throbber
Your global source
`for foreign filing services
`
`Certification of Accuracy
`
`I, Frank McGee, a translator fluent in the English and Japanese languages, on behalf of
`
`Source IP Translations, do solemnly and sincerely declare that the following is, to the best
`
`of my knowledge and belief, a true and correct translation of the document(s) listed below
`
`in a form that best reflects the intention and meaning of the original text.
`
`I hereby declare that all statements made herein of my own knowledge are true and that
`
`all statements made on information and belief are believed to be true; and further that
`
`these statements were made with the knowledge that willful false statements and the like
`
`so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18
`
`of the United States Code.
`
`The document is designated as: JP2000-260472-Koyama
`
`___________________
`
`Frank McGee
`
`July 5, 2023
`
`244 Fifth Avenue, Suite R269, New York N.Y. 10001 | www.sourceip.com | info@sourceip.com
`
`APPLE-1007
`
`1
`
`

`

`(19) [Issuing Country] Japan Patent Office (JP)
`(12) [Publication Name] Gazette of Unexamined Patent Applications (A)
`(11) [Publication Number] 2000-260472 (P2000-260472A)
`(43) [Publication Date] September 22, 2000 (2000.9.22)
`
`
`
`[ID Codes]
`
`(51) [Int.Cl.7]
`H01M 10/40
`[Examination Request] Not Yet Received
`[Number of Claims] 1
`[Application Format] Online (OL)
`[Total Number of Pages] 5
`
`[FI]
`H01M 10/40 Z
`
`[Theme Codes (Reference)]
`5H029
`
`(21) [Application Number] H11-065435
`(22) [Filing Date] March 11, 1999 (1999.3.11)
`(71) [Applicant]
`[Identification Number] 000003609
`[Name] Toyota Central R&D Labs, Inc.
`[Address] 41-1 Yokomichi, Nagakute-cho, Aichi-ken
`(71) [Applicant]
`[Identification Number] 000003207
`[Name] Toyota Motor Corporation
`[Address] 1 Toyota-cho, Toyota-shi, Aichi-ken
`(71) [Applicant]
`[Identification Number] 000004260
`[Name] Denso Corporation
`[Address] 1-1 Showa-cho Kariya-shi, Aichi-ken
`(74) [Agent]
`[Identification Number] 100079142
`[Attorney]
`[Name] Yoshiyasu TAKAHASHI (and 1 other)
`
`Continued on Last Page
`
`2
`
`

`

`JP 2000-260472 A
`
`(54) [Title of the Invention]
`
`Non-Aqueous Electrolyte Secondary Battery
`
`(57) [Abstract]
`
`[Problem]
`
`To provide a non-aqueous electrolyte secondary battery with better charging characteristics
`than the prior art.
`
`[Solution]
`
`A secondary battery consisting of a positive electrode, a negative electrode, and a
`nonaqueous electrolyte, wherein the capacity ratio (B/A) between the electrode capacity A
`of the positive electrode and the electrode capacity B of the negative electrode is 1.3 <
`(B/A) (cid:148) 2.5.
`
`3
`
`

`

`JP 2000-260472 A
`
`[Claims]
`
`[Claim 1]
`
`A secondary battery comprising a positive electrode, a negative electrode, and a
`nonaqueous electrolyte, wherein the capacity ratio (B/A) between the electrode capacity A
`of the positive electrode and the electrode capacity B of the negative electrode is 1.3 <
`(B/A) (cid:148) 2.5.
`
`[Detailed Description of the Invention]
`
`[0001]
`
`[Technical Field]
`
`The present invention relates to a nonaqueous electrolyte secondary battery, such as a
`lithium secondary battery.
`
`[0002]
`
`[Prior Art]
`
`With the trend in recent years toward cordless electronic devices and demand for the
`development of electric vehicles in response to environmental problems, there is growing
`demand for secondary batteries with a high energy density. Conventional secondary
`batteries include lithium secondary batteries, which are non-aqueous electrolyte secondary
`batteries. Conventional lithium secondary batteries consist of a positive electrode and
`negative electrode made of an active material that can absorb and release lithium, and a
`nonaqueous electrolyte.
`
`[0003]
`
`Lithium secondary batteries have been studied and developed with emphasis on discharge
`capacity and cycle characteristics. For example, in JP H09-293536 A, the ratio of the
`reversible capacities of the positive and negative electrodes (negative electrode/positive
`electrode) is 1.05 to 1.30 in order to ensure sufficient Li ion storage capacity in the negative
`electrode, and thus eliminate Li deposits and reduce cycle degradation.
`
`[0004]
`
`[Problem to Be Solved by the Invention]
`
`As mentioned above, conventional nonaqueous electrolyte secondary batteries have been
`developed with an emphasis on improving discharge capacity and cycle characteristics.
`However, secondary batteries used in the most recent hybrid vehicles equipped with hybrid
`engines must have high charging characteristics as well as discharge characteristics.
`Although conventional nonaqueous electrolyte secondary batteries have been able to
`demonstrate excellent performance in terms of discharge capacity and cycle characteristics,
`their charging characteristics are still inadequate.
`
`[0005]
`
`4
`
`

