throbber
STEVEN LEVY
`
`BUSINESS
`
`APR 17, 2012 11:45 AM
`
`Going With the Flow: Google's Secret Switch
`to the Next Wave of Networking
`Google treats its infrastructure like a state secret, so Google czar of
`infrastructure Urs Hölzle rarely ventures out into the public to speak
`about it. Today is one of those rare days. At the Open Networking Summit
`in Santa Clara, California, Hölzle is announcing that Google essentially
`has remade a major part of its massive internal network, providing the
`company a bonanza in savings and efficiency. Google has done this by
`brashly adopting a new and radical open-source technology called
`OpenFlow.
`
`EX 1014 Page 1
`
`

`

`CHARLIE SORREL
`
`SAVE
`
`In early 1999, an associate computer science professor at UC Santa Barbara
`climbed the steps to the second floor headquarters of a small startup in Palo Alto,
`and wound up surprising himself by accepting a job offer. Even so, Urs Hölzle
`hedged his bet by not resigning from his university post, but taking a year-long
`leave.
`
`He would never return. Hölzle became a fixture in the company — called Google.
`As its czar of infrastructure, Hölzle oversaw the growth of its network operations
`from a few cages in a San Jose co-location center to a massive internet power; a
`2010 study by Arbor Networks concluded that if Google was an ISP it would be
`the second largest in the world (the largest is Level 3, which services over 2,700
`major corporations in 450 markets over 100,000 fiber miles.)
`
`'You have all those multiple devices on a network but you’re not really interested
`in the devices — you’re interested in the fabric, and the functions the network
`performs for you,' Hölzle says.Google treats its infrastructure like a state secret, so
`Hölzle rarely speaks about it in public. Today is one of those rare days: at the
`Open Networking Summit in Santa Clara, California, Hölzle is announcing that
`Google essentially has remade a major part of its massive internal network,
`
`EX 1014 Page 2
`
`

`

`providing the company a bonanza in savings and efficiency. Google has done this
`by brashly adopting a new and radical open-source technology called OpenFlow.
`
`Hölzle says that the idea behind this advance is the most significant change in
`networking in the entire lifetime of Google.
`
`In the course of his presentation Hölzle will also confirm for the first time that
`Google — already famous for making its own servers — has been designing and
`manufacturing much of its own networking equipment as well.
`
`"It’s not hard to build networking hardware," says Hölzle, in an advance briefing
`provided exclusively to Wired. "What’s hard is to build the software itself as well."
`
`In this case, Google has used its software expertise to overturn the current
`networking paradigm.
`
`If any company has potential to change the networking game, it is Google. The
`company has essentially two huge networks: the one that connects users to
`Google services (Search, Gmail, YouTube, etc.) and another that connects Google
`data centers to each other. It makes sense to bifurcate the information that way
`because the data flow in each case has different characteristics and demand. The
`user network has a smooth flow, generally adopting a diurnal pattern as users in a
`geographic region work and sleep. The performance of the user network also has
`higher standards, as users will get impatient (or leave!) if services are slow. In the
`user-facing network you also need every packet to arrive intact — customers
`would be pretty unhappy if a key sentence in a document or e-mail was dropped.
`
`The internal backbone, in contrast, has wild swings in demand — it is "bursty"
`rather than steady. Google is in control of scheduling internal traffic, but it faces
`difficulties in traffic engineering. Often Google has to move many petabytes of
`data (indexes of the entire web, millions of backup copies of user Gmail) from one
`place to another. When Google updates or creates a new service, it wants it
`available worldwide in a timely fashion — and it wants to be able to predict
`accurately how quickly the process will take.
`
`"There’s a lot of data center to data center traffic that has different business
`
`EX 1014 Page 3
`
`

`

`priorities," says Stephen Stuart, a Google distinguished engineer who specializes
`in infrastructure. "Figuring out the right thing to move out of the way so that more
`important traffic could go through was a challenge."
`
`But Google found an answer in OpenFlow, an open source system jointly devised
`by scientists at Stanford and the University of California at Berkeley. Adopting an
`approach known as Software Defined Networking (SDN), OpenFlow gives
`network operators a dramatically increased level of control by separating the two
`functions of networking equipment: packet switching and management.
`OpenFlow moves the control functions to servers, allowing for more complexity,
`efficiency and flexibility.
`
`"We were already going down that path, working on an inferior way of doing
`software-defined networking," says Hölzle. "But once we looked at OpenFlow, it
`was clear that this was the way to go. Why invent your own if you don’t have to?"
`
`Google became one of several organizations to sign on to the Open Networking
`Foundation, which is devoted to promoting OpenFlow. (Other members include
`Yahoo, Microsoft, Facebook, Verizon and Deutsche Telekom, and an innovative
`startup called Nicira.) But none of the partners so far have announced any
`implementation as extensive as Google’s.
`
`Why is OpenFlow so advantageous to a company like Google? In the traditional
`model you can think of routers as akin to taxicabs getting passengers from one
`place to another. If a street is blocked, the taxi driver takes another route — but
`the detour may be time-consuming. If the weather is lousy, the taxi driver has to
`go slower. In short, the taxi driver will get you there, but you don’t want to bet the
`house on your exact arrival time.
`
`With the software-defined network Google has implemented, the taxi situation no
`longer resembles the decentralized model of drivers making their own decisions.
`Instead you have a system like the one envisioned when all cars are autonomous,
`and can report their whereabouts and plans to some central repository which also
`knows of weather conditions and aggregate traffic information. Such a system
`doesn’t need independent taxi drivers, because the system knows where the
`
`EX 1014 Page 4
`
`

`

`quickest routes are and what streets are blocked, and can set an ideal route from
`the outset. The system knows all the conditions and can institute a more
`sophisticated set of rules that determines how the taxis proceed, and even figure
`whether some taxis should stay in their garages while fire trucks pass.
`
`Therefore, operators can slate trips with confidence that everyone will get to their
`destinations in the shortest times, and precisely on schedule.
`
`Continue reading 'Going With The Flow: Google's Secret Switch To The Next Wave
`Of Networking' ...
`
`Making Google’s entire internal network work with SDN thus provides all sorts of
`advantages. In planning big data moves, Google can simulate everything offline
`with pinpoint accuracy, without having to access a single networking switch.
`Products can be rolled out more quickly. And since "the control plane" is the
`element in routers that most often needs updating, networking equipment is
`simpler and enduring, requiring less labor to service.
`
`Most important, the move makes network management much easier.
`
`By early this year, all of Google’s internal network was running on OpenFlow.
`'Soon we will able to get very close to 100 percent utilization of our network,'
`Hölzle says."You have all those multiple devices on a network but you’re not really
`interested in the devices — you’re interested in the fabric, and the functions the
`network performs for you," says Hölzle. "Now we don’t have to worry about those
`devices — we manage the network as an overall thing. The network just sort of
`understands.”
`
`The routers Google built to accommodate OpenFlow on what it is calling "the G-
`Scale Network" probably did not mark not the company’s first effort in making
`such devices. (One former Google employee has told Wired’s Cade Metz that the
`company was designing its own equipment as early as 2005. Google hasn't
`confirmed this, but its job postings in the field over the past few years have
`provided plenty of evidence of such activities.) With SDN, though, Google
`absolutely had to go its own way in that regard.
`
`EX 1014 Page 5
`
`

`

`"In 2010, when we were seriously starting the project, you could not buy any
`piece of equipment that was even remotely suitable for this task," says Hotzle. "It
`was not an option."
`
`The process was conducted, naturally, with stealth — even the academics who
`were Google’s closest collaborators in hammering out the OpenFlow standards
`weren’t briefed on the extent of the implementation. In early 2010, Google
`established its first SDN links, among its triangle of data centers in North Carolina,
`South Carolina and Georgia. Then it began replacing the old internal network
`with G-Scale machines and software — a tricky process since everything had to
`be done without disrupting normal business operations.
`
`As Hölzle explains in his speech, the method was to pre-deploy the equipment at
`a site, take down half the site's networking machines, and hook them up to the
`new system. After testing to see if the upgrade worked, Google’s engineers would
`then repeat the process for the remaining 50 percent of the networking in the site.
`The process went briskly in Google's data centers around the world. By early this
`year, all of Google’s internal network was running on OpenFlow.
`
`Though Google says it’s too soon to get a measurement of the benefits, Hölzle
`does confirm that they are considerable. "Soon we will able to get very close to
`100 percent utilization of our network," he says. In other words, all the lanes in
`Google’s humongous internal data highway can be occupied, with information
`moving at top speed. The industry considers thirty or forty percent utilization a
`reasonable payload — so this implementation is like boosting network capacity
`two or three times. (This doesn’t apply to the user-facing network, of course.)
`
`Though Google has made a considerable investment in the transformation —
`hundreds of engineers were involved, and the equipment itself (when design and
`engineering expenses are considered) may cost more than buying vendor
`equipment — Hölzle clearly thinks it’s worth it.
`
`Hölzle doesn’t want people to make too big a deal of the confirmation that Google
`is making its own networking switches — and he emphatically says that it would
`be wrong to conclude that because of this announcement Google intends to
`
`EX 1014 Page 6
`
`

`

`compete with Cisco and Juniper. "Our general philosophy is that we’ll only build
`something ourselves if there’s an advantage to do it — which means that we’re
`getting something we can’t get elsewhere."
`
`To Hölzle, this news is all about the new paradigm. He does acknowledge that
`challenges still remain in the shift to SDN, but thinks they are all surmountable. If
`SDN is widely adopted across the industry, that’s great for Google, because
`virtually anything that happens to make the internet run more efficiently is a
`boon for the company.
`
`As for Cisco and Juniper, he hopes that as more big operations seek to adopt
`OpenFlow, those networking manufacturers will design equipment that supports
`it. If so, Hölzle says, Google will probably be a customer.
`
`"That’s actually part of the reason for giving the talk and being open," he says. "To
`encourage the industry — hardware, software and ISP’s — to look down this path
`and say, 'I can benefit from this.'"
`
`For proof, big players in networking can now look to Google. The search giant
`claims that it’s already reaping benefits from its bet on the new revolution in
`networking. Big time.
`
`Steven Levy covers the gamut of tech subjects for WIRED, in print and online, and has been
`contributing to the magazine since its inception. His weekly column, Plaintext, is exclusive to
`subscribers online but the newsletter version is open to all—sign up here. He has been writing
`about technology for... Read more
`
`EDITOR AT LARGE
`
`TOPICS
`
`DATA
`
`ENTERPRISE
`
`GOOGLE
`
`NETWORKING
`
`EX 1014 Page 7
`
`

`

`MORE FROM WIRED
`
`Perplexity's Founder Was Inspired by Sundar Pichai. Now They’re Competing
`to Reinvent Search
`Aravind Srinivas grew up in the same city as Google’s CEO and developed an obsession with the
`company long before launching his own AI search startup.
`
`LAUREN GOODE
`
`EX 1014 Page 8
`
`

`

`8 Google Employees Invented Modern AI. Here’s the Inside Story
`They met by chance, got hooked on an idea, and wrote the “Transformers” paper—the most
`consequential tech breakthrough in recent history.
`
`STEVEN LEVY
`
`Google Used a Black, Deaf Worker to Tout Its Diversity. Now She’s Suing for
`Discrimination
`Jalon Hall was featured on Google’s corporate social media accounts “for making #LifeAtGoogle
`more inclusive!” She says the company discriminated against her on the basis of her disability
`and race.
`
`PARESH DAVE
`
`EX 1014 Page 9
`
`

`

`Apple Could Be the First Target of Europe’s Tough New Tech Law
`An architect of the EU’s tough new Digital Markets Acts says Apple would be a logical first
`candidate for investigation under the law, which aims to “break open” tech platforms.
`
`MORGAN MEAKER
`
`This AI Startup Wants You to Talk to Houses, Cars, and Factories
`Archetype builds AI models that act as a translation layer between humans and complex sensors,
`using plain language to help people understand what’s happening in a building, car, or human
`body
`
`EX 1014 Page 10
`
`

`

`body
`
`STEVEN LEVY
`
`Apple Store Employees Say Coworkers Were Disciplined for Supporting
`Palestinians
`A protest is planned Saturday at a Chicago Apple store where workers say managers disciplined
`staff—and fired an employee—for wearing pins, bracelets, or keffiyeh in support of Palestinian
`people.
`
`CAROLINE HASKINS
`
`EX 1014 Page 11
`
`

`

`The US Claims Apple Has a Stranglehold on the Future
`The Department of Justice antitrust lawsuit against Apple says the company’s grip on iPhone
`users and developers is blocking future innovation in tech.
`
`MAKENA KELLY
`
`Europe Is Breaking Open the Empires of Big Tech
`Tech giants have to comply with a new EU law that is set to change the internet. It aims to force
`open the biggest platforms to encourage competition and give users more choice in their digital
`lives.
`
`MORGAN MEAKER
`
`EX 1014 Page 12
`
`

`

`DO NOT SELL MY PERSONAL INFO
`
`EX 1014 Page 13
`
`

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket