
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`4–10 SPICE Simulation Results
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`13
`5–1 Signal Conditioning Schematic using Two Universal Operational Amplifier EVM Boards
`16
`. . .
`5–2 Network Analyzer Display
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`17
`5–3 Spring Test Fixture
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`17
`5–4 Output Displayed on Oscilloscope
`18
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`5–5 Schematic – Signal Conditioning to TLV1544 ADC
`19
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`5–6 Interface Between TLV1544 EVM and TMS320C5X EVM
`19
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`6–1 Sampling Input Model
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`21
`7–1 X-Axis Acceleration Graphed in Excel
`23
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`8–1 X-Axis Output Vs. Input
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`24
`8–2 X-Axis % Error
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`25
`8–3 Y-Axis Output vs. Input
`25
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`8–4 Y-Axis % Error
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`26
`8–5 Z-Axis Output vs. Input
`26
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`8–6 Z-Axis % Error
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`27
`8–7 Average Output vs. Input Over Frequency for Each Axis
`27
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`
`Tables
`
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`5–1 Board 1 – Universal Operational Amplifier EVM Area 100
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`5–2 Board 2 – Universal Operational Amplifier EVM Area 100
`5–3 Board 1 – Universal Operational Amplifier EVM Area 100 ACH-04-08-05 Connections
`. . . . . .
`5–4 Interface Between Signal Conditiioning Circuit and TLV1544 EVM
`. . . . . . . . . . . . . . . . . . . . . . . .
`8–1 X-Axis Output Vs. Input Using X-Axis Mean Sensitivity = 1.16 mV/g
`. . . . . . . . . . . . . . . . . . . . . .
`8–2 X-Axis % Error
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`8–3 Y-Axis Output Vs. Input Using Y-Axis Mean Sensitivity = 1.35 mV/g
`. . . . . . . . . . . . . . . . . . . . . . .
`8–4 Y-Axis % Error
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`8–5 Z-Axis Output Vs. Input Using Z-Axis Mean Sensitivity = 1.01 mV/g
`. . . . . . . . . . . . . . . . . . . . . . .
`8–6 Z-Axis % Error
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`
`14
`14
`16
`18
`24
`25
`25
`26
`26
`27
`
`4
`
`
`
`4
`
`

`

`3-V Accelerometer Featuring TLV2772
`
`1 Introduction
`
`Accelerometers are used in aerospace, defense,
`automotive, household appliances, instrumentation,
`audio, transport, material handling, etc. This application
`report develops a data collection system for
`acceleration in 3 axis.
`
`Figure 1 shows a block diagram of a typical analog
`data collection system. This application presents
`information about the sensor, signal conditioning, ADC,
`processor, display, and memory.
`
`Power
`Supply
`
`Distribution
`
`Display
`
`Memory
`
`Sensor
`
`ADC
`
`Processor
`
`DAC
`
`Signal
`Conditioning
`
`Analog
`Output
`
`Signal
`Conditioning
`
`Figure 1–1. Typical Analog Data Collection System
`
`
`
`5
`
`5
`
`