`

`JP 2000-260472 A
`
`It is an object of the present invention to solve this problem by providing a nonaqueous
`electrolyte secondary battery with better charging characteristics than the prior art.
`
`[0006]
`
`[Means for Solving the Problem]
`
`The invention according to claim 1 is a secondary battery comprising a positive electrode, a
`negative electrode, and a nonaqueous electrolyte, wherein the capacity ratio (B/A) between
`the electrode capacity A of the positive electrode and the electrode capacity B of the
`negative electrode is 1.3 < (B/A) (cid:148) 2.5.
`
`[0007]
`
`If the capacity ratio (B/A) is less than 1.3, the improvement in charging characteristics is
`insufficient. Therefore, a value of 1.4 or higher is preferred. Meanwhile, if the capacity ratio
`(B/A) exceeds 2.5, the increase in the ratio of the negative electrode in a fixed volume
`battery container causes the absolute volume of the positive electrode to decrease in
`relative terms, resulting in a decrease in battery capacity and an increase in irreversible
`capacity, which in turn reduces the actual capacity that can be drawn upon.
`
`[0008]
`
`Examples of positive electrode active materials that can constitute the positive electrode
`include inorganic compounds such as metal oxides of alkali metals and metal chalcogens, as
`well as conductive polymers. Specific examples include Li-containing transition metal oxides
`such as LiXMOY (where M includes at least one transition metal such as Co, Mn, Ni, V, and
`Fe), metal oxides such as V2O5, metal chalcogenides such as TiS2, MoS2, and NbSe3, and
`conductive polymers such as polyaniline, polypyrrole, and polyacene.
`
`[0009]
`
`Examples of negative electrode active materials that can constitute the negative electrode
`include metals, carbonaceous materials, metal chalcogenides, metal oxides, and conductive
`polymers. Specific examples include metal Li, alloys of Li with other metals such as Al, Zn,
`and Sn, carbonaceous materials such as graphite and amorphous carbon, metal oxides such
`as LiXMOY (where M includes at least one transition metal such as Ti, V, Mn, Co, and Fe),
`Nb2O5, and WO3, metal chalcogenides such as TiS2, MoS2, and NbSe3, and conductive
`polymers such as polyacene and polyacetylene doped with Li ions, etc.
`
`[0010]
`
`The action of the present invention will now be described. In the nonaqueous electrolyte
`secondary battery of the present invention, the capacity ratio (B/A) is limited to the specific
`range of 1.3 < (B/A) (cid:148) 2.5. As a result, the nonaqueous electrolyte secondary battery can
`obtain excellent charging characteristics, as described in detail in the examples below. The
`nonaqueous electrolyte secondary battery of the present invention can demonstrate
`excellent charge-discharge characteristics that are even adequate in hybrid vehicles
`equipped with a hybrid engine.
`
`[0011]
`
`[Embodiment of the Invention]
`
`5
`
`

`

`JP 2000-260472 A
`
`Examples
`
`The non-aqueous electrolyte secondary battery of the present invention will now be
`explained using Fig. 1 to Fig. 3. In the examples, three types of nonaqueous electrolyte
`secondary batteries (Samples E1 to E3) were fabricated as the products of the present
`invention and one type (Sample C1) as a comparative product, for a total of four types, and
`their charging characteristics were measured. First, the composition and manufacturing
`methods of these nonaqueous electrolyte secondary batteries will be described.
`
`[0012]
`
`(Sample E1)
`
`Sample E1 serving as a product of the present invention is a non-aqueous electrolyte
`secondary battery, as shown in Fig. 1, comprising a positive electrode 1, a negative
`electrode 2, and a non-aqueous electrolyte 3, in which the capacity ratio (B/A) between the
`electrode capacity A of the positive electrode 1 and the electrode capacity B of the negative
`electrode 2 is 1.3 < (B/A) (cid:148) 2.5, specifically, B/A = 1.40.
`
`[0013]
`
`The nonaqueous electrolyte secondary battery in this example has a spiral wound structure
`consisting of a strip-shaped positive electrode 1 and negative electrode 2 with a separator 4
`interposed between them. The battery structure is shown in Fig. 1.
`
`[0014]
`
`The positive electrode 1 consists of a positive electrode current collector made of a strip of
`aluminum foil and a positive electrode active material layer made of, for example, lithium
`manganese oxide powder formed on the surface. The positive electrode 1 sheet is 127 (cid:459)m
`thick, 130 mm wide, and 2,680 mm long. The positive electrode density was adjusted to
`2.67 g/cm3. Meanwhile, the negative electrode 2 consists of a strip-shaped copper foil
`negative electrode current collector and a negative electrode active material layer made, for
`example, of carbon powder formed on the surface. The negative electrode 2 is 100 (cid:459)m
`thick, 134 mm wide, and 2,750 mm long. The density of the negative electrode was
`adjusted to 1.25 g/cm3.
`
`[0015]
`
`The positive electrode 1 and the negative electrode 2 were wound together via an
`interposed polyethylene separator that was 25 (cid:459)m thick, 140 mm wide, and 3,000 mm long
`sheet to form a winding core with a diameter of 4 mm and a length of 160 mm. The winding
`core is made of aluminum. The nonaqueous electrolyte 3 was LiPF6/EC:DEC = 1:1 (LiPF6
`dissolved in a mixture of ethylene carbonate and diethyl carbonate (1:1 by volume) at a
`ratio of 1 mol/liter).
`
`[0016]
`
`As shown in the same figure, the positive electrode 1 is connected to the positive terminal
`51 via a positive electrode lead 11 and a pole 511. Similarly, the negative electrode 2 is
`connected to the negative electrode terminal 52 via a negative electrode lead 21 and a pole
`521. The battery case is denoted by reference number 55.
`
`6
`
`

`

`JP 2000-260472 A
`
`[0017]
`
`In Sample E1, the positive electrode 1 and the negative electrode 1 were adjusted to have a
`capacity ratio (B/A) of 1.40, as mentioned above. Specifically, the electrode capacity A of
`positive electrode 1 was derived from the theoretical capacity, while the electrode capacity B
`of negative electrode 2 was derived from the measured value using a Li counter electrode,
`and the thickness of negative electrode 2 was adjusted so that the capacity ratio (B/A) was
`1.40. As a result, in Sample E1, when the thickness of positive electrode 1 was 127 (cid:459)m and
`the thickness of negative electrode 2 was 100 (cid:459)m, the capacity ratio (B/A) was 1.40.
`
`[0018]
`
`(Sample E2)
`
`In Sample E2 serving as an example of the present invention, the thickness of the negative
`electrode 2 was changed to 125 (cid:459)m so that the capacity ratio (B/A) was 1.79. In all other
`respects, it was the same as Sample E1.
`
`[0019]
`
`(Sample E3)
`
`In Sample E3 serving as an example of the present invention, the thickness of the negative
`electrode 2 was changed to 161 (cid:459)m so that the capacity ratio (B/A) was 2.43. In all other
`respects, it was the same as Sample E1.
`
`[0020]
`
`(Sample C1)
`
`In Sample C1 serving as the comparative product, the capacity ratio (B/A) was outside the
`above specified range. In Sample C1, the thickness of the negative electrode 2 was changed
`to 88 (cid:459)m so that the capacity ratio (B/A) was 1.22. In all other respects, it was the same as
`Sample E1.
`
`[0021]
`
`Next, tests were conducted on each sample to determine the charging characteristics. In the
`test, an initial charge-discharge was first performed on the non-aqueous electrolyte
`secondary battery in each sample. In the initial charge-discharge conducted at an ambient
`temperature of 20°C, the battery was charged to an upper voltage limit of 4.2 V at a
`constant current of 0.2 mA/cm2, and then discharged to a lower voltage limit of 3.0 V at a
`constant current of 0.2 mA/cm2.
`
`[0022]
`
`Next, each sample was charged and discharged to measure the reference capacity. In this
`charge-discharge cycle conducted at an ambient temperature of 20°C, the samples were
`charged at a constant current of 1 mA/cm2 to an upper voltage of 4.2 V, and then
`discharged at a constant current of 1 mA/cm2 to a lower voltage of 3.0 V. Five cycles were
`performed. The discharged capacity after the fifth cycle (the sixth cycle in total including the
`initial charge) was set as reference capacity 1C.
`
`7
`
`

`

`JP 2000-260472 A
`
`[0023]
`
`Next, the charge density of each sample was measured. Here, the samples were charged at
`a constant current of 1 mA/cm2 until they reached 80% of reference capacity of 1C (80%
`SOC), and after a one-hour pause, closed-circuit voltage and current measurements were
`started. In the closed-circuit voltage and current value measurements, the battery was first
`discharged at a current value of C/3 for 10 seconds, followed by a five-minute pause, and
`recharging at a current value of C/3 for 10 seconds. Next, after a five-minute pause, a ten-
`second charge-discharge was performed at current value 1C followed by a five-minute
`pause. Then, charging and discharging were performed at current values 3C, 6C, 9C, and
`12C, with five-minute pauses in between.
`
`[0024]
`
`The closed-circuit voltage and current values were measured at the completion of each ten-
`second charge/discharge period. The measurement results for Sample E2 are shown in Fig.
`2. In the figure, the current value is indicated on the horizontal axis and the voltage is
`indicated on the vertical axis. The current values after charging are indicated with "-"
`(minus). A regression line was obtained from each of the plotted measurement values to
`obtain the current/voltage line D.
`
`[0025]
`
`In the same figure, the charge characteristic value, that is, the charge power of the battery,
`can be expressed by the area S of the triangular region formed by connecting the three
`points A, B, and C with straight lines. Point A in the figure is at the intersection of the
`current/voltage line D and the vertical axis at a current value of 0 (potential V0). Point B is
`at the intersection of the cutoff voltage (upper limit voltage when charging) and the vertical
`axis at a current value of 0. Point C is the point at the intersection of the cutoff voltage and
`the current/voltage line D.
`
`[0026]
`
`The resulting charging characteristics are shown in Table 1. In Table 1, V0 is the potential at
`point A, the IV slope is the slope of straight line D, the charge density is area S divided by
`the overall weight of the battery, and the charge current is the current value at point C. In
`Samples E1, E3, and C1, the straight current/voltage line was determined in the same
`manner as in Sample E2 (figures omitted), and the V0, IV slope, charge density, and charge
`current values were determined using this line. These results are also shown in Table 1.
`
`[0027]
`
`The relationship between the capacity ratio (B/A) and the charge density (-W/kg) is shown
`in Fig. 3. In the figure, the capacity ratio (B/A) is indicated on the horizontal axis and the
`charge density is indicated on the vertical axis. It is clear from the figures and from Table 1
`that keeping the capacitance ratio (B/A) above 1.3 and below 2.5 is effective in achieving
`excellent characteristics such as a charge density above 400 (-W/kg).
`
`8
`
`

`

`JP 2000-260472 A
`
`[0028]
`
`[Table 1]
`
`Sample No.
`
`C1
`E1
`E2
`E3
`
`[0029]
`
`Capacity
`Ratio
`(B/A)
`
`1.22
`1.40
`1.79
`2.43
`
`V0
`(V)
`
`4.068
`4.054
`4.035
`4.028
`
`Charge Characteristics at 80% SOC
`IV Slope
`Charge
`((cid:443))
`Density
`(W/kg)
`-386.4
`-418.5
`-457.8
`-425.7
`
`-0.263
`-0.263
`-0.262
`-0.273
`
`Charge
`Current
`(A)
`-0.504
`-0.554
`-0.612
`-0.631
`
`[Effect of the Invention]
`
`As explained above, the present invention can provide a nonaqueous electrolyte secondary
`battery with better charging characteristics than the prior art.
`
`[Brief Description of the Drawings]
`
`[Fig. 1]
`
`Fig. 1 is a cross-sectional view of the nonaqueous electrolyte secondary battery in the
`example.
`
`[Fig. 2]
`
`Fig. 2 is a diagram used to explain the charging characteristics of the example.
`
`[Fig. 3]
`
`Fig. 3 is a diagram used to explain the capacity ratio (B/A) and the charge density of the
`example.
`
`[Key to the Drawings]
`
`1: Positive electrode
`10: Non-aqueous electrolyte secondary battery
`2: Negative electrode
`3: Rod-like winding core
`4: Separator
`
`9
`
`

`

`[Fig. 1]
`
`JP 2000-260472 A
`
`1: Positive electrode
`2: Negative electrode
`3: Rod-like winding core
`4: Separator
`
`10
`
`

`

`JP 2000-260472 A
`JP 2000-260472 A
`
`[Fig. 2]
`[Fig. 2]
`
`Voltage
`
`(V)
`
`-1500
`
`-1000
`
`~500
`
`0
`
`500
`
`1000
`
`1500
`
`Current (mA)
`
`11
`
`11
`
`

`

`JP 2000-260472 A
`JP 2000-260472 A
`
`[Fig. 3]
`[Fig. 3]
`
`450
`
`400
`
`350
`
`(-W/kg)
`ChargeDensity
`
`
`1.0
`
`1.5
`
`2.0
`
`2.5
`
`Capacity Ratio (B/A)
`
`12
`
`12
`
`

