`for foreign filing services
`
`Certification of Accuracy
`
`I, Frank McGee, a translator fluent in the English and Japanese languages, on behalf of
`
`Source IP Translations, do solemnly and sincerely declare that the following is, to the best
`
`of my knowledge and belief, a true and correct translation of the document(s) listed below
`
`in a form that best reflects the intention and meaning of the original text.
`
`I hereby declare that all statements made herein of my own knowledge are true and that
`
`all statements made on information and belief are believed to be true; and further that
`
`these statements were made with the knowledge that willful false statements and the like
`
`so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18
`
`of the United States Code.
`
`The document is designated as: JP2000-260472-Koyama
`
`___________________
`
`Frank McGee
`
`July 5, 2023
`
`244 Fifth Avenue, Suite R269, New York N.Y. 10001 | www.sourceip.com | info@sourceip.com
`
`APPLE-1007
`
`1
`
`
`
`(19) [Issuing Country] Japan Patent Office (JP)
`(12) [Publication Name] Gazette of Unexamined Patent Applications (A)
`(11) [Publication Number] 2000-260472 (P2000-260472A)
`(43) [Publication Date] September 22, 2000 (2000.9.22)
`
`
`
`[ID Codes]
`
`(51) [Int.Cl.7]
`H01M 10/40
`[Examination Request] Not Yet Received
`[Number of Claims] 1
`[Application Format] Online (OL)
`[Total Number of Pages] 5
`
`[FI]
`H01M 10/40 Z
`
`[Theme Codes (Reference)]
`5H029
`
`(21) [Application Number] H11-065435
`(22) [Filing Date] March 11, 1999 (1999.3.11)
`(71) [Applicant]
`[Identification Number] 000003609
`[Name] Toyota Central R&D Labs, Inc.
`[Address] 41-1 Yokomichi, Nagakute-cho, Aichi-ken
`(71) [Applicant]
`[Identification Number] 000003207
`[Name] Toyota Motor Corporation
`[Address] 1 Toyota-cho, Toyota-shi, Aichi-ken
`(71) [Applicant]
`[Identification Number] 000004260
`[Name] Denso Corporation
`[Address] 1-1 Showa-cho Kariya-shi, Aichi-ken
`(74) [Agent]
`[Identification Number] 100079142
`[Attorney]
`[Name] Yoshiyasu TAKAHASHI (and 1 other)
`
`Continued on Last Page
`
`2
`
`
`
`JP 2000-260472 A
`
`(54) [Title of the Invention]
`
`Non-Aqueous Electrolyte Secondary Battery
`
`(57) [Abstract]
`
`[Problem]
`
`To provide a non-aqueous electrolyte secondary battery with better charging characteristics
`than the prior art.
`
`[Solution]
`
`A secondary battery consisting of a positive electrode, a negative electrode, and a
`nonaqueous electrolyte, wherein the capacity ratio (B/A) between the electrode capacity A
`of the positive electrode and the electrode capacity B of the negative electrode is 1.3 <
`(B/A) (cid:148) 2.5.
`
`3
`
`
`
`JP 2000-260472 A
`
`[Claims]
`
`[Claim 1]
`
`A secondary battery comprising a positive electrode, a negative electrode, and a
`nonaqueous electrolyte, wherein the capacity ratio (B/A) between the electrode capacity A
`of the positive electrode and the electrode capacity B of the negative electrode is 1.3 <
`(B/A) (cid:148) 2.5.
`
`[Detailed Description of the Invention]
`
`[0001]
`
`[Technical Field]
`
`The present invention relates to a nonaqueous electrolyte secondary battery, such as a
`lithium secondary battery.
`
`[0002]
`
`[Prior Art]
`
`With the trend in recent years toward cordless electronic devices and demand for the
`development of electric vehicles in response to environmental problems, there is growing
`demand for secondary batteries with a high energy density. Conventional secondary
`batteries include lithium secondary batteries, which are non-aqueous electrolyte secondary
`batteries. Conventional lithium secondary batteries consist of a positive electrode and
`negative electrode made of an active material that can absorb and release lithium, and a
`nonaqueous electrolyte.
`
`[0003]
`
`Lithium secondary batteries have been studied and developed with emphasis on discharge
`capacity and cycle characteristics. For example, in JP H09-293536 A, the ratio of the
`reversible capacities of the positive and negative electrodes (negative electrode/positive
`electrode) is 1.05 to 1.30 in order to ensure sufficient Li ion storage capacity in the negative
`electrode, and thus eliminate Li deposits and reduce cycle degradation.
`
`[0004]
`
`[Problem to Be Solved by the Invention]
`
`As mentioned above, conventional nonaqueous electrolyte secondary batteries have been
`developed with an emphasis on improving discharge capacity and cycle characteristics.
`However, secondary batteries used in the most recent hybrid vehicles equipped with hybrid
`engines must have high charging characteristics as well as discharge characteristics.
`Although conventional nonaqueous electrolyte secondary batteries have been able to
`demonstrate excellent performance in terms of discharge capacity and cycle characteristics,
`their charging characteristics are still inadequate.
`
`[0005]
`
`4
`
`
`
`JP 2000-260472 A
`
`It is an object of the present invention to solve this problem by providing a nonaqueous
`electrolyte secondary battery with better charging characteristics than the prior art.
`
`[0006]
`
`[Means for Solving the Problem]
`
`The invention according to claim 1 is a secondary battery comprising a positive electrode, a
`negative electrode, and a nonaqueous electrolyte, wherein the capacity ratio (B/A) between
`the electrode capacity A of the positive electrode and the electrode capacity B of the
`negative electrode is 1.3 < (B/A) (cid:148) 2.5.
`
`[0007]
`
`If the capacity ratio (B/A) is less than 1.3, the improvement in charging characteristics is
`insufficient. Therefore, a value of 1.4 or higher is preferred. Meanwhile, if the capacity ratio
`(B/A) exceeds 2.5, the increase in the ratio of the negative electrode in a fixed volume
`battery container causes the absolute volume of the positive electrode to decrease in
`relative terms, resulting in a decrease in battery capacity and an increase in irreversible
`capacity, which in turn reduces the actual capacity that can be drawn upon.
`
`[0008]
`
`Examples of positive electrode active materials that can constitute the positive electrode
`include inorganic compounds such as metal oxides of alkali metals and metal chalcogens, as
`well as conductive polymers. Specific examples include Li-containing transition metal oxides
`such as LiXMOY (where M includes at least one transition metal such as Co, Mn, Ni, V, and
`Fe), metal oxides such as V2O5, metal chalcogenides such as TiS2, MoS2, and NbSe3, and
`conductive polymers such as polyaniline, polypyrrole, and polyacene.
`
`[0009]
`
`Examples of negative electrode active materials that can constitute the negative electrode
`include metals, carbonaceous materials, metal chalcogenides, metal oxides, and conductive
`polymers. Specific examples include metal Li, alloys of Li with other metals such as Al, Zn,
`and Sn, carbonaceous materials such as graphite and amorphous carbon, metal oxides such
`as LiXMOY (where M includes at least one transition metal such as Ti, V, Mn, Co, and Fe),
`Nb2O5, and WO3, metal chalcogenides such as TiS2, MoS2, and NbSe3, and conductive
`polymers such as polyacene and polyacetylene doped with Li ions, etc.
`
`[0010]
`
`The action of the present invention will now be described. In the nonaqueous electrolyte
`secondary battery of the present invention, the capacity ratio (B/A) is limited to the specific
`range of 1.3 < (B/A) (cid:148) 2.5. As a result, the nonaqueous electrolyte secondary battery can
`obtain excellent charging characteristics, as described in detail in the examples below. The
`nonaqueous electrolyte secondary battery of the present invention can demonstrate
`excellent charge-discharge characteristics that are even adequate in hybrid vehicles
`equipped with a hybrid engine.
`
`[0011]
`
`[Embodiment of the Invention]
`
`5
`
`
`
`JP 2000-260472 A
`
`Examples
`
`The non-aqueous electrolyte secondary battery of the present invention will now be
`explained using Fig. 1 to Fig. 3. In the examples, three types of nonaqueous electrolyte
`secondary batteries (Samples E1 to E3) were fabricated as the products of the present
`invention and one type (Sample C1) as a comparative product, for a total of four types, and
`their charging characteristics were measured. First, the composition and manufacturing
`methods of these nonaqueous electrolyte secondary batteries will be described.
`
`[0012]
`
`(Sample E1)
`
`Sample E1 serving as a product of the present invention is a non-aqueous electrolyte
`secondary battery, as shown in Fig. 1, comprising a positive electrode 1, a negative
`electrode 2, and a non-aqueous electrolyte 3, in which the capacity ratio (B/A) between the
`electrode capacity A of the positive electrode 1 and the electrode capacity B of the negative
`electrode 2 is 1.3 < (B/A) (cid:148) 2.5, specifically, B/A = 1.40.
`
`[0013]
`
`The nonaqueous electrolyte secondary battery in this example has a spiral wound structure
`consisting of a strip-shaped positive electrode 1 and negative electrode 2 with a separator 4
`interposed between them. The battery structure is shown in Fig. 1.
`
`[0014]
`
`The positive electrode 1 consists of a positive electrode current collector made of a strip of
`aluminum foil and a positive electrode active material layer made of, for example, lithium
`manganese oxide powder formed on the surface. The positive electrode 1 sheet is 127 (cid:459)m
`thick, 130 mm wide, and 2,680 mm long. The positive electrode density was adjusted to
`2.67 g/cm3. Meanwhile, the negative electrode 2 consists of a strip-shaped copper foil
`negative electrode current collector and a negative electrode active material layer made, for
`example, of carbon powder formed on the surface. The negative electrode 2 is 100 (cid:459)m
`thick, 134 mm wide, and 2,750 mm long. The density of the negative electrode was
`adjusted to 1.25 g/cm3.
`
`[0015]
`
`The positive electrode 1 and the negative electrode 2 were wound together via an
`interposed polyethylene separator that was 25 (cid:459)m thick, 140 mm wide, and 3,000 mm long
`sheet to form a winding core with a diameter of 4 mm and a length of 160 mm. The winding
`core is made of aluminum. The nonaqueous electrolyte 3 was LiPF6/EC:DEC = 1:1 (LiPF6
`dissolved in a mixture of ethylene carbonate and diethyl carbonate (1:1 by volume) at a
`ratio of 1 mol/liter).
`
`[0016]
`
`As shown in the same figure, the positive electrode 1 is connected to the positive terminal
`51 via a positive electrode lead 11 and a pole 511. Similarly, the negative electrode 2 is
`connected to the negative electrode terminal 52 via a negative electrode lead 21 and a pole
`521. The battery case is denoted by reference number 55.
`
`6
`
`
`
`JP 2000-260472 A
`
`[0017]
`
`In Sample E1, the positive electrode 1 and the negative electrode 1 were adjusted to have a
`capacity ratio (B/A) of 1.40, as mentioned above. Specifically, the electrode capacity A of
`positive electrode 1 was derived from the theoretical capacity, while the electrode capacity B
`of negative electrode 2 was derived from the measured value using a Li counter electrode,
`and the thickness of negative electrode 2 was adjusted so that the capacity ratio (B/A) was
`1.40. As a result, in Sample E1, when the thickness of positive electrode 1 was 127 (cid:459)m and
`the thickness of negative electrode 2 was 100 (cid:459)m, the capacity ratio (B/A) was 1.40.
`
`[0018]
`
`(Sample E2)
`
`In Sample E2 serving as an example of the present invention, the thickness of the negative
`electrode 2 was changed to 125 (cid:459)m so that the capacity ratio (B/A) was 1.79. In all other
`respects, it was the same as Sample E1.
`
`[0019]
`
`(Sample E3)
`
`In Sample E3 serving as an example of the present invention, the thickness of the negative
`electrode 2 was changed to 161 (cid:459)m so that the capacity ratio (B/A) was 2.43. In all other
`respects, it was the same as Sample E1.
`
`[0020]
`
`(Sample C1)
`
`In Sample C1 serving as the comparative product, the capacity ratio (B/A) was outside the
`above specified range. In Sample C1, the thickness of the negative electrode 2 was changed
`to 88 (cid:459)m so that the capacity ratio (B/A) was 1.22. In all other respects, it was the same as
`Sample E1.
`
`[0021]
`
`Next, tests were conducted on each sample to determine the charging characteristics. In the
`test, an initial charge-discharge was first performed on the non-aqueous electrolyte
`secondary battery in each sample. In the initial charge-discharge conducted at an ambient
`temperature of 20°C, the battery was charged to an upper voltage limit of 4.2 V at a
`constant current of 0.2 mA/cm2, and then discharged to a lower voltage limit of 3.0 V at a
`constant current of 0.2 mA/cm2.
`
`[0022]
`
`Next, each sample was charged and discharged to measure the reference capacity. In this
`charge-discharge cycle conducted at an ambient temperature of 20°C, the samples were
`charged at a constant current of 1 mA/cm2 to an upper voltage of 4.2 V, and then
`discharged at a constant current of 1 mA/cm2 to a lower voltage of 3.0 V. Five cycles were
`performed. The discharged capacity after the fifth cycle (the sixth cycle in total including the
`initial charge) was set as reference capacity 1C.
`
`7
`
`
`
`JP 2000-260472 A
`
`[0023]
`
`Next, the charge density of each sample was measured. Here, the samples were charged at
`a constant current of 1 mA/cm2 until they reached 80% of reference capacity of 1C (80%
`SOC), and after a one-hour pause, closed-circuit voltage and current measurements were
`started. In the closed-circuit voltage and current value measurements, the battery was first
`discharged at a current value of C/3 for 10 seconds, followed by a five-minute pause, and
`recharging at a current value of C/3 for 10 seconds. Next, after a five-minute pause, a ten-
`second charge-discharge was performed at current value 1C followed by a five-minute
`pause. Then, charging and discharging were performed at current values 3C, 6C, 9C, and
`12C, with five-minute pauses in between.
`
`[0024]
`
`The closed-circuit voltage and current values were measured at the completion of each ten-
`second charge/discharge period. The measurement results for Sample E2 are shown in Fig.
`2. In the figure, the current value is indicated on the horizontal axis and the voltage is
`indicated on the vertical axis. The current values after charging are indicated with "-"
`(minus). A regression line was obtained from each of the plotted measurement values to
`obtain the current/voltage line D.
`
`[0025]
`
`In the same figure, the charge characteristic value, that is, the charge power of the battery,
`can be expressed by the area S of the triangular region formed by connecting the three
`points A, B, and C with straight lines. Point A in the figure is at the intersection of the
`current/voltage line D and the vertical axis at a current value of 0 (potential V0). Point B is
`at the intersection of the cutoff voltage (upper limit voltage when charging) and the vertical
`axis at a current value of 0. Point C is the point at the intersection of the cutoff voltage and
`the current/voltage line D.
`
`[0026]
`
`The resulting charging characteristics are shown in Table 1. In Table 1, V0 is the potential at
`point A, the IV slope is the slope of straight line D, the charge density is area S divided by
`the overall weight of the battery, and the charge current is the current value at point C. In
`Samples E1, E3, and C1, the straight current/voltage line was determined in the same
`manner as in Sample E2 (figures omitted), and the V0, IV slope, charge density, and charge
`current values were determined using this line. These results are also shown in Table 1.
`
`[0027]
`
`The relationship between the capacity ratio (B/A) and the charge density (-W/kg) is shown
`in Fig. 3. In the figure, the capacity ratio (B/A) is indicated on the horizontal axis and the
`charge density is indicated on the vertical axis. It is clear from the figures and from Table 1
`that keeping the capacitance ratio (B/A) above 1.3 and below 2.5 is effective in achieving
`excellent characteristics such as a charge density above 400 (-W/kg).
`
`8
`
`
`
`JP 2000-260472 A
`
`[0028]
`
`[Table 1]
`
`Sample No.
`
`C1
`E1
`E2
`E3
`
`[0029]
`
`Capacity
`Ratio
`(B/A)
`
`1.22
`1.40
`1.79
`2.43
`
`V0
`(V)
`
`4.068
`4.054
`4.035
`4.028
`
`Charge Characteristics at 80% SOC
`IV Slope
`Charge
`((cid:443))
`Density
`(W/kg)
`-386.4
`-418.5
`-457.8
`-425.7
`
`-0.263
`-0.263
`-0.262
`-0.273
`
`Charge
`Current
`(A)
`-0.504
`-0.554
`-0.612
`-0.631
`
`[Effect of the Invention]
`
`As explained above, the present invention can provide a nonaqueous electrolyte secondary
`battery with better charging characteristics than the prior art.
`
`[Brief Description of the Drawings]
`
`[Fig. 1]
`
`Fig. 1 is a cross-sectional view of the nonaqueous electrolyte secondary battery in the
`example.
`
`[Fig. 2]
`
`Fig. 2 is a diagram used to explain the charging characteristics of the example.
`
`[Fig. 3]
`
`Fig. 3 is a diagram used to explain the capacity ratio (B/A) and the charge density of the
`example.