`

`3-V Accelerometer Featuring TLV2772
`
`Figure 2.1 shows the accelerometer system diagram
`
`2 System Description
`
`0.1mF
`
`AVDD
`
`DVDD
`
`FB
`
`FB
`
`NC
`
`87 6 5
`
`OUT
`OUT
`SENSE
`PG
`
`IN
`IN
`EN
`GND
`
`12 3 4
`
`0.1mF
`
`10mF
`
`4 V 10 V
`
`Supply Range
`
`TPS7133
`
`AVDD
`
`Platform
`
`PC
`
`ISA
`
`INT3
`
`FSR
`
`FSX
`
`DR
`
`DX
`
`XF
`
`CLKX
`CLKR
`
`TMS320C50PQ
`
`DPS
`
`40
`124
`
`104
`
`43
`
`106
`
`109
`
`124
`
`46
`
`6
`3 1
`
`3
`2 1 1
`
`I/O Interface
`
`FS
`
`4
`
`EOC
`
`DATA OUT
`
`14
`GNDREF–
`
`11
`
`A3
`
`DATA IN
`
`CS
`
`TLV1544D
`
`Z-axis
`
`1 kW
`
`9
`
`A2
`
`8
`
`A1
`
`7
`
`X-axis
`
`I/O CLK
`VCCREF+INVCLKCSTART
`10
`
`12
`
`15
`
`A0
`
`6
`
`5
`
`20 kW
`
`20 kW
`
`AVDD2.4 V
`
`DVDD
`
`Y-axis
`
`22mF
`
`Reference
`
`Signal Condition
`
`Computer
`Personal
`
`(TMS320C5XEVM)
`
`Data Processor
`
`(TLV1544ADCEVM)
`
`Data Converter
`
`10mF
`
`0.1mF
`
`R
`
`C A
`
`TLV431
`
`V+
`
`2.2 kW
`
`1.23 V
`
`100 kW
`
`0.22mF
`
`TLV2772
`
`1
`
`8
`
`4
`
`– +
`
`32
`
`V+
`
`100 kW
`
`2.2 nF
`
`0.22mF
`
`TLV2772
`
`1 kW
`
`7
`
`– +
`
`56
`
`100 kW
`
`2.2 nF
`
`0.22mF
`
`TLV2772
`
`1 kW
`
`1
`
`8
`
`4
`
`– +
`
`32
`
`V+
`
`100 kW
`
`1 kW
`
`1.23 V
`
`2.2 nF
`
`0.22 mF
`1 Meg
`
`7.5 kW
`
`100 kW
`
`0.22 mF
`1 Meg
`
`10 kW
`
`100 kW
`
`0.22 mF
`1 Meg
`
`10 kW
`
`,9,13
`
`4 8 3
`
`CTG
`
`GND
`
`SGND
`
`10
`
`RGND-Z
`
`Z-axis
`
`12
`
`D/S2-Z
`
`4
`1 2 1
`
`1
`5 6 7 1
`
`D/S1-Z
`
`RGND-X
`
`X-axis
`
`D/S2-X
`
`D/S1-X
`
`RGND-Y
`
`Y-axis
`
`D/S2-Y
`
`D/S1-Y
`
`1.23 V
`
`V+
`
`ACH-04-08-05
`
`Signal Conditioning
`
`Sensor and
`
`Figure 2–1. Accelerometer System Diagram
`
`6
`
`
`
`6
`
`

`

`3-V Accelerometer Featuring TLV2772
`
`2.1 Sensor
`An AMP ACH04-08-05 shock sensor converts
`mechanical acceleration into electrical signals. The
`shock sensor contains three piezoelectric sensing
`elements oriented to simultaneously measure
`acceleration in three orthogonal linear axes. The
`sensor responds from 0.5 Hz to above 5 kHz. An
`internal JFET buffers the output. Typical output voltage
`for x and y axis is 1.80 mV/g. Typical output voltage for
`the z axis is 1.35 mV/g. Refer to AMP’s web site at
`http://www.amp.com/sensors for in-depth information
`about this sensor, piezo materials in general, and other
`related products.
`
`2.2 Signal Conditioning
`Circuitry using the Texas Instruments TLV2772
`operational amplifier provides amplification and
`frequency shaping of the shock sensor output. Due to
`its high slew rate and bandwidth, rail-to-rail output
`swing, high input impedance, high output drive and
`excellent dc precision the TLV2772 is ideal for this
`application. The device provides 10.5 V/m s slew rate
`and 5.1 MHz gain bandwidth product while consuming
`only 1 mA of supply current per amplifier. The
`rail-to-rail output swing and high output drive make this
`device ideal for driving the analog input to the TLV1544
`analog-to-digital converter. The amplifier typically has
`360 m V input offset voltage, 17 nV/vHz input noise
`voltage, and 2 pA input bias current. Refer to Texas
`Instruments’ web site at http://www.ti.com and search
`on TLV2772 to download a TLV2772 data sheet,
`literature #SLOS209.
`
`The Universal Operational Amplifier EVM is used to
`construct the ACH04-08-05 shock sensor and TLV2772
`operational amplifier circuitry. The Universal
`Operational Amplifier EVM facilitates construction of
`surface mount operational amplifier circuits for
`engineering evaluation. Refer to Texas Instruments’
`web site at http://www.ti.com to download the Universal
`Operational Amplifier EVM User’s Manual, literature
`#SLVU006.
`
`2.3 ADC
`The TLV1544 EVM provides analog-to-digital
`conversion. The TLV1544 is a low-voltage (2.7 V to 5.5
`V dc single supply), 10-bit analog-to-digital converter
`(ADC) with serial control, 4 analog inputs, conversion
`time = 10 m s, and programmable 1 m A power down
`mode. Refer to Texas Instruments’ web site at
`http://www.ti.com to download a TLV1544 data sheet,
`literature #SLAS139B, TLV1544 EVM User’s Manual,
`literature #SLAU014, and related information.
`
`2.4 Processor, Memory, and Display
`The TMS320C5x EVM controls and collects data
`samples from the TLV1544. Refer to Texas
`Instruments’ web site at http://www.ti.com to download
`the TMS320C5x EVM Technical Reference, literature
`#SPRU087, and related information .
`The TMS320C5x EVM installs into a PC platform. The
`PC provides programming and control of the
`TMS320C5x EVM , and provides resources for file
`storage or other processing of the collected data.
`
`3 System Specification Requirements
`
`The following system specification requirements were
`derived to guide the design.
`
`3.1 G-Force Measurement Requirements
`±50g
`Range:
`Noise:
`0.05g pk-pk (equivalent input noise
`measured in g)
`Resolution: 0.1g
`Frequency Response: 1 Hz to 500 Hz (min 3 dB BW)
`
`3.2 Power Requirements
`Input Voltage: 3 V ±10%, Noise = 30 mV pk-pk
`(20 MHz BW)
`Input Current: 5 mA (max) (power requirements for
`sensor and signal conditioning
`circuitry)
`
`
`
`7
`
`7
`
`

`

`3-V Accelerometer Featuring TLV2772
`
`4 Sensor and Signal Conditioning Design
`
`Circuit design is a 3-step process:
`1. Hand analysis
`2. SPICE simulation
`3. Circuit breadboard and lab testing
`The signal from the sensor must be amplified and
`frequency shaped to provide a signal that the ADC can
`properly convert into a digital number.
`The schematic in Figure 4–1 shows the topology used
`in this application for 1 axis of the sensor and signal
`conditioning circuit.
`
`Input power is 3 V and ground. The TLV431 precision
`voltage regulator, when configured as shown, produces
`a nominal 1.23-V reference voltage. This voltage
`provides the signal reference for the signal conditioning
`circuitry and the bias voltage for the internal JFETs in
`the shock sensor.
`The transfer function of the signal conditioning circuit is
`derived by several means, the easiest of which may be
`by using super position. Perform a dc analysis, perform
`an ac analysis, and superimpose the results.
`
`VDD
`
`VREF
`
`R6
`
`R
`
`C
`
`A
`
`TLV431
`
`Voltage Referance
`
`Output
`to ADC
`
`C3
`
`C2
`
`R4
`
`VDD
`
`8
`
`– +
`
`1/2
`TLV2772
`
`1
`
`R5
`
`4
`
`Signal
`Conditioning
`
`VREF
`
`R3
`
`VDD
`
`1 Axis ACH–04–08–05
`
`R2
`
`2 3
`
`Input From Sensor
`
`VREF
`
`C1
`
`R1
`
`Shock Sensor
`
`Figure 4–1. 1-Axis Accelerometer Sensor and Signal Conditioning Circuit
`
`4.1 Hand Analysis
`In hand analysis, simplifying assumptions make
`solutions easier to derive. If the circuit does not
`function as anticipated, these assumption must be
`reevaluated.
`
`DC Analysis
`4.1.1
`To perform a dc analysis, assume all inductors are
`short circuits and all capacitors are open circuits.
`Assume that the resistance of R2 is insignificant
`compared to the input impedance of the op amp.
`Therefore, Vref will appear at the positive input to the
`op amp.
`Assuming the ADC input does not impose a significant
`load on the circuit, the voltage divider formed between
`the ADC input and R5 can be disregarded.
`
`R4
`
`VDD
`
`8
`
`– +
`
`1/2
`TLV2772
`
`VREF
`
`R3
`
`2 3
`
`Vn
`
`Vp
`
`1
`
`Vdc
`
`4
`
`Signal
`Conditioning
`
`Figure 4–2. DC Circuit Model
`
`8
`
`
`
`8
`
`