`

`JP 2000-260472 A
`
`Continued from Front Page
`
`(72) [Inventor]
`[Name] Yoichi KOYAMA
`[Address] Toyota Central R&D Labs, Inc., 41-1 Yokomichi, Nagakute-cho, Aichi-ken
`(72) [Inventor]
`[Name] Yuichi ITO
`[Address] Toyota Central R&D Labs, Inc., 41-1 Yokomichi, Nagakute-cho, Aichi-ken
`(72) [Inventor]
`[Name] Motofumi ISONO
`[Address] Toyota Motor Corporation, 1 Toyota-cho, Toyota-shi, Aichi-ken
`(72) [Inventor]
`[Name] Hiroshi UEJIMA
`[Address] Denso Corporation, 1-1 Showa-cho Kariya-shi, Aichi-ken
`[F Terms (Reference)]
`5H029 AJ02 AK02 AK03 AK05 AK16 AL02 AL04 AL06 AL07 AL12 AL16 AM03 AM05 AM07
`BJ14 HJ19
`
`13
`
`

`

`(19)日本国特許庁(JP)
`
`(51)Int.Cl7
` H 0 1 M 10/40
`
`識別記号
`
`(12) 公 開 特 許 公 報(A) (11)特許出願公開番号
`特開2000−260472
`(P2000−260472A)
`(43)公開日 平成12年9月22日(2000.9.22)
`テーマコード(参考)
` 5 H 0 2 9
`
`FI
` H 0 1 M 10/40
`
`Z
`
`審査請求 未請求 請求項の数 1OL(全 5 数)
`(71)出願人 000003609
`株式会社豊田中央研究所
`愛知県愛知郡長久手町大字長湫字横道41番
`地の1
`(71)出願人 000003207
`トヨタ自動車株式会社
`愛知県豊田市トヨタ町1番地
`(71)出願人 000004260
`株式会社デンソー
`愛知県刈谷市昭和町1丁目1番地
`(74)代理人 100079142
`弁理士 高橋 祥泰 (外1名)
`最終頁に続く
`
`(21)出願番号
`
`特願平11−65435
`
`(22)出願日
`
`平成11年3月11日(1999.3.11)
`
`(54)【発明の名称】 非水電解質二次電池
`
`(57)【要約】
`【課題】 従来よりも充電特性に優れた非水電解質二次
`電池を提供すること。
`【解決手段】 正極と負極と非水電解質とからなる二次
`電池において,正極の電極容量Aと負極の電極容量Bと
`の容量比(B/A)が,1.3<(B/A)≦2.5で
`ある。
`
`14
`
`

`

`1
`1
`
`10
`10
`
`20
`
`(2)
`(2)
`
`特開2000−260472
`2000-26047 2
`2
`2
`【特許請求の範囲】
`取り出せる容量が低下するという問題がある。
`
`
`FXO HALT SARAMERRSS EVD DHS.
`Chataek ORF]
`【請求項1】 正極と負極と非水電解質とからなる二次
`【0008】また,上記正極を構成する正極活物質とし
`
`
`
`
`(0008) #%, Eaciemehaktd 4 EMEWELL
`(#21)
`Teme AM CIPKERA CD54
`電池において,正極の電極容量Aと負極の電極容量Bと
`ては,例えば,アルカリ金属を含む金属酸化物,金属カ
`Cla, SAI, VVAUVSEeaosaewity, Ben
`BICC, IEMOMMAR A CAMOMMWASB &
`
`
`の容量比(B/A)が,1.3<(B/A)≦2.5で
`ルコゲン等の無機化合物や導電性高分子を用いることが
`VAP YSORCA?BEAT eA ST EDS
`OME (BY/A) A,
`1. 3< (BZA) $2. 5
`
`あることを特徴とする非水電解質二次電池。
`できる。具体的には,LiXMOY(Mは,Co,Mn,
`CES, Btkiylcld, Li,MO, (Mid, Co, Mn,
`HOATLHRBW LT SIPKERSA—ih
`Ni,V,Fe等の遷移金属を少なくとも1種含む)等
`【発明の詳細な説明】
`Ni, V, FeSO@BSBt5 <4 Lb 1 Mat) |
`(SHA OFAN aA)
`のLi含有遷移金属酸化物やV2O5等の金属酸化物,T
`【0001】
`OL i eHeBSM? VO .SOeeee, T
`(0001)
`iS2,MoS2,NbSe3等の金属カルコゲン化物,
`【技術分野】本発明は,例えばリチウム二次電池等の非
`iS,, MoS,, NbSe,Og@lgyA IVI VE,
`CAEP) ASAE, PAIS FALHOFE
`ポリアニリン,ポリピロール,ポリアセン等の導電性高
`水電解質二次電池に関する。
`KHUVIVY, HVE, KVP eYSOUSA
`TKSRE—REMCS.
`分子等がある。
`【0002】
`DFEMDS.~
`(0002)
`
`【0009】また,上記負極を構成する負極活物質とし
`【従来技術】近年の電子機器のコードレス化,環境問題
`(HERR) UMEORTSAAROI—FLA(E, Bee
`(0009) #%, hactAtehemkt 4AmEWEeL
`ては,例えば,金属,炭素質材料,金属カルコゲン化
`からの電気自動車の開発要求等を背景として,高エネル
`
`
`
`Cla, SIA, Bi, DRAM, BaAVIT ME
`DSORRAMHORMABRSAeAReEUT, BLA
`
`
`物,金属酸化物,導電性高分子等がある。具体的には,
`ギー密度を有する二次電池が求められている。これまで
`Wy, Baty, SEMTSNHS, Atala,
`ERLE SRDROSNTWOS. THES
`金属Li,LiとAl,Zn,Sn等の他金属との合
`の二次電池としては,例えば非水電解質二次電池である
`
`@MeLi, Li€Al,
`Zn, SnSohegeoe
`D-RBWE CE, WAWIPKBRARB CHS
`
`
`
`金,グラファイト,無定形炭素等の炭素質材料,LiX
`リチウム二次電池がある。従来のリチウム二次電池とし
`we, SIIT A, REBRRSORRAME, Li,
`YF DLIOREWNHS. HEROVFULORSME L
`MOY(Mは,Ti,V,Mn,Co,Fe等から選ば
`ては,リチウムを吸蔵放出可能な活物質よりなる正極お
`
`MO, (Mid, Ti, V, Mn, Co, F epopert
`Tl, VFULARAES IEWE EK 0 764 ENS
`れる少なくとも1種の遷移金属),Nb2O5,WO3等
`よび負極と非水電解質とから構成される。
`NEDIEC ED 1 MOREE) , Nb,O., WO,%%
`KOHL IPKERE LD HEME NS.
`の金属酸化物,TiS2,MoS2,NbSe3等の金属
`【0003】従来,リチウム二次電池は,放電容量やサ
`O@memMecthy, TiS, MoS,, NbSe.,So@s
`(0003) (6%, VFULOIWBMI, MBARPT
`カルコゲン化物,Liイオン等をドープしたポリアセ
`イクル特性に重点を置いて検討,開発がなされてきてい
`ANMAPFAEM, LitayvSeR-PLRARVUI LK
`47 VEEICHIECal, BRED ENTETHO
`ン,ポリアセチレン等の導電性高分子等がある。
`る。例えば特開平9−293536号公報においては,
`Y, RUPP RF LYSORELLENDS.
`4. MAISHRPEI—-29353 6 S2hlcBV Cd,
`【0010】次に,本発明の作用につき説明する。本発
`正極と負極の可逆容量の比(負極/正極)を1.05〜
`(0010) Ric, ARHOVEAICDERHAT 4, AH
`IEME AMONWASBOL Cath/TEMD) #1. 05~
`明の非水電解質二次電池は,上記容量比(B/A)を
`1.30とすることによって,負極におけるLiイオン
`HAOJEKARESeBthlt, bacAlth (BY A) &
`1. 30&F4T7TElCKDT, Attic BUSLI PAY
`1.3<(B/A)≦2.5という特定の範囲に限定し
`吸蔵能力を十分に確保し,これにより,Liの析出をな
`REFTONCHARL, THICKO, L i OMAK
`
`1. 3< (BAA) S82. 5&9 RREORPC IRE L
`てある。そのため,上記非水電解質二次電池は,後述す
`くしてサイクル劣化を少なくすることが示されている。
`CHS. FOKD, LAKEKad, Bohs
`SC UTHA AVINERDIES FT4TEDRENTWSD
`る実施形態例に詳説するごとく,非常に優れた充電特性
`【0004】
`SB OCRLMc PAT SCL, JEBICBN CBRE
`(0004)
`を得ることができる。それ故,本発明の非水電解質二次
`【解決しようとする課題】ところで,従来の非水電解質
`REGSTEMCES. SHK AWHAOIPKEREK
`(KARL KSA LTA) CTAC, HEROIPKRARES
`電池は,例えばハイブリットエンジンを搭載したハイブ
`二次電池は,上記のごとく,放電容量の向上やサイクル
`maths, BAIT TU vy LLY VER LITT
`T—eeithlt, baLO TE <, MBABORMEPYT ZIV
`
`リット車においても,十分に優れた充放電特性を発揮す
`特性の向上に重点を置いて開発されている。一方,近年
`Vy hHlcbWCh, TANCESET
`PEO MEICAU CHEE NCWS. A, VEE
`ることができる。
`のハイブリットエンジンを搭載したハイブリット車にお
`
`DIATV vy LY YY eR LIT Uy bic
`ZCEMCES,
`【0011】
`いて使用される二次電池は,放電特性だけでなく高い充
`UY CHAS 114 —eesthld, BREE CE < OSE
`(0011)
`【発明の実施の形態】実施形態例
`電特性が要求される。しかしながら,従来の非水電解質
`BHEDBERENS,. LALENS, TEROIEKERA
`(FEA OSHONZHE) SeHTEREBI
`本発明の実施形態例にかかる非水電解質二次電池につ
`二次電池においては,放電容量やサイクル特性において
`ASEHOICREMC DD SIFBRARICO
`TRBUNC BW Cl, MAE UT 7 VERE BUT
`き,図1〜図3を用いて説明する。本例においては,本
`は優れた性能を発揮し得るようになってきたが,充電特
`
`S, M1 ~M3 2A CHATS. AhilllcwBvy ld, A
`VE PEDICHERE:FEE LIBS KG ICO TERM, FRE
`発明品として3種類(試料E1〜E3),比較品として
`性は未だ十分とはいえない。
`seme UC SHOR (EAE 1~E3) , Hime UT
`PEIEARIEP37 EIEW ATES
`1種類(試料C1),合計4種類の非水電解質二次電池
`【0005】本発明は,かかる従来の問題点に鑑みてな
`1 FBS GEC 1) , Bat 4 ROIPKeRah
`(0005) ASSHAld, DDASTSROMICHA Cie
`
`を作製し,その充電特性を測定した。まず,これら非水
`されたもので,従来よりも充電特性に優れた非水電解質
`RVRL, COFFEE Lz, ET, TNSIEK
`ENKbEOTC, TERKO SFBREICENICIPKERA
`電解質二次電池の構成,製造方法等について説明する。
`二次電池を提供しようとするものである。
`SiRAOKMORRK, BGETESIC OU CHAT 4.
`Ree L KSA ETSEOCHS.
`【0012】(試料E1)本発明品としての試料E1
`【0006】
`(0012) GARE 1) AHHAME UCTOMEE 1
`[0006]
`は,図1に示すごとく,正極1と負極2と非水電解質3
`【課題の解決手段】請求項1に記載の発明は,正極と負
`
`
`
`4, BLICmo TERS, TER] CA? LIPKBRA 3
`
`CRE OMAREBS) aI 1 (caceQOFEHAIS, TEMS A
`とからなり,正極1の電極容量Aと負極2の電極容量B
`極と非水電解質とからなる二次電池において,正極の電
`
`EDSEO, Teh 1 OFAm A + Ath 2 OFA B
`fin CIPKARE ED SIRS REMIC BY T, EROEE
`との容量比(B/A)が,1.3<(B/A)≦2.
`極容量Aと負極の電極容量Bとの容量比(B/A)が,
`eORMmlt (BA) A,
`1. 3< (BY/A) S2.
`MAE A LC AMOBMARB LORMEBtL (BA) *,
`
`5,具体的にはB/A=1.40である非水電解質二次
`1.3<(B/A)≦2.5であることを特徴とする非
`5, BRNICIEB/A=1. 40 CH S4IPKERA_K
`1. 3< (BYA) S2. 5CHS4TLERMLETAIE
`電池である。
`水電解質二次電池にある。
`AIWCHS.
`TBR—REMC HS.
`【0013】本例の非水電解質二次電池は,帯状の正極
`【0007】上記容量比(B/A)が1.3以下である
`
`(0013) ABIOJDKSMA—KReHlS, APRON
`(0007) EMASIE (BA) D1. 3LLF CHS
`
`1および負極2と,それらの間に挟まれるセパレータ4
`場合には,十分な充電特性の向上が得られないという問
`1BKCAM2ZL, THSEOMICKENSWNL—#4
`Belcld, POFEERPEO MEAS SB NEWEW SL
`
`とを渦巻状に巻回した構造からなる。その電池構造は,
`題がある。そのため,好ましくは1.4以上がよい。一
`CE-ERICA URARED 5 ES, COMME,
`DHS. TOFD, WELSIE1. 4,EMKUY. —
`上記図1に示した。
`方,上記容量比(B/A)が2.5を超える場合には,
`
`FER 1 ICRU.
`A, EacABlt (BA) D2. SeHMASBIC,
`【0014】正極1は,帯状のアルミニウム箔製の正極
`一定容積の電池容器において考えると,負極割合の増加
`
`
`(0014) mI, HROPVVIA LIGBBOEM
`~ERMOBiUWARICBW CEASE, AGEGorsin
`集電体と,その表面に形成されたリチウムマンガン酸化
`によって相対的に正極の絶対量が減少し,これによる電
`
`REAL, COKRMCBRMENEVFU LV YAUBIE
`CKD CHDTICIEMOPTEDL, TIUCKSH
`50
`物粉末等から成る正極活物質層とから構成されている。
`池容量の低下および不可逆容量が増加する結果実質的に
`
`WAR OURFS KOGAWARAINING SHEREEAINIC 50 PORDRSD 5 MS TEMES CD OHEME NTS.
`
`
`
`30
`
`40
`40
`
`15
`
`15
`
`

`

`(3)
`(3)
`
`特開2000−260472
`BA2 O00-—260472
`4
`4
`
`
`
`10
`
`3
`3
`電した。
`正極1のシートの大きさは,厚さ127μm,幅130
`
`TFL OV—-hOKSE Sl, HE127 ym, 1 30
`ELK.
`
`【0022】次に,各試料に対して,基準容量測定のた
`mm,長さ2680mmである。また,正極密度は2.
`
`(0022) ic, SeteloW LC, MeARNEOR
`mm, EX 2680mmCH4, Ki, MeREIE 2.
`めの充放電を行った。この充放電は,環境温度20℃に
`67g/cm3となるように調整した。一方,負極2
`67eg4%cmlESEKIICHBLIc, A, Fibe2
`DOFIMBETore. TCOFTMElt, BUR2 O°Cle
`おいて,1mA/cm2の定電流で上限電圧4.2Vま
`は,帯状の銅箔製の負極集電体と,その表面に形成され
`
`BWC,
`lmA/cm’*ORECERBE 4. 2VE
`
`lk, HIKORAROAmeAL, CORMICHRE 1
`で充電し,その後,1mA/cm2の定電流で下限電圧
`たカーボン粉末等から成る負極活物質層とから構成され
`CHL, TOR, 1mA/ cm’ OPECFIBRE
`TA RUMARSA 5 KS AEEE CD SCE 11
`
`3.0Vまで放電するサイクルを5回実施した。そし
`ている。負極2のシートの大きさは,厚さ100μm,
`TWH. Ati2 OY-hOKE Sl, HE100pum,
`3. OVE CMETSU4 7% 5 IHL. EL
`
`幅134mm,長さ2750mmである。また,負極密
`て,その5回目(初回充電を合わせると通算6回目)の
`
`
`C, ZOS5SHA MERELADYS CHHA6 EIB) O
`134mm, BX2750mmCHS, Kic, Fibs
`度は1.25g/cm3となるように調整した。
`放電容量を基準容量1Cとした。
`Mlk1. 25¢/cembRSZESICMEBLI
`MEARZIVEAR 1 CLL.
`【0015】これら正極1および負極2を,厚さ25μ
`【0023】次に,各試料の充電密度の測定を行った。
`
`(0015) Chori 1 BKOAM2, BE25 py
`(0023) Ric, SMAOAGBEORME LIT Oe
`m,幅140mm,長さ3000mmのシート状のポリ
`即ち,上記基準容量1Cの80%(SOC80%)にな
`m, 1§140mm, B&3000mmOY— ORY
`BS, EaCREAHS 1 CO80% (SOC80%) ic&
`
`エチレン製セパレータを介して,直径4mm,長さ16
`るまで1mA/cm2の定電流で充電した後,1時間の
`SEC mAcm’ ORBCHELIcz,
`1 RAO
`LFLURWNL—RENTUT, BE4mm, RX16
`0mmの巻芯に巻回する。巻芯は,アルミニウム製のも
`休止をおいてから,閉回路電圧と電流値の測定を開始し
`PRILIVY TH 5, FAIRSEE: &MEOWEZ Baba L
`OmmONCRETS. ANd, VIVSAVLHOS
`
`
`のを用いた。また,非水電解質3としては,LiPF6
`た。閉回路電圧と電流値の測定は,まず,C/3の電流
`
`7c. PAIRS ¢BOWES, ET, C/ 308i
`DeAWe. Ke, JOKAMPASe UTI, LiPF,
`/EC:DEC=1:1(エチレンカーボネートとジエ
`値で10秒放電し,次いで5分間休止した後C/3の電
`fC 1 OFDEEL, UVC SONEMKIL LEC J 3 OB
`SEC: DEC=1:1 (RFU YARRA bh EVE
`流値で10秒間充電した。次いで,5分間休止後,1C
`チルカーボネートとの混合液(容量比にして1:1)
`
`PUA 1 ORTIFER Lic. RUG,=SONBARIETe, 1 C
`FVMA-KA- beEOHRGAM AmttlcUT1 3 1)
`の電流値での10秒間の充放電を5分間の休止を挟んで
`に,LiPF6を1モル/リットルの割合で溶解したも
`
`DRUMCO 1 OPEOFEEEZ 5 NHIOPRIEZPRAL CS
`lc, LiPF @1EV/U yy bVOMEaCae Lic tb
`行った。さらに,その後,5分間の休止を挟んだ充放電
`の)を用いた。
`{foto Kblc, TOR, STOMA TCFEE
`D) AAV Te.
`
`
`を,3C,6C,9C,12Cの電流値によりそれぞれ
`【0016】また,同図に示すごとく,正極1は,正極
`
`
`(0016) Ez,
`IBMlcnge Ck <,
`tebe 1 ld, TERE
`%, 3C, 6C, 9C, 12COHFMEICKOVENEH
`行った。
`リード11,極柱511を介して正極端子51に接続さ
`
`YF 11, MES 1
`1 SPU CIEMIF 5 1 CREE
`fork.
`
`【0024】そして,各10秒間の充放電完了時には閉
`れている。また,同様に負極2は,負極リード21,極
`[0024] €ULT, 81 OMMOFERESE SF HRFIC IEPA
`NTW4S. Ke, Mpc Ai 2 (x, AMV—-E 21, we
`
`回路電圧と電流値を測定した。試料E2の測定結果を図
`柱521負極端子52に接続されている。また,符号5
`
`
`FES 2 1 Lubin 5 2ICHESIVOWS. Ele, FSS
`BSB BMEHE Lic. ARLE 2 OMERAM
`2に示した。同図は,横軸に電流値を,縦軸に電圧をと
`5は電池ケースである。
`
`2lomn Lic. IMS, BECBME, MeMHICHEEZ &
`5 lakh —A CHS.
`
`
`ったものである。また,電流値は,充電後のものを「−
`【0017】また,試料E1では,上記正極1と負極1
`
`(0017) E%, MAE 1 Cld, Lacie 1 & Ati 1
`DKEDOCHS. Ee, AUUElL, HEROLOR [—
`(マイナス)」表示にしてある。プロットした各測定値
`とは,上記のごとく,容量比(B/A)=1.40とな
`eld, batOTe<, Alte (B/A) =1. 40k%
`(RAFA) | RMRlCUTHS. FOy bUARMEA
`
`から回帰直線を求め,電流/電圧直線Dを得た。
`るように調整した。具体的には,正極1の電極容量Aは
`
`
`SKDCMB LT. AR ICld, TEM 1 OFA A Id
`DSHKD, BitBEER D 2187.
`
`
`
`【0025】同図において,充電特性値すなわち電池の
`理論容量により求め,一方,負極2の電極容量BはLi
`
`
`Pama Ic KOK, A, Fill 2 OFA BIEL i
`(0025) IMicBWC, FRIRHESTpb AHO
`充電電力は,A,B,Cの3点を直線で結んだ三角形領
`対極の場合の実測値より求め,その容量比(B/A)が
`FBS, A, B, COS HMFERCHAK=fItA
`WHOSGAOFM KE ORD, CORAL (BA) 2
`域の面積Sにより表すことができる。同図のA点は,上
`1.40となるように,負極2の厚みを調整することに
`
`
`1. 40€GS6EIIC, Al 2 OBA PHBT ST EI
`MOMRMSICKORTTLACES, AMOAI, §
`記電流/電圧直線Dと,電流値が0の縦軸との交点部
`より行った。その結果,試料E1では,正極1の厚みが
`
`KOffok. CORR, BEE 1 Cld, TEM 1 OBAD
`ACS/BEARD &, BMAD O OME e OZAEB
`
`(電位V0)を示す点である。また,B点は,カットオ
`127μmの場合には,負極2の厚みを100μmとす
`CBILV,) Z@RTRCHS Ki, Bald, Ay ba
`127 pmOWMSslclky, AM2ORBA2100 umes
`フ電圧(充電時の上限電圧)と,電流値が0の縦軸との
`ることにより,容量比(B/A)が1.40となった。
`
`SceicK)O, Alt (BZA) W1. 40 &RoK,
`TEE GeEOERE) &, AiieD0 OMEHIC O
`
`交点部を示す点を示す。また,C点は,カットオフ電圧
`【0018】(試料E2)本発明品としての試料E2
`
`ikeaMem, Ee, CMld, Av ha TBE
`(0018) GHEE 2) AHAMe UCTOREE 2
`と,上記電流/電圧直線Dとの交点を示す点である。
`は,容量比(B/A)=1.79となるように,上記負
`
`lt, ABE (BZA) =1. T9LRSZEHEIIC, Eat
`&, baciEEERD CORMMERTHCHS.
`【0026】得られた充電特性を表1に示す。表1にお
`極2の厚みを125μmに変更した。その他は,試料E
`M2OBAC1 25 pmlc Corts, BRE
`(0026) F5nKFSHESER licms. K1Icb
`ける,V0は上記A点の電位,IV傾きは直線Dの傾
`1と同じにした。
`34, V ld bed A ROR,
`1 VE ISIRRD OF
`1 ef CIC UR.
`き,充電密度は,上記面積Sを電池全体の重量により除
`【0019】(試料E3)本発明品としての試料E3
`&, FRE, baci S BMSAORRIC KOR
`(0019) GRE 3) AHA UT ORAE 3
`したもの,充電電流は上記C点の電流値を示す。試料E
`は,容量比(B/A)=2.43となるように,上記負
`lt, ARIE (BA) =2. 434R4SKI Ic, bad
`LKBO, FEBt LAC HOURS. BE
`1,E3,C1についても,試料E2と同様に電流/電
`極2の厚みを161μmに変更した。その他は,試料E
`M2OBAR1 61 pmlcBELe. EOshld, WEE
`1, E3, CllcDWTH, MAE 2 CRCEYE
`圧直線を求め(図示略),これからV0,IV傾き,充
`1と同じにした。
`
`FIBRO (Xiah) , THADSV,,
`I VAX, FE
`
`1 ef CIC UR.
`電密度,充電電流をそれぞれ求めた。その結果について
`【0020】(試料C1)本例では,比較品として,容
`BAS, REEMEZECNCIVROK. CORRICOWT
`(0020) GARIC 1) APCS, Eemamhce lt, &
`も表1に示す。
`量比(B/A)が上記特定の範囲を外れる試料C1を準
`
`mt (BY A) DbatheORAN SARC 1 BYE
`&#1ICHT.
`【0027】次に,容量比(B/A)と上記充電密度
`備した。試料C1は,容量比(B/A)=1.22とな
`fii 7c. WIC Lid, AetlE (BZA) =1. 22k%
`(0027) Ric, Aelt (BA) & bacteree
`(−W/kg)との関係を図3に示す。同図は,横軸に
`るように,上記負極2の厚みを88μmに変更した。そ
`SKbc, batAti2OB4%8 8 umicBLI F
`(-W/kg) COBEN SIONS. Ml, Bettie
`
`
`容量比(B/A)を,縦軸に充電密度をとったものであ
`の他は,試料E1と同じにした。
`Ofthld, AEE 1 Ci CIC LK,
`Asstt (BAA) #, MthCRERER bo KkbEOCH
`る。同図および表1より知られるごとく,充電密度が4
`【0021】次に,本例では,各試料に対して試験を行
`
`(0021) Ric, ABI, BathlomL CHRETT
`4. AMIMBKOR 1 KOMSNSTE<, FEB4
`
`00(−W/kg)を超えるような優れた特性を発揮さ
`い,充電特性を求めた。試験は,非水電解質二次電池で
`00 (-W/kg) BMA SEDERENCES
`WO, FORME RD Ze, alld, JOKERC
`
`せるためには,容量比(B/A)を1.3超え,2.5
`ある各試料に対し,まず初回充放電を行った。この初回
`HSSMARMOML, ECMEFMBETe. TOPE
`tSfewleld, AML (BZA) #1. 3A, 2.
`5
`以下にすることが有効であることが分かる。
`充放電は,環境温度20℃において,0.2mA/cm
`LLMCT 4ST EDR CHST EDBDDS,
`Feels, PABVAEE 2 OCICBVYT, O. 2mA/cem
`
`2の定電流で上限電圧4.2Vまで充電し,その後,
`【0028】
`
`"OREITCLIRGE 4. 2VECHEL, TOK,
`(0028)
`
`0.2mA/cm2の定電流で下限電圧3.0Vまで放
`【表1】
`
`0. 2mA/cm ORMEPIRBE 3. OVE CHK
`(#1)
`
`20
`20
`
`30
`30
`
`40
`40
`
`50
`50
`
`16
`
`16
`
`

`

`eet|Vo Bilin FBBH
`
`(4)
`(4)
`6
`5
`
`SOC80% COFFE
`
`特開2000−260472
`2000-26047 2
`
`
`
`
`
`
`
`
`
`
`(B/A)
`
`(Vv)
`
`(Q)
`
`(W/kg)
`
`(A)
`
`
`
`
`
`
`*【図3】実施形態例における,容量比(B/A)と充電
`【0029】
`
`* (B43) SIRENS, Aele (B/A) &FCR
`[0029]
`密度との関係を示す説明図。
`【発明の効果】上述のごとく,本発明によれば,従来よ
`HEC OBR EANHAL.
`CEHHOMER] LxhOCe <, ARHAIC KAT, FORK
`
`【符号の説明】
`りも充電特性に優れた非水電解質二次電池を提供するこ
`itsOnt)
`O SFTPEC BE icAPKaPRA—RATEET S CT
`1...正極,
`とができる。
`
`1... TEAR,
`tMCES.
`
`
`【図面の簡単な説明】
`
`10...非水電解質二次電池,
`
`10.
`.
`. JREORF,
`Citi 2fiHr eH)
`【図1】実施形態例における,非水電解質二次電池の断
`2...負極,
`(1) SHORECIsITS, JKC RHO 2... Aire,
`
`面図。
`
`3...棒状巻芯,
`
`iE.
`3... Belkéen,
`【図2】実施形態例における,充電特性を示す説明図。*
`4...セパレータ,
`
`(22) SHOPREICIsITS, FOREEANHAR. *§ 4... INL,
`
`
`
`【図1】
`(1)
`
`(TR)
`
`
`(2)
`
`【図2】
`(2)
`
`3.0 4
`
`1
`500
`
`!
`1000
`
`1500
`
`L 1
`-1000
`~500
`
`2.5
`
`0
`
`% it (mA)
`
`17
`
`E
`
`(Vv)
`
`~1800
`
`17
`
`

`

`(5)
`
`【図3】
`
`特開2000−260472
`
`
`
`─────────────────────────────────────────────────────
`フロントページの続き
`
`(72)発明者 小山 陽一
` 愛知県愛知郡長久手町大字長湫字横道41番
` 地の1 株式会社豊田中央研究所内
`(72)発明者 伊藤 勇一
` 愛知県愛知郡長久手町大字長湫字横道41番
` 地の1 株式会社豊田中央研究所内
`
`(72)発明者 磯野 基史
` 愛知県豊田市トヨタ町1番地 トヨタ自動
` 車株式会社内
`(72)発明者 上嶋 啓史
` 愛知県刈谷市昭和町1丁目1番地 株式会
` 社デンソー内
`Fターム(参考) 5H029 AJ02 AK02 AK03 AK05 AK16
` AL02 AL04 AL06 AL07 AL12
` AL16 AM03 AM05 AM07 BJ14
` HJ19
`
`18
`
`

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket