`
`
`
`
`
`Your global source
`for foreign filing services
`
`
`
`Certification of Accuracy
`
`
`I, Frank McGee, a translator fluent in the English and Japanese languages, on behalf of
`
`Source IP, do solemnly and sincerely declare that the following is, to the best of my
`
`knowledge and belief, a true and correct translation of the document(s) listed below in a
`
`form that best reflects the intention and meaning of the original text.
`
` hereby declare that all statements made herein of my own knowledge are true and that
`
` I
`
`all statements made on information and belief are believed to be true; and further that
`
`these statements were made with the knowledge that willful false statements and the like
`
`so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18
`
`of the United States Code.
`
`
`
`
`The document is designated as: #89467_JP9-293536-Sakamoto
`
`
`
`
`
`
`
`___________________
`
`Frank McGee
`
`
`
`
`
`May 17, 2023
`
`244 Fifth Avenue, Suite R269, New York N.Y. 10001 | www.sourceip.com | info@sourceip.com
`
`
`
`APPLE-1005
`
`1
`
`
`
`(19) [Issuing Country] Japan Patent Office (JP)
`(12) [Publication Name] Gazette of Unexamined Patent Applications (A)
`(11) [Publication Number] H09-293536
`(43) [Publication Date] November 11, 1997
`
`
`(51) [Int.Cl.6]
` [Tech. Indicators]
`
`[Internal File Nos.] [FI]
`[ID Codes]
`
`
`
`H01M 10/40 Z
`H01M 10/40
`
`
`
`
`
`4/02 D
`4/02
`
`
`
`
`
`
`4/58
`4/58
`
`
`[Examination Request] Not Yet Received
`[Number of Claims] 2
`[Application Format] Online (OL)
`[Total Number of Pages] 4
`
`(21) [Application Number] H08-105901
`(22) [Filing Date] April 25, 1996
`(71) [Applicant]
`[Identification Number] 000002325
`[Name] Seiko Instruments Inc.
`[Address] 1-8 Nakase, Mihama-ku, Chiba-shi, Chiba-ken
`(72) [Inventor]
`[Name] Hideo SAKAMOTO
`[Address] Seiko Instruments Inc., 1-8 Nakase, Mihama-ku, Chiba-shi, Chiba-ken
`(72) [Inventor]
`[Name] Tsugio SAKAI
`[Address] Seiko Instruments Inc., 1-8 Nakase, Mihama-ku, Chiba-shi, Chiba-ken
`(72) [Inventor]
`[Name] Kensuke TAWARA
`[Address] Seiko Instruments Inc., 1-8 Nakase, Mihama-ku, Chiba-shi, Chiba-ken
`(74) [Agent]
`[Attorney]
`[Name] Keinosuke HAYASHI
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`Continued on Last Page
`
`
`
`
`
`2
`
`
`
`JP H09-293536 A
`
`(54) [Title of the Invention]
`
`Non-Aqueous Electrolyte Secondary Battery
`
`(57) [Abstract]
`
`[Problem]
`
`To improve charge-discharge cycle performance using active materials with equivalent
`reversible capacities on the positive and negative sides.
`
`[Solution]
`
`The reversible capacities of the positive electrode and the negative electrode are made to
`satisfy the range of (cid:20)(cid:17)(cid:19)(cid:24)(cid:3)(cid:31)(cid:3)(cid:81)(cid:72)(cid:74)(cid:68)(cid:87)(cid:76)(cid:89)(cid:72)(cid:3)(cid:72)(cid:79)(cid:72)(cid:70)(cid:87)(cid:85)(cid:82)(cid:71)(cid:72)(cid:18)(cid:83)(cid:82)(cid:86)(cid:76)(cid:87)(cid:76)(cid:89)(cid:72)(cid:3)(cid:72)(cid:79)(cid:72)(cid:70)(cid:87)(cid:85)(cid:82)(cid:71)(cid:72)(cid:3)(cid:148)(cid:3)(cid:20)(cid:17)(cid:22)(cid:19)(cid:15)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:85)(cid:72)(cid:89)(cid:72)(cid:85)(cid:86)(cid:76)(cid:69)(cid:79)(cid:72)(cid:3)
`capacity of the negative electrode is increased. Lithium ions can be occluded adequately in
`the negative electrode during charging and overcharging, deposits of lithium are less likely
`to occur, and the deterioration that occurs during repeated charging and discharging is
`reduced.
`
`3
`
`
`
`JP H09-293536 A
`
`[Claims]
`
`[Claim 1]
`
`A non-aqueous electrolyte secondary battery comprising at least a positive electrode whose
`active material is a substance capable of absorbing and desorbing lithium, a negative
`electrode whose active material is a substance capable of absorbing and desorbing lithium,
`and a lithium ion conductive nonaqueous electrolyte, wherein the balance of reversible
`capacities of the positive electrode and the negative electrode satisfies the range of 1.05 <
`(cid:81)(cid:72)(cid:74)(cid:68)(cid:87)(cid:76)(cid:89)(cid:72)(cid:3)(cid:72)(cid:79)(cid:72)(cid:70)(cid:87)(cid:85)(cid:82)(cid:71)(cid:72)(cid:18)(cid:83)(cid:82)(cid:86)(cid:76)(cid:87)(cid:76)(cid:89)(cid:72)(cid:3)(cid:72)(cid:79)(cid:72)(cid:70)(cid:87)(cid:85)(cid:82)(cid:71)(cid:72)(cid:3)(cid:148)(cid:3)(cid:20)(cid:17)(cid:22)(cid:19).
`
`[Claim 2]
`
`The non-aqueous electrolyte secondary battery according to claim 1, wherein the negative
`electrode active material is a carbonaceous material and/or an oxide of silicon.
`
`[Detailed Description of the Invention]
`
`[0001]
`
`[Field of Industrial Applicability]
`
`The present invention relates to a non-aqueous electrolyte secondary battery comprising at
`least a positive electrode whose active material is a substance capable of absorbing and
`desorbing lithium, a negative electrode whose active material is a substance capable of
`absorbing and desorbing lithium, and a lithium ion conductive nonaqueous electrolyte. The
`present invention relates more specifically to a highly reliable positive and negative
`electrode configuration with excellent charge-discharge cycle performance.
`
`[0002]
`
`[Prior Art]
`
`Non-aqueous electrolyte batteries using lithium as a negative electrode active material have
`advantages such as high voltage, high energy density, low self-discharge, and excellent
`long-term reliability, and are already widely used as primary batteries for memory backup
`and as a power source in cameras. However, due to the remarkable development of portable
`electronic devices and communication devices in recent years, a wide variety of devices
`have appeared that require large current output from batteries used as their power source,
`and there is strong demand for secondary batteries with a high energy density from the
`standpoint of economy and reducing the size and weight of devices. As a result, there is a
`lot of research and development activity on non-aqueous electrolyte secondary batteries
`with high voltage and high energy density, and some of these non-aqueous electrolyte
`secondary batteries have been put to practical use.
`
`[0003]
`
`Three types of positive electrode active materials constitute the positive electrode of non-
`aqueous electrolyte secondary batteries, depending on the form of the charge/discharge
`reaction. In the first type, which includes metal chalcogenides such as TiS2, MoS2, NbSe3,
`etc., and metal oxides such as MnO2, MoO3, V2O5, LixCoO2, LixNiO2, LixMnO4, etc., only
`lithium ions (cations) enter and exit between crystal layers, lattice positions, or interstitial
`spaces through intercalation and deintercalation reactions. In the second type, which
`
`4
`
`
`
`JP H09-293536 A
`
`includes conductive polymers such as polyaniline, polypyrrole, and polyparaphenylene,
`anions primarily enter and exit stably through doping and dedoping reactions. In the third
`type, which includes graphite intercalation compounds and conductive polymers such as
`polyacene, etc., both lithium cations and anions can enter and exit (through intercalation,
`deintercalation, doping, and dedoping reactions, etc.).
`
`[0004]
`
`However, when metallic lithium is used alone as the negative electrode active material
`constituting the negative electrode in this type of secondary battery, the electrode potential
`is the most base, so the output voltage in a battery combined with a positive electrode
`using a positive electrode active material described above is the highest, and the energy
`density is also high. Needle-like deposits of lithium and passive compounds are formed on
`the negative electrode during charging and discharging, resulting in significant deterioration
`and a shorter cycle life due to charging and discharging. There is also a safety issue because
`needle-like deposits of lithium grow with repeated charging and discharging and eventually
`break through the separator, causing internal short-circuiting of the battery. In extreme
`cases, heat is generated that leads to rupture. In order to solve these problems, the
`following negative electrode active materials have been proposed: (1) alloys of lithium with
`other metals such as Al, Zn, Sn, Pb, Bi, Pb, etc.; (2) inorganic compounds such as WO2,
`MnO2, Fe2O3, and TiS2, graphite, and intercalation compounds or insertion compounds in
`which lithium ions are occluded in the crystal structure of carbonaceous materials obtained
`by sintering organic substances; and (3) conductive polymers such as lithium ion-doped
`polyacene and polyacetylene that can occlude and release lithium ions.
`
`[0005]
`
`It has been reported that in the absorption and desorption of lithium ions at the positive
`electrode and the negative electrode of this type of battery, there is an irreversible portion
`in which some of the lithium ions occluded in the positive electrode and the negative
`electrode are not released, and that this is one of the causes of deterioration in cycle
`performance. Therefore, increasing the volumetric and gravimetric energy densities by
`increasing the ratio of the reversible capacity of a positive electrode to the reversible
`capacity of a negative electrode that can occlude and release lithium, that is, by setting the
`ratio of the amount of active material in both electrodes so that the reversible capacity
`balance is almost equal has been proposed (see, for example, JP H06-036798 A).
`
`[0006]
`
`[Problem to Be Solved by the Invention]
`
`In this type of secondary battery, charge-discharge cycle performance has been considered
`important. Although the value of the required charge-discharge cycle performance varies
`depending on the type of device being used, one measure is maintaining 70% of the initial
`capacity after 300 cycles. However, in the method of setting the ratio of the amount of the
`active material in both electrodes so that the reversible capacities on the positive electrode
`side and the negative electrode side are substantially equal, the charge-discharge cycle
`performance is insufficient due to significant deterioration from charging and discharging.
`Also, if the reversible capacities of the positive and negative electrodes are approximately
`equal, deposit of lithium occurs on the negative electrode during overcharge. This increases
`the amount of passive lithium, and leads to a decrease in battery capacity and to
`deterioration in cycle characteristics. The present inventors have discovered that the
`
`5
`
`
`
`reversible capacity balance between the negative electrode and the positive electrode has a
`big impact on these problems.
`
`JP H09-293536 A
`
`[0007]
`
`[Means for Solving the Problem]
`
`In order to solve the problems described above, in the present invention, the reversible
`capacity balance of the positive electrode and the negative electrode is set to the range of
`(cid:20)(cid:17)(cid:19)(cid:24)(cid:3)(cid:31)(cid:3)(cid:81)(cid:72)(cid:74)(cid:68)(cid:87)(cid:76)(cid:89)(cid:72)(cid:3)(cid:72)(cid:79)(cid:72)(cid:70)(cid:87)(cid:85)(cid:82)(cid:71)(cid:72)(cid:18)(cid:83)(cid:82)(cid:86)(cid:76)(cid:87)(cid:76)(cid:89)(cid:72)(cid:3)(cid:72)(cid:79)(cid:72)(cid:70)(cid:87)(cid:85)(cid:82)(cid:71)(cid:72)(cid:3)(cid:148)(cid:3)(cid:20)(cid:17)(cid:22)(cid:19)(cid:15)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:85)(cid:72)(cid:89)(cid:72)(cid:85)(cid:86)(cid:76)(cid:69)(cid:79)(cid:72)(cid:3)(cid:70)(cid:68)(cid:83)(cid:68)(cid:70)(cid:76)ty of the
`negative electrode is set so to be greater than the reversible capacity of the positive
`electrode. Therefore, lithium ions can be sufficiently occluded in the negative electrode
`during charging or overcharging, and deposition of lithium is less likely to occur. As a result,
`a high-performance battery can be obtained that experiences less deterioration after
`repeated charging and discharging, and that is safer.
`
`[0008]
`
`[Embodiment of the Invention]
`
`The present invention increases the negative electrode/positive reversible capacity balance
`(cid:87)(cid:82)(cid:3)(cid:90)(cid:76)(cid:87)(cid:75)(cid:76)(cid:81)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:85)(cid:68)(cid:81)(cid:74)(cid:72)(cid:3)(cid:82)(cid:73)(cid:3)(cid:20)(cid:17)(cid:19)(cid:24)(cid:3)(cid:31)(cid:3)(cid:81)(cid:72)(cid:74)(cid:68)(cid:87)(cid:76)(cid:89)(cid:72)(cid:3)(cid:72)(cid:79)(cid:72)(cid:70)(cid:87)(cid:85)(cid:82)(cid:71)(cid:72)(cid:18)(cid:83)(cid:82)(cid:86)(cid:76)(cid:87)(cid:76)(cid:89)(cid:72)(cid:3)(cid:72)(cid:79)(cid:72)(cid:70)(cid:87)(cid:85)(cid:82)(cid:71)(cid:72)(cid:3)(cid:148)(cid:3)(cid:20)(cid:17)(cid:22)(cid:19)(cid:17)(cid:3)(cid:44)(cid:73)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:85)(cid:72)(cid:89)(cid:72)(cid:85)(cid:86)(cid:76)(cid:69)(cid:79)(cid:72)(cid:3)
`capacity balance is 1.05 or less, the reversible capacity balance may reach 1 or less locally
`in the electrode due to variations in electrode manufacturing, etc. If the reversible capacity
`balance is greater than 1.30, too much of the compound does not participate in charging
`and discharging, and the amount of the compound that can be charged and discharged
`must be substantially reduced when a battery with a constant volume is inserted. Also,
`when the potential of the negative electrode active material changes due to the amount of
`lithium absorbed and an excessive amount of negative electrode compound is present, the
`negative electrode potential does not decrease during charging, leading substantially to
`overdischarge of the positive electrode active material. Thus, as mentioned above, the
`optimum reversible capacity balance is in the range of 1.05 < negative electrode/positive
`(cid:72)(cid:79)(cid:72)(cid:70)(cid:87)(cid:85)(cid:82)(cid:71)(cid:72)(cid:3)(cid:148)(cid:3)(cid:20)(cid:17)(cid:22)(cid:19)(cid:17)(cid:3)(cid:43)(cid:82)(cid:90)(cid:72)(cid:89)(cid:72)(cid:85)(cid:15)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:85)(cid:68)(cid:81)(cid:74)(cid:72)(cid:3)(cid:76)(cid:86)(cid:3)(cid:83)(cid:85)(cid:72)(cid:73)(cid:72)(cid:85)(cid:68)(cid:69)(cid:79)(cid:92)(cid:3)(cid:20)(cid:17)(cid:20)(cid:19)(cid:3)(cid:82)(cid:85)(cid:3)(cid:80)(cid:82)(cid:85)(cid:72)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:20)(cid:17)(cid:21)(cid:19)(cid:3)(cid:82)(cid:85)(cid:3)(cid:79)(cid:72)(cid:86)(cid:86)(cid:17)(cid:3)By setting
`the reversible capacity balance of the negative electrode and the positive electrode to the
`range in the present invention, lithium is not deposited even when overcharged. This means
`a secondary battery can be provided that is safe due to low risk of heat being generated and
`an explosion occurring, and that has good cycle characteristics after repeated charging and
`discharging.
`
`[0009]
`
`Examples of positive electrode active materials that can be used in the present invention
`include metal chalcogenides such as TiS2, MoS2, NbSe3, etc., metal oxides such as MnO2,
`MoO3, V2O5, LixCoO2, LixNiO2, LixMnO4, etc., conductive polymers such as polyaniline,
`polypyrrole, polyparaphenylene and polyacene, lithium ions from graphite intercalation
`compounds, and other substances that can occlude and release anions.
`
`[0010]
`
`Because secondary batteries with high energy density can be obtained, a preferred example
`is the combination of a (noble metal) active material having an electrode potential of 2 V or
`higher with respect to metallic lithium such as metal chalcogenides and metal oxides, more
`preferably a (noble metal) active material having an electrode potential of 3 V to 4 V or
`
`6
`
`
`
`JP H09-293536 A
`
`higher such as V2O5, MnO2, LixCoO2, LixNiO2, LixMn2O4, etc., and a negative electrode using a
`(base metal) active material having a low electrode potential of 1 V or less with respect to
`metallic lithium to be described later.
`
`[0011]
`
`Examples of positive electrode active materials that can be used include lithium ions from
`metallic lithium, carbonaceous materials, LixSi, metal oxides, nitrides, silicides, carbides,
`and silicon oxide represented by LixSi1-yMyOz (cid:11)(cid:90)(cid:75)(cid:72)(cid:85)(cid:72)(cid:3)(cid:19)(cid:3)(cid:148)(cid:3)(cid:91)(cid:15)(cid:3)(cid:19)(cid:3)(cid:148)(cid:3)(cid:92)(cid:3)(cid:31)(cid:3)(cid:20)(cid:15)(cid:3)(cid:19)(cid:3)(cid:31)(cid:3)(cid:93)(cid:3)(cid:148)(cid:3)(cid:22)(cid:15)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:48)(cid:3)(cid:76)(cid:86)(cid:3)(cid:68)(cid:3)
`metal excluding alkali metals or a metal group excluding silicon), and substances that can
`occlude and release anions.
`
`[0012]
`
`A silicon oxide represented by LixSi1-yMyOz (cid:11)(cid:90)(cid:75)(cid:72)(cid:85)(cid:72)(cid:3)(cid:19)(cid:3)(cid:148)(cid:3)(cid:91)(cid:15)(cid:3)(cid:19)(cid:3)(cid:148)(cid:3)(cid:92)(cid:3)(cid:31)(cid:3)(cid:20)(cid:15)(cid:3)(cid:19)(cid:3)(cid:31)(cid:3)(cid:93)(cid:3)(cid:148)(cid:3)(cid:22)(cid:15)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:48)(cid:3)(cid:76)(cid:86)(cid:3)(cid:68)(cid:3)
`metal excluding alkali metals or a metal group excluding silicon) is preferred because of a
`high charge/discharge capacity in the range where the electrode potential is 1 V or less
`relative to metallic lithium, and because a secondary battery with high voltage and high
`energy density can be obtained by combining this with a positive electrode using a positive
`electrode active material listed above. When an oxide such as silicon oxide is used as the
`negative electrode, the irreversible amount of lithium ions that is not discharged among the
`lithium ions that are occluded in the first charge is usually relatively high, so setting the
`reversible capacity balance in the range of (cid:20)(cid:17)(cid:19)(cid:24)(cid:3)(cid:31)(cid:3)(cid:81)(cid:72)(cid:74)(cid:68)(cid:87)(cid:76)(cid:89)(cid:72)(cid:3)(cid:72)(cid:79)(cid:72)(cid:70)(cid:87)(cid:85)(cid:82)(cid:71)(cid:72)(cid:18)(cid:83)(cid:82)(cid:86)(cid:76)(cid:87)(cid:76)(cid:89)(cid:72)(cid:3)(cid:72)(cid:79)(cid:72)(cid:70)(cid:87)(cid:85)(cid:82)(cid:71)(cid:72)(cid:3)(cid:148)(cid:3)
`1.30 is especially effective at improving cycle characteristics. When a negative electrode
`using a silicon oxide or carbonaceous material listed above as a negative electrode active
`material is combined with a positive electrode using a transition metal oxide containing
`lithium such as LixCoO2, LixNiO2, LixMn2O4 or LiaMbLcOd ((cid:90)(cid:75)(cid:72)(cid:85)(cid:72)(cid:3)(cid:19)(cid:3)(cid:31)(cid:3)(cid:68)(cid:3)(cid:148)(cid:3)(cid:20)(cid:17)(cid:20)(cid:24)(cid:15)(cid:3)(cid:19)(cid:17)(cid:27)(cid:3)(cid:148)(cid:3)(cid:69)(cid:3)(cid:14)(cid:3)(cid:70)(cid:3)(cid:148)(cid:3)
`(cid:20)(cid:17)(cid:22)(cid:15)(cid:3)(cid:19)(cid:3)(cid:148)(cid:3)(cid:70)(cid:15)(cid:3)(cid:20)(cid:17)(cid:24)(cid:3)(cid:148)(cid:3)(cid:71)(cid:3)(cid:148)(cid:3)(cid:21)(cid:17)(cid:24)(cid:15)(cid:3)(cid:48)(cid:3)(cid:76)(cid:86)(cid:3)(cid:82)(cid:81)(cid:72)(cid:3)(cid:82)(cid:85)(cid:3)(cid:80)(cid:82)(cid:85)(cid:72)(cid:3)(cid:87)(cid:85)(cid:68)(cid:81)(cid:86)(cid:76)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3)(cid:80)(cid:72)(cid:87)(cid:68)(cid:79)(cid:86)(cid:3)(cid:86)(cid:88)(cid:70)(cid:75)(cid:3)(cid:68)(cid:86)(cid:3)(cid:38)(cid:82)(cid:15)(cid:3)(cid:49)(cid:76)(cid:15)(cid:3)(cid:48)(cid:81)(cid:15)(cid:3)(cid:41)(cid:72)(cid:15)(cid:3)(cid:55)(cid:76)(cid:15)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)
`L is one or more metals selected from B, Al, In, Si, Ge, Sn, Pb, Mg, Zn, Cu and P) as a
`positive electrode active material, the lithium that is repeatedly occluded in and released
`from the negative electrode and the positive electrode in the charge-discharge cycle is
`almost entirely the lithium contained in the positive electrode active material at the time the
`battery was manufactured, and a reversible capacity balance of 1.05 < negative
`(cid:72)(cid:79)(cid:72)(cid:70)(cid:87)(cid:85)(cid:82)(cid:71)(cid:72)(cid:18)(cid:83)(cid:82)(cid:86)(cid:76)(cid:87)(cid:76)(cid:89)(cid:72)(cid:3)(cid:72)(cid:79)(cid:72)(cid:70)(cid:87)(cid:85)(cid:82)(cid:71)(cid:72)(cid:3)(cid:148)(cid:3)(cid:20)(cid:17)(cid:22)(cid:19)(cid:3)(cid:80)(cid:72)(cid:68)(cid:81)(cid:86)(cid:3)(cid:79)(cid:76)(cid:87)(cid:75)(cid:76)(cid:88)(cid:80)(cid:3)(cid:71)(cid:72)(cid:83)(cid:82)(cid:86)(cid:76)(cid:87)(cid:76)(cid:82)(cid:81)(cid:3)(cid:82)(cid:81)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:83)(cid:82)(cid:86)(cid:76)(cid:87)(cid:76)ve electrode does
`not occur either during overcharge or overdischarge, and a battery with especially low cycle
`deterioration can be obtained. Therefore, this combination is especially preferred.
`
`[0013]
`
`Examples of electrolytes that can be used include organic non-aqueous electrolytes obtained
`by dissolving a lithium ion dissociative salt such as LiClO4, LiPF6, LiBF4, LiCF3SO3,
`LiC(SO2CF3)3, LiN(SO2CF3)2, etc. serving as a supporting electrolyte in a non-aqueous
`organic solvent such as (cid:452)-butyrolactone, propylene carbonate, ethylene carbonate (EC),
`butylene carbonate, dimethyl carbonate, diethyl carbonate, methylformate, 1,2-
`dimethoxyethane, tetrahydrofuran, dioxolane, or dimethylformamide, or a mixture thereof.
`Other examples include polymer solid electrolytes in which one of these lithium salts is
`dissolved in a polymer such as polyethylene oxide or a polyphosphazene crosslinked
`material, or lithium ion conductive non-aqueous electrolytes including inorganic solid
`electrolytes such as Li3N and LiN.
`
`[0014]
`
`7
`
`
`
`JP H09-293536 A
`
`When using a silicon oxide represented by LixSi1-yMyOz ((cid:90)(cid:75)(cid:72)(cid:85)(cid:72)(cid:3)(cid:19)(cid:3)(cid:148)(cid:3)(cid:91)(cid:15)(cid:3)(cid:19)(cid:3)(cid:148)(cid:3)(cid:92)(cid:3)(cid:31)(cid:3)(cid:20)(cid:15)(cid:3)(cid:19)(cid:3)(cid:31)(cid:3)(cid:93)(cid:3)(cid:148)(cid:3)(cid:22)(cid:15)(cid:3)
`and M is a metal excluding alkali metals or a metal group excluding silicon) described above
`as the negative electrode active material, use of a mixed solvent of an R1R2 type alkyl
`carbonate such as dimethyl carbonate, diethyl carbonate, or ethyl methyl carbonate and EC
`is preferred. The mixing ratio of EC and R1R2 type alkyl carbonate by volume is preferably in
`the range of about 3:1 to about 1:3.
`
`[0015]
`
`[Examples]
`
`The following is a detailed description of examples. A composite oxide of lithium and cobalt
`represented by LiCoO2 serving as the positive electrode active material and graphite serving
`as a conductive agent were pulverized and mixed together in a mortar, and this was mixed
`and dispersed in a solution with a dissolved binder to prepare a positive electrode mixture
`slurry. This positive electrode mixture slurry was applied to both surfaces of an aluminum
`foil current collector, dried, and rolled using a roll press to prepare a positive electrode
`plate. A negative electrode was prepared in the same manner. A commercially available
`silicon monoxide (SiO) serving as the negative electrode active material and graphite
`serving as a conductive agent were pulverized and mixed together in a mortar, and this was
`mixed and dispersed in a binder solution to prepare a negative electrode mixture slurry. This
`negative electrode mixture slurry was applied to both surfaces of a copper foil current
`collector, dried, and rolled using a roll press to prepare a negative electrode plate. A
`prismatic battery C having a positive electrode capacity of 751.2 mAh, a negative electrode
`capacity of 821.6 mAh, and a reversible capacity balance (negative electrode/positive
`electrode) of 1.09 was produced using the positive electrode plate and the negative
`electrode plate described above. Battery A with a reversible capacity balance of 0.94,
`Battery B with a reversible capacity balance of 1.01, Battery D with a reversible capacity
`balance of 1.18, Battery E with a reversible capacity balance of 1.30, Battery F with a
`reversible capacity balance of 1.41, and Prismatic Battery G with a reversible capacity
`balance of 1.50 were prepared in the same manner.
`
`[0016]
`
`The batteries prepared in this manner were subjected to a charge-discharge cycle with a
`constant current/constant voltage of 400 mA, a charge upper limit voltage of 4.2 V, a
`charging time of 2.5 hours, a constant current of 400 mA, and a discharge final voltage of
`2.7 V. Fig. 1 shows the cycle characteristics up to 300 cycles for Battery A with a reversible
`capacity balance of 0.94 and Battery D with a reversible capacity of 1.18. It is clear from
`Fig. 1 that a difference in capacity retention was observed depending on the reversible
`capacity balance of the negative electrode/positive electrode. Battery A with a reversible
`capacity balance of 0.94 fell below 70% after 300 cycles. Battery D with a reversible
`capacity balance of 1.18 remained above 70%. Battery B with a reversible capacity balance
`of 1.01 showed significant cycle deterioration similar to Battery A. Battery F and Battery G,
`which have a reversible capacity balance greater than 1.3, experience less cycle
`deterioration, but their capacities are lower after the initial cycle.
`
`After disassembling each battery in a charged state once 300 cycles had been completed,
`Battery A and Battery B with reversible capacity balances of 0.94 and 1.01 were found to
`have small deposits of lithium between the separator and the negative electrode plate, and
`Battery C, Battery D, Battery E, Battery F, and Battery G with a capacity balance greater
`than 1.05 were found not to have deposits of lithium. In these examples, the negative
`electrode and positive electrode combinations were a composite oxide of lithium and
`
`8
`
`
`
`cobalt/silicon oxide. However, any material can be used for the negative electrode and the
`positive electrode as long as it is capable of occluding and releasing lithium as described
`above.
`
`JP H09-293536 A
`
`[0017]
`
`[Effects of the Invention]
`
`The present invention embodied in the manner described above has the following effects:
`A. Excellent cycle performance
`B. Resistance to overcharging; and
`C. A higher level of safety because there is no deposit of lithium.
`
`[Brief Description of the Drawings]
`
`[Fig. 1]
`
`Fig. 1 is a diagram showing the cycle characteristics of a battery in the present invention.
`
`9
`
`
`
`JP HO9-293536A
`JP H09-293536 A
`
`[Fig. 1]
`[Fig. 1]
`
`$s
`5
`5
`>
`s
`S
`
`wv
`oe
`
`110
`
`100
`90
`80
`70
`60
`
`50
`
`1
`
`40
`
`60
`
`120
`
`180
`
`240
`
`300
`
`Cycles (Number)
`
`10
`
`10
`
`
`
`JP H09-293536 A
`
`Continued From Front Page
`
`(72) [Inventor]
`[Name] Fumiharu IWASAKI
`[Address] Seiko Instruments Inc., 1-8 Nakase, Mihama-ku, Chiba-shi, Chiba-ken
`(72) [Inventor]
`[Name] Shinichi TAKASUGI
`[Address] Seiko Instruments Inc., 1-8 Nakase, Mihama-ku, Chiba-shi, Chiba-ken
`(72) [Inventor]
`[Name] Tsuneaki TAMACHI
`[Address] Seiko Instruments Inc., 1-8 Nakase, Mihama-ku, Chiba-shi, Chiba-ken
`
`11
`
`
`
`(19)日本国特許庁(JP)
`
`(12) 公 開 特 許 公 報(A) (11)特許出願公開番号
`特開平9−293536
`(43)公開日 平成9年(1997)11月11日
`
`識別記号 庁内整理番号
`
`(51)Int.Cl6
` H 0 1 M 10/40
` 4/02
` 4/58
`
`FI
` H 0 1 M 10/40
` 4/02
` 4/58
`
`技術表示箇所
`
`Z
`D
`
`審査請求 未請求 請求項の数 2OL(全 4 数)
`(71)出願人 000002325
`セイコーインスツルメンツ株式会社
`千葉県千葉市美浜区中瀬1丁目8番地
`(72)発明者 坂本 秀夫
`千葉県千葉市美浜区中瀬1丁目8番地 セイ
`コー電子工業株式会社内
`(72)発明者 酒井 次夫
`千葉県千葉市美浜区中瀬1丁目8番地 セイ
`コー電子工業株式会社内
`(72)発明者 田原 謙介
`千葉県千葉市美浜区中瀬1丁目8番地 セイ
`コー電子工業株式会社内
`(74)代理人 弁理士 林 敬之助
`
`最終頁に続く
`
`(21)出願番号
`
`特願平8−105901
`
`(22)出願日
`
`平成8年(1996)4月25日
`
`(54)【発明の名称】 非水電解質二次電池
`
`(57)【要約】
`【課題】 正極側と負極側の可逆容量が等しい活物質量
`で、充放電サイクル性能を高める。
`【解決手段】 正極と負極の可逆容量を1。05<負極
`/正極≦1.30とし、負極の可逆容量を高める。充電
`時と過充電時に負極にリチウムイオンを、十分に収蔵可
`能となり、リチウムの析出が生じにくくなり、充放電の
`繰り返しによる劣化が減少する。
`
`12
`
`
`
`特開平9−293536
`eRPEO—293536
`
`
`
`
`
`
`
`
`
`1
`1
`
`【特許請求の範囲】
`
`Chataek ORF]
`【請求項1】 リチウムを吸蔵放出可能な物質を活物質
`
`RIA 1) VFO LeUBOHEMEES
`とする正極と、リチウムを吸蔵放出可能な物質を活物質
`LCATAME. VFM LAMBOMRESWEAES
`とする負極と、リチウムイオン電導性の非水電解質とか
`LT SEME, UF ULA AYESOIPKARE LD
`ら少なくとも成る非水電解質二次電池において正極と負
`
`BDES ESMSIPKEIRAOKealc UY CIEL A
`極の可逆容量の容量バランスを1.05<負極/正極≦
`
`MOAWAROBRINDY ARI. 05 <AeR/TEMS
`1.30の範囲に規制した事を特徴とする非水電解質二
`
`1. 3 ODMREAI CHLICHERAL ST SIDKERA
`次電池。
`RAH
`
`【請求項2】 前記負極活物質が炭素質材料および、ま
`COR 2)
`aCAMTEMEARREMEBEO FE
`たはケイ素の酸化物である事を特徴とする請求項1に記
`eld TAORE CH SOBAL ST SRA 1 cad
`載の非水電解質二次電池。
`
`MOFKEAE—Kaa
`
`【発明の詳細な説明】
`(SHA OFAN aA)
`【0001】
`(0001)
`【発明の属する技術分野】本発明は、リチウムを吸蔵放
`CHEHAONE SS Bean) AAAS, VFO Lea
`出可能な物質を活物質とする正極と、リチウムを吸蔵放
`
`
`HARESMWe T AME, UFO LAMB
`出可能な物質を活物質とする負極と、リチウムイオン電
`HARESEME eT SAME, UF ULAAYE
`導性の非水電解質とから少なくとも成る非水電解質二次
`SEOIPKBMA LD oDE< LEMSIPKBMA_KR
`電池に関するものであり、特に充放電サイクル性能に優
`BICSZEOCHO. RICHEY4 77 VERN C HE
`れる信頼性の高い正負極の電極構成に関するものであ
`
`1S (SHORUEAMOBEIT BT 5 EOCH
`る。
`Bo
`【0002】
`(0002)
`【従来の技術】負極活物質としてリチウムを用いる非水
`(HERORT) AMEE e UTUFULEAW SIEK
`電解質電池は、高電圧、高エネルギー密度で、かつ自己
`
`
`SRSBild, BE. ALASREC. DORAG
`放電が小さく長期信頼性に優れる等の利点により、一次
`WEAVE < REASHMEC ENS SORTED,
`電池としてはメモリーバックアップ用、カメラ等の電源
`Bie UTR EV NY IV VY TH, AADSOBMR
`として既に広く用いられている。しかしながら近年、携
`LUTHITKS AMWSNTWSH, LDULGANSIEE, HE
`帯型の電子機器、通信機器の著しい発展に伴い、電源と
`
`HURSTTURBOS LU ABICA., Bie
`しての電池に対し大電流出力を要求する機器が多種多様
`UCT ORMLAB2BRT SIRBEDSSR
`に出現し、経済性と機器の小型軽量化の観点から、高エ
`VCHLL. REYES(LOBLAD 5. Ta
`ネルギー密度の二次電池が強く要望されている。このた
`RIVEBEDREDGR < BBESNTWS. CO
`め、高電圧、高エネルギー密度を有する非水電解質二次
`
`O, Mee, OLASBEAT SIPKE_KR
`電池の研究開発が活発に行われ、一部実用化もされてい
`BWOMARRAYEHICITDN,RAILS ENT
`る。
`Bo
`【0003】従来、この種の二次電池の正極を構成する
`
`(0003) tHE. TOMOLRKREMOEMS S
`正極活物質としては充放電反応の形態により以下の3種
`
`TEMGEEE UL CAFESORRICK ODLFO 3 i
`
`のものが見いだされている。第1のタイプは、Ti
`DEORDAWIEENTWS. HIORATIK Ti
`S2,MoS2,NbSe3等の金属カルコゲン化物や、
`S,, MoS,, NbSeOme AVIA AGI?,
`MnO2,MoO3,V2O5,LixCoO2,LixNiO
`MnO,, MoO.,, V.0,, Li,Co0O,, Li,NiO
`2,LixMnO4等の金属酸化物等々のように、結晶の
`» Li MnO, SORRMICMISEROEKS Ic, KtinD
`
`層間や格子位置または格子間隙間にリチウムイオン(カ
`RTPPASFe & 7TRC UFOLa
`チオン)のみがインターカレーション、デインターカレ
`FAY) DARAYR-AL—Y ay FAVR-AV
`ーション反応等により出入りするタイプ。第2のタイプ
`Va VRIOSICKOWMALOT ERTS. B2DR1T
`は、ポリアニリン、ポリピロール、ポリパラフェニレン
`ta. BUVIZVY, HVCUY KRUANGIrAVyY
`等の導電性高分子の様な、主としてアニオンのみが安定
`SOMEALORS, EL UCP HAY OBDERE
`にドープ、脱ドープ反応より出入りするタイプ。第3の
`WORD. HER PRIDE OMA ODS SZEAT, B30
`タイプは、グラファイト層間化合物やポリアセン等の導
`BATFIT? A PISRMERPRY 7 YSOH
`電性高分子等々の様な、リチウムカチオンとアニオンが
`BRATS ORG, VF ULAFAVEV IAM
`共に出入り可能なタイプ(インターカレーション、デイ
`FLICHAD BRERA AD AY R-ALH Yay, FA
`ンターカレーション又はドープ、脱ドープ反応等)であ
`VR-AL- YayMlER-D. HER PRS) CH
`る。
`Bo
`
`(2)
`(2)
`
`10
`10
`
`20
`20
`
`30
`30
`
`40
`40
`
`50
`50
`
`13
`
`2
`2
`【0004】一方、この種の二次電池の負極を構成する
`(0004) —AL COBOLRKEWOAMAHKS S
`負極活物質としては、金属リチウムを単独で用いた場合
`AWGWAe UC, BEUFULAHMICHUOKEA
`が電極電位が最も卑であるため、上記の様な正極活物質
`
`DEMMED CHS TD, LEOIERIE
`を用いた正極と組み合わせた電池としての出力電圧が最
`x}
`
`
`ZeFAV 7cERR OMAGDt eee U TCOAIA
`
`も高く、エネルギー密度も高く好ましいが、充放電に伴
`BES. DAVEESBS PE LOD, FeRGEICE
`
`い負極上にリチウムの針状析出物や不働態化合物が生成
`Wethic UF LOSEATHYMaEAPAVEne
`し、充放電による劣化が大きく、サイクル寿命が短い問
`Ly, FERCEIT KOAFIEDRKE <a VAD
`題があった。また、リチウムの針状析出物は充放電の繰
`MMHBoIe, Ke. VF U LOSI FEEOR
`り返しにより成長し、やがてセパレーターを突き破り、
`DIRLICKO MEL, PANTWNL— BREED,
`
`電池内部ショートを起こして発熱等最悪の場合には破裂
`SAMY a — bh eT LCAOIGAlc dK
`に至らしめるという安全面での課題もある。この問題を
`C25 LOS EWIARSM COMMLHS,. TOME
`解決するため、負極活物質として(1)リチウムとA
`FERS Sid, SEWER eEUT (1) UF DLEA
`l、Zn、Sn、Pb、Bi、Pb等の他金属との合
`
`1, Zn, Sn, Pb, Bi, Pbhoheegcroes
`
`
`
`金、(2)WO2、MnO2、Fe2O3、TiS2等の無機化
`&.
`(2) WO,,Mn0,, Fe.0, Ti S, SORE
`合物やグラファイト、有機物を焼成して得られる炭素質
`BMRTIFIT A bh. AREER LCb NSE
`材料等々の結晶構造中にリチウムイオンを吸蔵させた層
`PRE A OFaa FALARS 7B
`間化合物あるいは挿入化合物、(3)リチウムイオンを
`BUKGWH SVREA603) UF ULAAVE
`ドープしたポリアセンやポリアセチレン等の導電性高分
`R-PURRUP EY PHU PSP LF LYSORE?
`子等々のリチウムイオンを吸蔵放出可能な物質を用いる
`FEROVUFILA AYUGBAERAWS
`事が提案されている。
`BDPEREN TWH.
`【0005】この種の電池の正極及び負極でのリチウム
`
`(0005) COROBHOEMROAMCEOY FY ly
`イオンの吸蔵放出では、正極・負極ともに吸蔵されたリ
`
`A AY OMBCid, TEM > EL & CBIR eV
`チウムイオンの一部が放出されない不可逆分があること
`FUILAAY ORDBH S NEUBRAANHST LE
`が報告されており、このことがサイクル性能を低下させ
`
`DHEENTHO, TOT EATS ZIVPERERIRBE
`る一つの原因になっている。リチウムを吸蔵・放出可能
`
`S-OOMAMch5o THOS. UF Le Wo + HHHASRE
`
`な正極側の可逆容量と負極側の可逆容量の比、つまり可
`TRIERO MAS ¢ ARADO TWA OLK. DEO Ay
`逆容量バランスがほぼ等しくなるように両極の活物質量
`WAIN Y AMSG US ESE IICHMROWWAS
`の比率を設定する事で容積エネルギー密度及び重量エネ
`DUZBREST SFCARL ARIEHEROES A
`ルギー密度を大きくすることが提案されている(例え
`VEERKE C FST EMBRENTWOS (IA
`ば、特開平6−36798号公報参照)。
`ia. FRBPE 6 — 367 9 8 SA9RBRR) .
`【0006】
`(0006)
`【発明が解決しようとする課題】従来、此の種の二次電
`CHEHADWHRL KG ES SRE) TOR. UOMOKE
`池では充放電サイク性能が重要視されている。使用され
`HECSF1 7 VEREDSEELS CWS. HAE
`る機器により要求される充放電サイクル性能の値が異な
`Bkhale KO BREN SMITA 7 VPEREO(EDR
`るが一つの目安として300サイクルで初期容量の70
`SX—-VDORBBRELT3Z OOVT IVCHHAEO 7 O
`%を維持することがあげられる。しかし、上記の正極側
`OEHEET ST EDBITSINS],. UML, ERCOTERRE
`と負極側の可逆容量とがほぼ等しくなるように両極の活
`& AIORMA&DEIEG US SKF WC MHMIO TE
`物質量の比率を設定する方法では充放電に伴う劣化が大
`
`YEOLBRET BATIKCLFCI ED HERA
`きく充放電サイクル性能は不充分であった。さらに、正
`
`SS FUMED A 7 WEBEL ATEDCHIE. XK 5lC, TE
`極および負極の可逆容量バランスがほぼ等しい場合、過
`hts KOGMOAWARDNS VY ADEE LUBA,
`充電時に負極上にリチウムが析出する。これにより不働
`FRSC AmEICUFUO LAH S. THICKO MH
`態リチウムが増加し、電池容量の低下、サイクル特性劣
`HUF ULAMAML. GWAR OIKR. t-7 7 VERES
`化へとつながる。この様な課題に対して本発明者等は負
`{ENE DIEMNS. TORTSEREIOM LCASSS A
`極と正極の可逆容量バランスが与える影響が大きいこと
`
`Rix OTEROBHARIND VY ADGA SREBMAEWTE
`
`を見出した。
`%eSAH Uo
`【0007】
`(0007)
`【課題を解決するための手段】上記問題点を解決するた
`CEREVEMARST ST DOFE) aceWARS 4 7
`めに、本発明は、正極と負極の可逆容量のバランスを
`
`Dic, AKHAS, TEM CAMOMWAROINDY Ae
`1.05<負極/正極≦1.30にして、正極の可逆容
`
`1. 05<AMi/TEMES 1. 3 0IC U
Accessing this document will incur an additional charge of $.
After purchase, you can access this document again without charge.
Accept $ ChargeStill Working On It
This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.
Give it another minute or two to complete, and then try the refresh button.
A few More Minutes ... Still Working
It can take up to 5 minutes for us to download a document if the court servers are running slowly.
Thank you for your continued patience.
This document could not be displayed.
We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.
Your account does not support viewing this document.
You need a Paid Account to view this document. Click here to change your account type.
Your account does not support viewing this document.
Set your membership
status to view this document.
With a Docket Alarm membership, you'll
get a whole lot more, including:
- Up-to-date information for this case.
- Email alerts whenever there is an update.
- Full text search for other cases.
- Get email alerts whenever a new case matches your search.
One Moment Please
The filing “” is large (MB) and is being downloaded.
Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.
Your document is on its way!
If you do not receive the document in five minutes, contact support at support@docketalarm.com.
Sealed Document
We are unable to display this document, it may be under a court ordered seal.
If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.
Access Government Site