`
`[Key to the Drawings]
`
`1: Positive electrode
`10: Non-aqueous electrolyte secondary battery
`2: Negative electrode
`3: Rod-like winding core
`4: Separator
`
`9
`
`
`
`[Fig. 1]
`
`JP 2000-260472 A
`
`1: Positive electrode
`2: Negative electrode
`3: Rod-like winding core
`4: Separator
`
`10
`
`
`
`JP 2000-260472 A
`JP 2000-260472 A
`
`[Fig. 2]
`[Fig. 2]
`
`Voltage
`
`(V)
`
`-1500
`
`-1000
`
`~500
`
`0
`
`500
`
`1000
`
`1500
`
`Current (mA)
`
`11
`
`11
`
`
`
`JP 2000-260472 A
`JP 2000-260472 A
`
`[Fig. 3]
`[Fig. 3]
`
`450
`
`400
`
`350
`
`(-W/kg)
`ChargeDensity
`
`
`1.0
`
`1.5
`
`2.0
`
`2.5
`
`Capacity Ratio (B/A)
`
`12
`
`12
`
`
`
`JP 2000-260472 A
`
`Continued from Front Page
`
`(72) [Inventor]
`[Name] Yoichi KOYAMA
`[Address] Toyota Central R&D Labs, Inc., 41-1 Yokomichi, Nagakute-cho, Aichi-ken
`(72) [Inventor]
`[Name] Yuichi ITO
`[Address] Toyota Central R&D Labs, Inc., 41-1 Yokomichi, Nagakute-cho, Aichi-ken
`(72) [Inventor]
`[Name] Motofumi ISONO
`[Address] Toyota Motor Corporation, 1 Toyota-cho, Toyota-shi, Aichi-ken
`(72) [Inventor]
`[Name] Hiroshi UEJIMA
`[Address] Denso Corporation, 1-1 Showa-cho Kariya-shi, Aichi-ken
`[F Terms (Reference)]
`5H029 AJ02 AK02 AK03 AK05 AK16 AL02 AL04 AL06 AL07 AL12 AL16 AM03 AM05 AM07
`BJ14 HJ19
`
`13
`
`
`
`(19)日本国特許庁(JP)
`
`(51)Int.Cl7
` H 0 1 M 10/40
`
`識別記号
`
`(12) 公 開 特 許 公 報(A) (11)特許出願公開番号
`特開2000−260472
`(P2000−260472A)
`(43)公開日 平成12年9月22日(2000.9.22)
`テーマコード(参考)
` 5 H 0 2 9
`
`FI
` H 0 1 M 10/40
`
`Z
`
`審査請求 未請求 請求項の数 1OL(全 5 数)
`(71)出願人 000003609
`株式会社豊田中央研究所
`愛知県愛知郡長久手町大字長湫字横道41番
`地の1
`(71)出願人 000003207
`トヨタ自動車株式会社
`愛知県豊田市トヨタ町1番地
`(71)出願人 000004260
`株式会社デンソー
`愛知県刈谷市昭和町1丁目1番地
`(74)代理人 100079142
`弁理士 高橋 祥泰 (外1名)
`最終頁に続く
`
`(21)出願番号
`
`特願平11−65435
`
`(22)出願日
`
`平成11年3月11日(1999.3.11)
`
`(54)【発明の名称】 非水電解質二次電池
`
`(57)【要約】
`【課題】 従来よりも充電特性に優れた非水電解質二次
`電池を提供すること。
`【解決手段】 正極と負極と非水電解質とからなる二次
`電池において,正極の電極容量Aと負極の電極容量Bと
`の容量比(B/A)が,1.3<(B/A)≦2.5で
`ある。
`
`14
`
`
`
`1
`1
`
`10
`10
`
`20
`
`(2)
`(2)
`
`特開2000−260472
`2000-26047 2
`2
`2
`【特許請求の範囲】
`取り出せる容量が低下するという問題がある。
`
`
`FXO HALT SARAMERRSS EVD DHS.
`Chataek ORF]
`【請求項1】 正極と負極と非水電解質とからなる二次
`【0008】また,上記正極を構成する正極活物質とし
`
`
`
`
`(0008) #%, Eaciemehaktd 4 EMEWELL
`(#21)
`Teme AM CIPKERA CD54
`電池において,正極の電極容量Aと負極の電極容量Bと
`ては,例えば,アルカリ金属を含む金属酸化物,金属カ
`Cla, SAI, VVAUVSEeaosaewity, Ben
`BICC, IEMOMMAR A CAMOMMWASB &
`
`
`の容量比(B/A)が,1.3<(B/A)≦2.5で
`ルコゲン等の無機化合物や導電性高分子を用いることが
`VAP YSORCA?BEAT eA ST EDS
`OME (BY/A) A,
`1. 3< (BZA) $2. 5
`
`あることを特徴とする非水電解質二次電池。
`できる。具体的には,LiXMOY(Mは,Co,Mn,
`CES, Btkiylcld, Li,MO, (Mid, Co, Mn,
`HOATLHRBW LT SIPKERSA—ih
`Ni,V,Fe等の遷移金属を少なくとも1種含む)等
`【発明の詳細な説明】
`Ni, V, FeSO@BSBt5 <4 Lb 1 Mat) |
`(SHA OFAN aA)
`のLi含有遷移金属酸化物やV2O5等の金属酸化物,T
`【0001】
`OL i eHeBSM? VO .SOeeee, T
`(0001)
`iS2,MoS2,NbSe3等の金属カルコゲン化物,
`【技術分野】本発明は,例えばリチウム二次電池等の非
`iS,, MoS,, NbSe,Og@lgyA IVI VE,
`CAEP) ASAE, PAIS FALHOFE
`ポリアニリン,ポリピロール,ポリアセン等の導電性高
`水電解質二次電池に関する。
`KHUVIVY, HVE, KVP eYSOUSA
`TKSRE—REMCS.
`分子等がある。
`【0002】
`DFEMDS.~
`(0002)
`
`【0009】また,上記負極を構成する負極活物質とし
`【従来技術】近年の電子機器のコードレス化,環境問題
`(HERR) UMEORTSAAROI—FLA(E, Bee
`(0009) #%, hactAtehemkt 4AmEWEeL
`ては,例えば,金属,炭素質材料,金属カルコゲン化
`からの電気自動車の開発要求等を背景として,高エネル
`
`
`
`Cla, SIA, Bi, DRAM, BaAVIT ME
`DSORRAMHORMABRSAeAReEUT, BLA
`
`
`物,金属酸化物,導電性高分子等がある。具体的には,
`ギー密度を有する二次電池が求められている。これまで
`Wy, Baty, SEMTSNHS, Atala,
`ERLE SRDROSNTWOS. THES
`金属Li,LiとAl,Zn,Sn等の他金属との合
`の二次電池としては,例えば非水電解質二次電池である
`
`@MeLi, Li€Al,
`Zn, SnSohegeoe
`D-RBWE CE, WAWIPKBRARB CHS
`
`
`
`金,グラファイト,無定形炭素等の炭素質材料,LiX
`リチウム二次電池がある。従来のリチウム二次電池とし
`we, SIIT A, REBRRSORRAME, Li,
`YF DLIOREWNHS. HEROVFULORSME L
`MOY(Mは,Ti,V,Mn,Co,Fe等から選ば
`ては,リチウムを吸蔵放出可能な活物質よりなる正極お
`
`MO, (Mid, Ti, V, Mn, Co, F epopert
`Tl, VFULARAES IEWE EK 0 764 ENS
`れる少なくとも1種の遷移金属),Nb2O5,WO3等
`よび負極と非水電解質とから構成される。
`NEDIEC ED 1 MOREE) , Nb,O., WO,%%
`KOHL IPKERE LD HEME NS.
`の金属酸化物,TiS2,MoS2,NbSe3等の金属
`【0003】従来,リチウム二次電池は,放電容量やサ
`O@memMecthy, TiS, MoS,, NbSe.,So@s
`(0003) (6%, VFULOIWBMI, MBARPT
`カルコゲン化物,Liイオン等をドープしたポリアセ
`イクル特性に重点を置いて検討,開発がなされてきてい
`ANMAPFAEM, LitayvSeR-PLRARVUI LK
`47 VEEICHIECal, BRED ENTETHO
`ン,ポリアセチレン等の導電性高分子等がある。
`る。例えば特開平9−293536号公報においては,
`Y, RUPP RF LYSORELLENDS.
`4. MAISHRPEI—-29353 6 S2hlcBV Cd,
`【0010】次に,本発明の作用につき説明する。本発
`正極と負極の可逆容量の比(負極/正極)を1.05〜
`(0010) Ric, ARHOVEAICDERHAT 4, AH
`IEME AMONWASBOL Cath/TEMD) #1. 05~
`明の非水電解質二次電池は,上記容量比(B/A)を
`1.30とすることによって,負極におけるLiイオン
`HAOJEKARESeBthlt, bacAlth (BY A) &
`1. 30&F4T7TElCKDT, Attic BUSLI PAY
`1.3<(B/A)≦2.5という特定の範囲に限定し
`吸蔵能力を十分に確保し,これにより,Liの析出をな
`REFTONCHARL, THICKO, L i OMAK
`
`1. 3< (BAA) S82. 5&9 RREORPC IRE L
`てある。そのため,上記非水電解質二次電池は,後述す
`くしてサイクル劣化を少なくすることが示されている。
`CHS. FOKD, LAKEKad, Bohs
`SC UTHA AVINERDIES FT4TEDRENTWSD
`る実施形態例に詳説するごとく,非常に優れた充電特性
`【0004】
`SB OCRLMc PAT SCL, JEBICBN CBRE
`(0004)
`を得ることができる。それ故,本発明の非水電解質二次
`【解決しようとする課題】ところで,従来の非水電解質
`REGSTEMCES. SHK AWHAOIPKEREK
`(KARL KSA LTA) CTAC, HEROIPKRARES
`電池は,例えばハイブリットエンジンを搭載したハイブ
`二次電池は,上記のごとく,放電容量の向上やサイクル
`maths, BAIT TU vy LLY VER LITT
`T—eeithlt, baLO TE <, MBABORMEPYT ZIV
`
`リット車においても,十分に優れた充放電特性を発揮す
`特性の向上に重点を置いて開発されている。一方,近年
`Vy hHlcbWCh, TANCESET
`PEO MEICAU CHEE NCWS. A, VEE
`ることができる。
`のハイブリットエンジンを搭載したハイブリット車にお
`
`DIATV vy LY YY eR LIT Uy bic
`ZCEMCES,
`【0011】
`いて使用される二次電池は,放電特性だけでなく高い充
`UY CHAS 114 —eesthld, BREE CE < OSE
`(0011)
`【発明の実施の形態】実施形態例
`電特性が要求される。しかしながら,従来の非水電解質
`BHEDBERENS,. LALENS, TEROIEKERA
`(FEA OSHONZHE) SeHTEREBI
`本発明の実施形態例にかかる非水電解質二次電池につ
`二次電池においては,放電容量やサイクル特性において
`ASEHOICREMC DD SIFBRARICO
`TRBUNC BW Cl, MAE UT 7 VERE BUT
`き,図1〜図3を用いて説明する。本例においては,本
`は優れた性能を発揮し得るようになってきたが,充電特
`
`S, M1 ~M3 2A CHATS. AhilllcwBvy ld, A
`VE PEDICHERE:FEE LIBS KG ICO TERM, FRE
`発明品として3種類(試料E1〜E3),比較品として
`性は未だ十分とはいえない。
`seme UC SHOR (EAE 1~E3) , Hime UT
`PEIEARIEP37 EIEW ATES
`1種類(試料C1),合計4種類の非水電解質二次電池
`【0005】本発明は,かかる従来の問題点に鑑みてな
`1 FBS GEC 1) , Bat 4 ROIPKeRah
`(0005) ASSHAld, DDASTSROMICHA Cie
`
`を作製し,その充電特性を測定した。まず,これら非水
`されたもので,従来よりも充電特性に優れた非水電解質
`RVRL, COFFEE Lz, ET, TNSIEK
`ENKbEOTC, TERKO SFBREICENICIPKERA
`電解質二次電池の構成,製造方法等について説明する。
`二次電池を提供しようとするものである。
`SiRAOKMORRK, BGETESIC OU CHAT 4.
`Ree L KSA ETSEOCHS.
`【0012】(試料E1)本発明品としての試料E1
`【0006】
`(0012) GARE 1) AHHAME UCTOMEE 1
`[0006]
`は,図1に示すごとく,正極1と負極2と非水電解質3
`【課題の解決手段】請求項1に記載の発明は,正極と負
`
`
`
`4, BLICmo TERS, TER] CA? LIPKBRA 3
`
`CRE OMAREBS) aI 1 (caceQOFEHAIS, TEMS A
`とからなり,正極1の電極容量Aと負極2の電極容量B
`極と非水電解質とからなる二次電池において,正極の電
`
`EDSEO, Teh 1 OFAm A + Ath 2 OFA B
`fin CIPKARE ED SIRS REMIC BY T, EROEE
`との容量比(B/A)が,1.3<(B/A)≦2.
`極容量Aと負極の電極容量Bとの容量比(B/A)が,
`eORMmlt (BA) A,
`1. 3< (BY/A) S2.
`MAE A LC AMOBMARB LORMEBtL (BA) *,
`
`5,具体的にはB/A=1.40である非水電解質二次
`1.3<(B/A)≦2.5であることを特徴とする非
`5, BRNICIEB/A=1. 40 CH S4IPKERA_K
`1. 3< (BYA) S2. 5CHS4TLERMLETAIE
`電池である。
`水電解質二次電池にある。
`AIWCHS.
`TBR—REMC HS.
`【0013】本例の非水電解質二次電池は,帯状の正極
`【0007】上記容量比(B/A)が1.3以下である
`
`(0013) ABIOJDKSMA—KReHlS, APRON
`(0007) EMASIE (BA) D1. 3LLF CHS
`
`1および負極2と,それらの間に挟まれるセパレータ4
`場合には,十分な充電特性の向上が得られないという問
`1BKCAM2ZL, THSEOMICKENSWNL—#4
`Belcld, POFEERPEO MEAS SB NEWEW SL
`
`とを渦巻状に巻回した構造からなる。その電池構造は,
`題がある。そのため,好ましくは1.4以上がよい。一
`CE-ERICA URARED 5 ES, COMME,
`DHS. TOFD, WELSIE1. 4,EMKUY. —
`上記図1に示した。
`方,上記容量比(B/A)が2.5を超える場合には,
`
`FER 1 ICRU.
`A, EacABlt (BA) D2. SeHMASBIC,
`【0014】正極1は,帯状のアルミニウム箔製の正極
`一定容積の電池容器において考えると,負極割合の増加
`
`
`(0014) mI, HROPVVIA LIGBBOEM
`~ERMOBiUWARICBW CEASE, AGEGorsin
`集電体と,その表面に形成されたリチウムマンガン酸化
`によって相対的に正極の絶対量が減少し,これによる電
`
`REAL, COKRMCBRMENEVFU LV YAUBIE
`CKD CHDTICIEMOPTEDL, TIUCKSH
`50
`物粉末等から成る正極活物質層とから構成されている。
`池容量の低下および不可逆容量が増加する結果実質的に
`
`WAR OURFS KOGAWARAINING SHEREEAINIC 50 PORDRSD 5 MS TEMES CD OHEME NTS.
`
`
`
`30
`
`40
`40
`
`15
`
`15
`
`
`
`(3)
`(3)
`
`特開2000−260472
`BA2 O00-—260472
`4
`4
`
`
`
`10
`
`3
`3
`電した。
`正極1のシートの大きさは,厚さ127μm,幅130
`
`TFL OV—-hOKSE Sl, HE127 ym, 1 30
`ELK.
`
`【0022】次に,各試料に対して,基準容量測定のた
`mm,長さ2680mmである。また,正極密度は2.
`
`(0022) ic, SeteloW LC, MeARNEOR
`mm, EX 2680mmCH4, Ki, MeREIE 2.
`めの充放電を行った。この充放電は,環境温度20℃に
`67g/cm3となるように調整した。一方,負極2
`67eg4%cmlESEKIICHBLIc, A, Fibe2
`DOFIMBETore. TCOFTMElt, BUR2 O°Cle
`おいて,1mA/cm2の定電流で上限電圧4.2Vま
`は,帯状の銅箔製の負極集電体と,その表面に形成され
`
`BWC,
`lmA/cm’*ORECERBE 4. 2VE
`
`lk, HIKORAROAmeAL, CORMICHRE 1
`で充電し,その後,1mA/cm2の定電流で下限電圧
`たカーボン粉末等から成る負極活物質層とから構成され
`CHL, TOR, 1mA/ cm’ OPECFIBRE
`TA RUMARSA 5 KS AEEE CD SCE 11
`
`3.0Vまで放電するサイクルを5回実施した。そし
`ている。負極2のシートの大きさは,厚さ100μm,
`TWH. Ati2 OY-hOKE Sl, HE100pum,
`3. OVE CMETSU4 7% 5 IHL. EL
`
`幅134mm,長さ2750mmである。また,負極密
`て,その5回目(初回充電を合わせると通算6回目)の
`
`
`C, ZOS5SHA MERELADYS CHHA6 EIB) O
`134mm, BX2750mmCHS, Kic, Fibs
`度は1.25g/cm3となるように調整した。
`放電容量を基準容量1Cとした。
`Mlk1. 25¢/cembRSZESICMEBLI
`MEARZIVEAR 1 CLL.
`【0015】これら正極1および負極2を,厚さ25μ
`【0023】次に,各試料の充電密度の測定を行った。
`
`(0015) Chori 1 BKOAM2, BE25 py
`(0023) Ric, SMAOAGBEORME LIT Oe
`m,幅140mm,長さ3000mmのシート状のポリ
`即ち,上記基準容量1Cの80%(SOC80%)にな
`m, 1§140mm, B&3000mmOY— ORY
`BS, EaCREAHS 1 CO80% (SOC80%) ic&
`
`エチレン製セパレータを介して,直径4mm,長さ16
`るまで1mA/cm2の定電流で充電した後,1時間の
`SEC mAcm’ ORBCHELIcz,
`1 RAO
`LFLURWNL—RENTUT, BE4mm, RX16
`0mmの巻芯に巻回する。巻芯は,アルミニウム製のも
`休止をおいてから,閉回路電圧と電流値の測定を開始し
`PRILIVY TH 5, FAIRSEE: &MEOWEZ Baba L
`OmmONCRETS. ANd, VIVSAVLHOS
`
`
`のを用いた。また,非水電解質3としては,LiPF6
`た。閉回路電圧と電流値の測定は,まず,C/3の電流
`
`7c. PAIRS ¢BOWES, ET, C/ 308i
`DeAWe. Ke, JOKAMPASe UTI, LiPF,
`/EC:DEC=1:1(エチレンカーボネートとジエ
`値で10秒放電し,次いで5分間休止した後C/3の電
`fC 1 OFDEEL, UVC SONEMKIL LEC J 3 OB
`SEC: DEC=1:1 (RFU YARRA bh EVE
`流値で10秒間充電した。次いで,5分間休止後,1C
`チルカーボネートとの混合液(容量比にして1:1)
`
`PUA 1 ORTIFER Lic. RUG,=SONBARIETe, 1 C
`FVMA-KA- beEOHRGAM AmttlcUT1 3 1)
`の電流値での10秒間の充放電を5分間の休止を挟んで
`に,LiPF6を1モル/リットルの割合で溶解したも
`
`DRUMCO 1 OPEOFEEEZ 5 NHIOPRIEZPRAL CS
`lc, LiPF @1EV/U yy bVOMEaCae Lic tb
`行った。さらに,その後,5分間の休止を挟んだ充放電
`の)を用いた。
`{foto Kblc, TOR, STOMA TCFEE
`D) AAV Te.
`
`
`を,3C,6C,9C,12Cの電流値によりそれぞれ
`【0016】また,同図に示すごとく,正極1は,正極
`
`
`(0016) Ez,
`IBMlcnge Ck <,
`tebe 1 ld, TERE
`%, 3C, 6C, 9C, 12COHFMEICKOVENEH
`行った。
`リード11,極柱511を介して正極端子51に接続さ
`
`YF 11, MES 1
`1 SPU CIEMIF 5 1 CREE
`fork.
`
`【0024】そして,各10秒間の充放電完了時には閉
`れている。また,同様に負極2は,負極リード21,極
`[0024] €ULT, 81 OMMOFERESE SF HRFIC IEPA
`NTW4S. Ke, Mpc Ai 2 (x, AMV—-E 21, we
`
`回路電圧と電流値を測定した。試料E2の測定結果を図
`柱521負極端子52に接続されている。また,符号5
`
`
`FES 2 1 Lubin 5 2ICHESIVOWS. Ele, FSS
`BSB BMEHE Lic. ARLE 2 OMERAM
`2に示した。同図は,横軸に電流値を,縦軸に電圧をと
`5は電池ケースである。
`
`2lomn Lic. IMS, BECBME, MeMHICHEEZ &
`5 lakh —A CHS.
`
`
`ったものである。また,電流値は,充電後のものを「−
`【0017】また,試料E1では,上記正極1と負極1
`
`(0017) E%, MAE 1 Cld, Lacie 1 & Ati 1
`DKEDOCHS. Ee, AUUElL, HEROLOR [—
`(マイナス)」表示にしてある。プロットした各測定値
`とは,上記のごとく,容量比(B/A)=1.40とな
`eld, batOTe<, Alte (B/A) =1. 40k%
`(RAFA) | RMRlCUTHS. FOy bUARMEA
`
`から回帰直線を求め,電流/電圧直線Dを得た。
`るように調整した。具体的には,正極1の電極容量Aは
`
`
`SKDCMB LT. AR ICld, TEM 1 OFA A Id
`DSHKD, BitBEER D 2187.
`
`
`
`【0025】同図において,充電特性値すなわち電池の
`理論容量により求め,一方,負極2の電極容量BはLi
`
`
`Pama Ic KOK, A, Fill 2 OFA BIEL i
`(0025) IMicBWC, FRIRHESTpb AHO
`充電電力は,A,B,Cの3点を直線で結んだ三角形領
`対極の場合の実測値より求め,その容量比(B/A)が
`FBS, A, B, COS HMFERCHAK=fItA
`WHOSGAOFM KE ORD, CORAL (BA) 2
`域の面積Sにより表すことができる。同図のA点は,上
`1.40となるように,負極2の厚みを調整することに
`
`
`1. 40€GS6EIIC, Al 2 OBA PHBT ST EI
`MOMRMSICKORTTLACES, AMOAI, §
`記電流/電圧直線Dと,電流値が0の縦軸との交点部
`より行った。その結果,試料E1では,正極1の厚みが
`
`KOffok. CORR, BEE 1 Cld, TEM 1 OBAD
`ACS/BEARD &, BMAD O OME e OZAEB
`
`(電位V0)を示す点である。また,B点は,カットオ
`127μmの場合には,負極2の厚みを100μmとす
`CBILV,) Z@RTRCHS Ki, Bald, Ay ba
`127 pmOWMSslclky, AM2ORBA2100 umes
`フ電圧(充電時の上限電圧)と,電流値が0の縦軸との
`ることにより,容量比(B/A)が1.40となった。
`
`SceicK)O, Alt (BZA) W1. 40 &RoK,
`TEE GeEOERE) &, AiieD0 OMEHIC O
`
`交点部を示す点を示す。また,C点は,カットオフ電圧
`【0018】(試料E2)本発明品としての試料E2
`
`ikeaMem, Ee, CMld, Av ha TBE
`(0018) GHEE 2) AHAMe UCTOREE 2
`と,上記電流/電圧直線Dとの交点を示す点である。
`は,容量比(B/A)=1.79となるように,上記負
`
`lt, ABE (BZA) =1. T9LRSZEHEIIC, Eat
`&, baciEEERD CORMMERTHCHS.
`【0026】得られた充電特性を表1に示す。表1にお
`極2の厚みを125μmに変更した。その他は,試料E
`M2OBAC1 25 pmlc Corts, BRE
`(0026) F5nKFSHESER licms. K1Icb
`ける,V0は上記A点の電位,IV傾きは直線Dの傾
`1と同じにした。
`34, V ld bed A ROR,
`1 VE ISIRRD OF
`1 ef CIC UR.
`き,充電密度は,上記面積Sを電池全体の重量により除
`【0019】(試料E3)本発明品としての試料E3
`&, FRE, baci S BMSAORRIC KOR
`(0019) GRE 3) AHA UT ORAE 3
`したもの,充電電流は上記C点の電流値を示す。試料E
`は,容量比(B/A)=2.43となるように,上記負
`lt, ARIE (BA) =2. 434R4SKI Ic, bad
`LKBO, FEBt LAC HOURS. BE
`1,E3,C1についても,試料E2と同様に電流/電
`極2の厚みを161μmに変更した。その他は,試料E
`M2OBAR1 61 pmlcBELe. EOshld, WEE
`1, E3, CllcDWTH, MAE 2 CRCEYE
`圧直線を求め(図示略),これからV0,IV傾き,充
`1と同じにした。
`
`FIBRO (Xiah) , THADSV,,
`I VAX, FE
`
`1 ef CIC UR.
`電密度,充電電流をそれぞれ求めた。その結果について
`【0020】(試料C1)本例では,比較品として,容
`BAS, REEMEZECNCIVROK. CORRICOWT
`(0020) GARIC 1) APCS, Eemamhce lt, &
`も表1に示す。
`量比(B/A)が上記特定の範囲を外れる試料C1を準
`
`mt (BY A) DbatheORAN SARC 1 BYE
`ICHT.
`【0027】次に,容量比(B/A)と上記充電密度
`備した。試料C1は,容量比(B/A)=1.22とな
`fii 7c. WIC Lid, AetlE (BZA) =1. 22k%
`(0027) Ric, Aelt (BA) & bacteree
`(−W/kg)との関係を図3に示す。同図は,横軸に
`るように,上記負極2の厚みを88μmに変更した。そ
`SKbc, batAti2OB4%8 8 umicBLI F
`(-W/kg) COBEN SIONS. Ml, Bettie
`
`
`容量比(B/A)を,縦軸に充電密度をとったものであ
`の他は,試料E1と同じにした。
`Ofthld, AEE 1 Ci CIC LK,
`Asstt (BAA) #, MthCRERER bo KkbEOCH
`る。同図および表1より知られるごとく,充電密度が4
`【0021】次に,本例では,各試料に対して試験を行
`
`(0021) Ric, ABI, BathlomL CHRETT
`4. AMIMBKOR 1 KOMSNSTE<, FEB4
`
`00(−W/kg)を超えるような優れた特性を発揮さ
`い,充電特性を求めた。試験は,非水電解質二次電池で
`00 (-W/kg) BMA SEDERENCES
`WO, FORME RD Ze, alld, JOKERC
`
`せるためには,容量比(B/A)を1.3超え,2.5
`ある各試料に対し,まず初回充放電を行った。この初回
`HSSMARMOML, ECMEFMBETe. TOPE
`tSfewleld, AML (BZA) #1. 3A, 2.
`5
`以下にすることが有効であることが分かる。
`充放電は,環境温度20℃において,0.2mA/cm
`LLMCT 4ST EDR CHST EDBDDS,
`Feels, PABVAEE 2 OCICBVYT, O. 2mA/cem
`
`2の定電流で上限電圧4.2Vまで充電し,その後,
`【0028】
`
`"OREITCLIRGE 4. 2VECHEL, TOK,
`(0028)
`
`0.2mA/cm2の定電流で下限電圧3.0Vまで放
`【表1】
`
`0. 2mA/cm ORMEPIRBE 3. OVE CHK
`(#1)
`
`20
`20
`
`30
`30
`
`40
`40
`
`50
`50
`
`16
`
`16
`
`
`
`eet|Vo Bilin FBBH
`
`(4)
`(4)
`6
`5
`
`SOC80% COFFE
`
`特開2000−260472
`2000-26047 2
`
`
`
`
`
`
`
`
`
`
`(B/A)
`
`(Vv)
`
`(Q)
`
`(W/kg)
`
`(A)
`
`
`
`
`
`
`*【図3】実施形態例における,容量比(B/A)と充電
`【0029】
`
`* (B43) SIRENS, Aele (B/A) &FCR
`[0029]
`密度との関係を示す説明図。
`【発明の効果】上述のごとく,本発明によれば,従来よ
`HEC OBR EANHAL.
`CEHHOMER] LxhOCe <, ARHAIC KAT, FORK
`
`【符号の説明】
`りも充電特性に優れた非水電解質二次電池を提供するこ
`itsOnt)
`O SFTPEC BE icAPKaPRA—RATEET S CT
`1...正極,
`とができる。
`
`1... TEAR,
`tMCES.
`
`
`【図面の簡単な説明】
`
`10...非水電解質二次電池,
`
`10.
`.
`. JREORF,
`Citi 2fiHr eH)
`【図1】実施形態例における,非水電解質二次電池の断
`2...負極,
`(1) SHORECIsITS, JKC RHO 2... Aire,
`
`面図。
`
`3...棒状巻芯,
`
`iE.
`3... Belkéen,
`【図2】実施形態例における,充電特性を示す説明図。*
`4...セパレータ,
`
`(22) SHOPREICIsITS, FOREEANHAR. *§ 4... INL,
`
`
`
`【図1】
`(1)
`
`(TR)
`
`
`(2)
`
`【図2】
`(2)
`
`3.0 4
`
`1
`500
`
`!
`1000
`
`1500
`
`L 1
`-1000
`~500
`
`2.5
`
`0
`
`% it (mA)
`
`17
`
`E
`
`(Vv)
`
`~1800
`
`17
`
`
`
`(5)
`
`【図3】
`
`特開2000−260472
`
`
`
`─────────────────────────────────────────────────────
`フロントページの続き
`
`(72)発明者 小山 陽一
` 愛知県愛知郡長久手町大字長湫字横道41番
` 地の1 株式会社豊田中央研究所内
`(72)発明者 伊藤 勇一
` 愛知県愛知郡長久手町大字長湫字横道41番
` 地の1 株式会社豊田中央研究所内
`
`(72)発明者 磯野 基史
` 愛知県豊田市トヨタ町1番地 トヨタ自動
` 車株式会社内
`(72)発明者 上嶋 啓史
` 愛知県刈谷市昭和町1丁目1番地 株式会
` 社デンソー内
`Fターム(参考) 5H029 AJ02 AK02 AK03 AK05 AK16
` AL02 AL04 AL06 AL07 AL12
` AL16 AM03 AM05 AM07 BJ14
` HJ19
`
`18
`
`