`

`3-V Accelerometer Featuring TLV2772
`
`Vp+ Vi
`
`H1(s) +
`
`or
`
`R2
`R2 ) 1ńsC1
`Vp
`R2
`Vi +
`R2 ) 1ńsC1
`
`4.1.2.2 H2(s) = Vo / Vp
`The amplifier gain is found by solving for H2(s) =
`Vo/Vp. The solution is a non-inverting amplifier with:
`Vo
`Vp+ ǒ1 )
`3Ǔ
`
`H2(s) +
`
`ZR
`
`Where:
`R4
`Z+
`1 ) sC2R4
`substituting
`
`H2(s) +
`
`Vo
`Vp+ 1 )
`
`R4
`R3ǒ
`
`1
`
`1 ) sC2R4Ǔ
`4.1.2.3 H3(s) = Vadc / Vo
`Assuming that the input impedance to the TLV1544
`ADC is very high in comparison to the impedance of
`C3 and R5, C3 and R5 form a passive low-pass filter
`where:
`1
`Vadc+ Vo
`1 ) sC3R5
`Vadc
`1
`Vo +
`1 ) sC3R5
`
`or
`
`H3(s) +
`
`4.1.2.4 H(s) = Vadc / Vi
`Superimposing the results from above gives the overall
`transfer function:
`Vadc
`
`R2
`
`Vi + ǒR2 ) 1ńsC1Ǔ
`
`H(s) +
`R4
`ǒ1 )
`1 ) sC2R4ǓǓ ǒ
`R3ǒ
`1 ) sC3R5Ǔ
`
`1
`
`1
`
`To find the complete response, add the ac and dc
`components so that:
`
`Vadc = Vi H(s) + Vref
`
`4.1.3 Gain Calculation
`Since the TLV2772 is capable of rail-to-rail output, with
`a 3 V supply, Vout min = 0 V and Vout max = 3 V. With
`no signal from the sensor, Vout nom = reference
`voltage = 1.23 V. Therefore, the maximum negative
`swing from nominal is 0 V – 1.23 V = –1.23 V, and the
`maximum positive swing is 3 V – 1.23 V = 1.77 V.
`Model the shock sensor as a low impedance voltage
`source with output of 2.25 mV/g max in the x and y axis
`and 1.70 mV/g max in the z axis, and calculate the
`required amplification of the signal conditioning circuit
`as follows:
`Gain = Output Swing ÷ (Sensor Sensitivity ⋅ Acceleration)
`
`
`
`9
`
`The dc model shown in Figure 4–2 is based on the
`assumptions made above.
`The gain of the amplifier with reference to the negative
`input, Vn, is:
`Vdc
`Vref+ –R4
`R3
`The gain of the amplifier with reference to the
`positive input, Vp is:
`
`or Vdc + –Vref R4
`R3
`
`Vdc
`R4
`R4
`R3Ǔ
`R3Ǔ or Vdc + Vref ǒ1 )
`Vref+ ǒ1 )
`Superimposing the positive and negative dc gains of
`the amplifier results in:
`
`Vdc = Vref
`
`The output of the amplifier is referenced to Vref. The ac
`response is superimposed upon this dc level.
`
`4.1.2 AC Analysis
`For ac analysis break the circuit into 3 parts and
`determine the transfer functions;
`• H1(s) = Vp / Vi
`• H2(s) = Vo / Vp
`• H3(s) = Vadc / Vo
`Combine the results to obtain the overall transfer
`function:
`• H(s) = Vadc / Vi
`Where Vi is the input signal from the shock sensor and
`Vadc is the output signal to the analog-to-digital
`converter. Figure 4–3 shows the ac model with the dc
`sources shorted.
`
`C2
`
`R4
`
`VDD
`
`8
`
`1/2
`TLV2772
`
`– +
`
`1
`
`vO
`
`R5
`
`Vadc
`Output
`to ADC
`
`4
`
`C3
`
`Signal
`Conditioning
`
`R3
`
`Input
`Form
`Sensor
`
`vI
`
`vn
`
`C1
`
`vp
`
`2
`
`3
`
`R2
`
`Figure 4–3. AC Circuit Model
`
`4.1.2.1 H1(s)=Vp /Vi
`Capacitor C1 and resistor R2 form a passive high-pass
`filter from the sensor input to the high impedance
`positive input to the TLV2772 where:
`
`9
`
`

`

`3-V Accelerometer Featuring TLV2772
`
`4.1.4.2 Component Values for H2(s) = Vo/Vp
`To minimize phase shift in the feedback loop caused by
`the input capacitance of the TLV2772, it is best to
`minimize the value of feedback resistor R4. Also, to
`reduce the required capacitance in the feedback loop,
`a large-value resistor is required for R4. A compromise
`value of 100 kW
` is used for R4. To set the upper cutoff
`frequency, the required capacitor value for C2 is:
`C2 = 1 ÷ (2p × upper cutoff frequency (Hz) × R4 (W
`C2 = 1 ÷ (6.28 × 500 Hz × 100 kW
`) = 3.18 nF
`A more common 2.2 nF capacitor is used for C2. This
`changes the upper cutoff frequency to 724 Hz.
`
`))
`
`Phase – deg
`
`180
`
`90
`
`0
`
`–90
`
`–180
`
`Gain
`
`Phase
`
`40
`
`20
`
`0
`
`–20
`
`–40
`
`Gain – dB
`
`0.1
`
`1
`
`100
`1k
`10
`f – Frequency – Hz
`
`10k
`
`100k
`
`Figure 4–5. Bode Plot of H2(s) = Vo/Vp
`
`Using the amplifier gain calculated above, Figure 4–5
`shows the bode plot approximation to the transfer
`function H2(s) = Vo/Vp for the x and y channels. The z
`channel is the same except the gain is slightly higher in
`the pass band.
`
`4.1.4.3 Component Values for H3(s) = Vadc/Vo
`Resistor R5 and capacitor C3 cause the signal
`response to roll-off further. To set the frequency for this
`roll off to begin at the upper cutoff frequency, select
`1÷(2p
`⋅C3(F) × R4(W
`)) = upper cutoff frequency(Hz).
`With R5 = 1 kW
` and C3 = 0.22 m F, the roll-off frequency
`= 1 ÷ (6.28 × 0.22 m F × 1 kW
`) = 724 Hz.
`Figure 4–6 shows the bode plot approximation to the
`transfer function H3(s) = Vadc/Vo.
`
`To avoid saturating the op amp, base the gain
`calculations on the maximum negative swing of
`–1.23 V and the maximum sensor output of 2.25 mV/g
`for the x and y axis, and 1.70 mV/g for the z axis.
`Therefore:
`Gain(x,y) = –1.23 V ÷ ( 2.25 mV/g × (–50g)) = 10.9 and
`Gain(z) = –1.23 V ÷ ( 1.70 mV/g × (–50g)) = 14.5
`Choosing R3 = 10 kW
` and R4 = 100 kW
`, gives a gain of
`11 in the x and y channels. Choosing R3 = 7.5 kW
` and
`R4 = 100 kW
`, gives a gain of 14.3 in the z channel.
`
`4.1.4 Bandwidth Calculations
`To calculate the component values for the frequency
`shaping characteristics of the signal conditioning
`circuit, use 1 Hz and 500 Hz as the minimum required
`3-dB bandwidth from the specifications requirements.
`
`4.1.4.1 Component Values for H1(s) = Vp / Vi
`To minimize the value of the input capacitor required to
`set the lower cutoff frequency, a large value resistor is
`required for R2. A 1 MW
` resistor is used here. To set
`the lower cutoff frequency, the value for capacitor C1
`must be:
`C1 = 1 ÷ (2p × lower cutoff frequency (Hz) × R2 (W
`C1 = 1 ÷ (6.28 × 1 Hz × 1 MW
`) = 0.159 m F
`A more common 0.22-m F capacitor is used for C1. This
`moves the lower cutoff frequency to 0.724 Hz.
`Figure 4–4 shows the bode plot approximation to
`the input transfer function, H1(s) = Vp/Vi.
`
`))
`
`Phase – deg
`
`180
`
`90
`
`0
`
`–90
`
`–180
`
`Phase
`
`Gain
`
`40
`
`20
`
`0
`
`–20
`
`–40
`
`Gain – dB
`
`0.1
`
`1
`
`1k
`100
`10
`f – Frequency – Hz
`
`10k
`
`100k
`
`Figure 4–4. Bode Plot H1(s) = Vp/Vi
`
`10
`
`
`
`10
`
`

`

`3-V Accelerometer Featuring TLV2772
`
`4.2 Spice Simulation
`Spice simulation verifies the results of hand analysis
`and provides a more accurate result than what is
`practical by hand.
`The proper models must be used to perform SPICE
`simulation of the shock sensor and signal conditioning
`circuit.
`The data sheet for the ACH-04-05-08 shock sensor
`states that the internal JFET used to drive the output is
`similar to the industry standard 2N4117. To model the
`sensor, a signal source is used to drive the gate of a
`2N4117 JFET and proper bias is applied.
`Modeling the signal conditioning circuit is straight
`forward except that most available SPICE versions do
`not have a library model for the TLV2772. This is easily
`remedied. Place a similar part on the schematic and
`modify its model with the model editor to match that of
`the TLV2772. Figure 4–8 below shows the TLV2772
`sub-circuit model (as printed in the TLV2772 data
`sheet).
`
`Phase – deg
`
`180
`
`90
`
`0
`
`–90
`
`Gain
`
`Phase
`
`Phase
`
`Gain
`
`–180
`
`40
`
`20
`
`0
`
`–20
`
`–40
`
`Gain – dB
`
`0.1
`
`1
`
`100
`1k
`10
`f – Frequency – Hz
`
`10k
`
`100k
`
`Figure 4–6. Bode Plot of H3(s) = Vadc/Vo
`
`4.1.4.4 Transfer Function H(s) = Vadc / Vi
`Superimposing the previous bode plot approximations
`results in the bode plot approximation for the overall
`transfer function to be expected from the signal
`conditioning circuit as shown in Figure 4–7.
`
`Phase – deg
`
`180
`
`90
`
`0
`
`–90
`
`–180
`
`Gain
`
`Phase
`
`40
`
`20
`
`0
`
`–20
`
`–40
`
`Gain – dB
`
`0.1
`
`1
`
`100
`1k
`10
`f – Frequency – Hz
`
`10k
`
`100k
`
`Figure 4–7. Bode Plot of H(s) = Vadc/Vi
`
`
`
`11
`
`11
`
`

`

`3-V Accelerometer Featuring TLV2772
`
`.SUBCKT TLV2772-X 1 2 3 4 5
`C1
`11
`12 2.3094E-12
`C2
`6
`7
`8.0000E-12
`CSS 10
`99 2.1042E-12
`DC
`5
`53 DY
`DE
`54
`5
`DY
`DLP
`90
`91 DX
`DLN 92
`90 DX
`DP
`4
`3
`DX
`EGND 99
`0
`POLY(2) (3,0) (4,0) 0 .5 .5
`FB
`7
`99 POLY(5) VB VC VE VLP VLN 0 19.391E6 – 1E3 1E3 19E6 – 19E6
`GA 6 0
`11 12
`150.80E-6
`GCM 0 6
`10 99
`7.5576E-9
`ISS
`3
`10 DC 116.40E-6
`HLIM 90
`0
`VLIM IK
`J1
`11
`2
`10
`JX1
`J2
`12
`1
`10
`JX2
`R2
`6
`9
`100.0E3
`RD1
`4
`11 6.6315E3
`RD2
`4
`12 6.6315E3
`RO1
`8
`5
`17.140
`RO2
`7
`99 17.140
`RP
`3
`4
`4.5455E3
`RSS 10
`99 1.7182E6
`VB
`9
`0
`DC 0
`VC
`3
`53 DC .1
`VE
`54
`4
`DC .1
`VLIM 7
`8
`DC 0
`VLP
`91
`0
`DC 47
`VLN 0
`92 DC 47
`.MODEL DX D(IS=800.0E-18)
`.MODEL DY D(IS=800.0E-18 Rs=1m Cjo=10p)
`.MODEL JX1 PJF(IS=2.250E-12 BETA=195.36E-6 VTO=–1)
`.MODEL JX2 PJF(IS=1.750E-12 BETA=195.36E-6 VTO=–1)
`.ENDS
`
`Figure 4–8. TLV2772 Sub-Circuit Model
`
`Figure 4–9 shows the schematic used for SPICE
`simulation. Figures 4–10 show the simulation results.
`
`12
`
`
`
`12
`
`

`

`3-V Accelerometer Featuring TLV2772
`
`1
`
`R5
`
`1 kW
`
`Vadc
`
`C3
`0.22 m F
`
`0
`
`VDD
`U1A
`
`8
`
`+
`
`TLV2772
`
`–
`
`4
`
`0
`
`R4
`
`100 kW
`
`C2
`
`2.2 nF
`
`3 2
`
`VREF
`
`VDD
`
`ACH–04–05–08 Model
`
`VDD
`
`1.23 V
`
`3 V
`
`0
`
`0
`
`FN4117A
`
`Vs
`
`10 Meg
`
`VREF
`
`R1
`100 kW
`
`C1
`
`0.22 m F
`R2
`1 Meg
`
`R3
`
`10 kW
`VREF
`
`Figure 4–9. SPICE Simulation Schematic
`
`The SPICE simulations show agreement with the hand
`calculations and the bode plot approximations.
`The analyses above do not consider the frequency
`response of the shock sensor, which falls off below
`0.5 Hz and above 5 kHz. The data sheet for the
`
`ACH-04-08-05 does not specify the role-off
`characteristics of the shock sensor’s frequency
`response, but in general it is expected that there will be
`more attenuation in the signal below 0.5 Hz and above
`5 kHz.
`
`Figure 4–10. SPICE Simulation Results
`
`
`
`13
`
`13
`
`

`

`3-V Accelerometer Featuring TLV2772
`
`5 Circuit Realization
`
`The shock sensor and signal conditioning circuits are
`built on area 100 of two Universal Operational Amplifier
`EVM boards (SLOP 120–1). One EVM board holds a
`TLV2772, an ACH-04-05-08, a TLV431, and required
`ancillary devices. The other board has only a TLV2772
`and required ancillary devices. The signal conditioning
`circuit is constructed by installing required components
`and wiring. The two boards share signals and sources
`
`through board-to-board connectors. Standoffs and
`screws secure the two boards together. Figure 5–1
`shows the schematic diagram with reference
`designators for using area 100 on two Universal
`Operational Amplifier EVM boards.
`Tables 5–1 and 5–2 summarize reference designator
`part descriptions to construct the shock sensor and
`signal conditioning circuits.
`
`Table 5–1. Board 1 – Universal Operational Amplifier EVM Area 100
`
`REFERENCE
`DESIGNATOR
`R101
`R102
`R103
`R104
`R105
`R106
`R107
`R108
`R109
`R110
`R111
`R112
`R113
`R114
`R115
`R116
`R117
`R118
`A1OUT
`A101–
`A102–
`A103+
`A104+
`
`REFERENCE
`DESIGNATOR
`R101
`R102
`R103
`R104
`R105
`
`DESCRIPTION
`1 MW
` 1% SMT
`10 kW
` 1% SMT
`Not used
`100 kW
` 1% SMT
`100 kW
` 1% SMT
`Not used
`10 kW
` 1% SMT
`1 MW
` 1% SMT
`Use 0.22 m F 10% X7R SMT Capacitor
`Use 0.22 m F 10% X7R SMT Capacitor
`0 W
` or Jumper
`Not used
`Not used
`2.2 kW
` 5% SMT
`0 W
` or Jumper
`Not used
`Not used
`Not used
`X Axis output
`Not used
`Jump to VREF1
`Jump to VREF1
`X Axis input from ACH-04-05-08 pin 6
`
`REFERENCE
`DESIGNATOR
`C101
`C102
`C103
`C104
`C105
`C106
`C107
`C108
`C109
`C110
`C111
`C112
`U101
`U102
`V1+
`VREF1
`GND1
`R119
`B104+
`B103+
`B102–
`B101–
`B1OUT
`
`DESCRIPTION
`
`Not used
`2200 pF 5% NPO SMT
`2.2 m F 20% Y5V SMT
`0.1 m F 10% X7R SMT
`2200 pF 5% NPO SMT
`Not used
`Not used
`Not used
`0 W or Jumper
`Not used
`Not used
`Not used
`TLV2772CD
`TLV431ACDBV5
`3 V power input
`Signal conditioning reference
`Signal and power ground
`0 W or Jumper
`Y Axis input form ACH-04-05-08 pin 2
`Jump to VREF1
`Jump VREF1
`Not used
`Y Axis output
`
`Table 5–2. Board 2 – Universal Operational Amplifier EVM Area 100
`
`DESCRIPTION
`
`Not used
`Not used
`Not used
`0 W
` or Jumper
`100 kW
` 1% SMT
`
`REFERENCE
`DESIGNATOR
`C101
`C102
`C103
`C104
`C105
`
`DESCRIPTION
`
`Not used
`Not used
`Not used
`0.1 m F 10% X7R SMT
`2200 pF 5% NPO SMT
`
`14
`
`
`
`14
`
`

`

`3-V Accelerometer Featuring TLV2772
`
`REFERENCE
`DESIGNATOR
`R106
`R107
`R108
`R109
`R110
`R111
`R112
`R113
`R114
`R115
`R116
`R117
`R118
`A1OUT
`A101–
`A102–
`A103+
`A104+
`
`DESCRIPTION
`
`Not used
`7.5 kW
` 1% SMT
`1 MW
` 1% SMT
`Use 0.22 m F 10% X7R SMT Capacitor
`Not used
`Not used
`Not used
`0 W
` or Jumper
`Not used
`Not used
`Not used
`Not used
`Not used
`Z Axis output
`Not used
`Jump to VREF1
`Jump to VREF1
`Z Axis input from ACH-04-05-08 pin 12
`
`Table 5–2. Board 2 – Universal Operational Amplifier EVM Area 100
`REFERENCE
`DESIGNATOR
`C106
`C107
`C108
`C109
`C110
`C111
`C112
`U101
`U102
`V1+
`VREF1
`GND1
`R119
`B104+
`B103+
`B102–
`B101–
`B1OUT
`
`DESCRIPTION
`
`Not used
`Not used
`Not used
`0 W or Jumper
`Not used
`Not used
`Not used
`TLV2772CD
`Not used
`3 V from Board 1
`Signal conditioning reference from Board 1
`Circuit common connect to board 1 GND1
`0 W or Jumper
`Not used
`Not used
`Not used
`Not used
`Not used
`
`Board-to-board connectors provide required
`connections between board 1 and board 2. The
`required board-to-board connections are GND1, V1+,
`and VREF. Also, pin 12 of the ACH-04-08–05 must be
`connected to A104+ on board 2. This is accomplished
`by using board-to-board connectors in the breadboard
`area and connecting the appropriate nodes thereto.
`Figure 5–1 is the schematic of the 3-axis realization of
`the 1-axis circuit shown in Figure 4–1, except for output
`filter components R5 and C3. To ease component
`placement, the output filters for each channel are
`placed on the TLV1544 EVM. For standalone testing of
`the signal conditioning circuit without the TLV1544
`EVM, temporarily place the filter components on board
`1 and board 2. Remove them for final integration.
`
`The ACH-04-08-05 shock sensor mounts in the
`breadboard area on board 1. Table 5–3 summarizes
`the con

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket