throbber
DIGITAL SIGNAL PROCESSING
`
`Sony Ex. 1003
`
`Microphone
`
`Spebrroe
`
`Sony v. Jawbone
`U.S. Patent No. 11,122,357
`
`- 1 -
`
`Sony v. Jawbone
`
`U.S. Patent No. 11,122,357
`
`Sony Ex. 1003
`
`

`

`' j
`
`I
`
`I
`
`I
`I 'I
`I
`
`- 2 -
`
`

`

`Springer
`Berlin
`Heidelberg
`New York
`Barcelona
`Hongkong
`London
`Milan
`Paris
`Singapore
`Tokyo
`
`r
`
`ONLINE LIBRARY
`
`http://www.springer.de/engine/
`
`- 3 -
`
`

`

`Series Editors
`Prof. Dr.-Ing. ARILD L ACROIX
`Johann-Wolfgang-Goethe-Universitat
`lnstitut fUr angewandte Physik
`Robert-Mayer-Str. 2-4
`D-60325 Frankfurt
`
`Prof. Dr.-Ing.
`ANASTASIOS VENETSANOPOULOS
`University of Toronto
`Dept of Electrical and Computer Engineering
`J 0 King's College Road
`MSS 3G4 Toronto, Ontario
`Canada
`
`Editors
`Prof. MICHAEL BRANDSTEIN
`Harvard University,
`Div. of Eng. and Applied Scciences
`33 Oxford Street
`MA 02138 Cambridge
`USA
`e-mail: msb@hrl.harvard.edu
`Dr. DARREN WARD
`Imperial College, Dept. of Electrical Engineering
`Exhibition Road
`SW7 2AZ London
`GB
`e-mail: d.ward@ic.ac.uk
`
`ISBN 3-540-41953-5 Springer-Verlag Berlin Heidelberg New York
`
`Cip data applied for
`
`This work is subject to coprright. All rights are reserved, whether the whole or part of the material is
`concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
`broadcasting, reproduction on microfllm or in other ways, and storage in data banks. Duplication of
`this publication or parts thereof is pennitted only under the provisions of the German Copyright Law
`of September 9, 1965, in its current version, and permission for use must always be obtained from
`Springer-Verlag. Violations are Liable for prosecution act under German Copyright Law.
`
`Springer-Verlag is a part of Springer Scicnce+Business Media
`http://www.springer.de
`@ Springer-Verlag Berlin Heidelberg New York 2001
`Printed in Germany
`The use of general descriptive names, registered names, trademarks, etc. in this publication does not
`imply, even in the absence of a specific statement, ihat such names are exempt from the relevant
`protective laws and regulations and therefore free for general use.
`
`Typesetting: Camera-ready copy by authors
`Cover-Design: de'blik, Berlin
`62/3111 54 3 2 I
`SPIN: ll559276
`
`Printed on acid-free paper
`
`- 4 -
`
`

`

`Preface
`
`The study and implementation of microphone arrays originated over 20 years
`ago. Thanks to the research and experimental developments pursued to the
`present day, the field has matured to the point that array-based technology
`now has immediate applicability to a number of current systems and a vast
`potential for the improvement of existing products and the creation of future
`devices.
`In putting this book together, our goal was to provide, for the first time,
`a single complete reference on microphone arrays. We invited the top re-
`searchers in the field to contribute articles addressing their specific topic(s)
`of study. The reception we received from our colleagues was quite enthusi-
`astic and very encouraging. There was the general consensus that a work
`of this kind was well overdue. The results provided in this collection cover
`the current state of the art in microphone array research, development, and
`technological application.
`This text is organized into four sections which roughly follow the major
`areas of microphone array research today. Parts I and II are primarily the-
`oretical in nature and emphasize the use of microphone arrays for speech
`enhancement and source localization, respectively. Part ill presents a nurn-
`ber of specific applications of array-based technology. Part IV addresses some
`open questions and explores the future of the field.
`Part I concerns the problem of enhancing the speech signal acquired by
`an array of microphones. For a variety of applications, including human-
`computer interaction and hands-free telephony, the goal is to allow users to
`roam unfettered in diverse environments while s~ill providing a high quality
`speech signal and robustness against background noise, interfering sources,
`and reverberation effects. The use of microphone arrays gives one the oppor-
`tunity to exploit the fact that the source of the desired speech signal and the
`noise sources are physically separated in space. Conventional array process-
`ing techniques, typically developed for applications such as radar and sonar,
`were initia!Jy applied to the hands-free speech acquisition problem. However,
`the environment in which microphone arrays is used is significantly different
`from thai of conventional array applications. Firstly, the desired speech signal
`has an extremely wide bll-ndwidth relative to its center frequency, meaning
`that conventional narrowband techniques are not suitable. Secondly, there
`
`I
`I
`I
`j
`I
`I
`I I
`I
`I
`I
`I
`
`.•
`
`I
`I I
`
`I
`I
`I
`
`I l
`I
`
`- 5 -
`
`

`

`VI
`
`Preface
`
`is significant multipath interference caused by room reverberation .. Finally,
`the speech source and noise signals may located close to the array, meaning
`that the conventional far-field assumption is typically not valid. These dif-
`ferences (amongst others) have meant that new array techniques have had
`to be formulated for microphone array applications. Chapter 1 describes the
`design of an array whose spatial response does not change appreciably over
`a wide bandwidth. Such a design ensures that the spatial filtering performed
`by the array is uniform across the entire bandwidth of the speech signal. The
`main problem with many array designs is that a very large physical array is
`required to obtain reasonable spatial resolution, especially at low frequencies.
`This problem is addressed in Chapter 2, which reviews so-called superdirec-
`tive arrays. These arrays are designed to achieve spatial directivity that is
`significantly higher than a standard delay-and-sum beamformer. Chapter 3
`describes the use of a single--channel noise suppression filter on the output
`of a microphone array. The design of such a post-filter typically requires in-
`formation about the correlation of the noise between different microphones.
`The spatial correlation ftmctions for various directional microphones are in-
`vestigated in Chapter 4, which also describes the use of these functions in
`adaptive noise cancellation applications. Chapter 5 reviews adaptive tech-
`niques for microphone arrays, focusing on algorithms that are robust and
`perform well in real environments. Chapter 6 presents optimal spatial filter-
`ing algorithms based on the generalized singular-value decomposition. These
`techniques require a large number of computations, so the chapter presents
`techniques to reduce the computational complexity and thereby permit real-
`time implementation. Chapter 7 advocates a new approach that combines
`explicit modeling of the speech signal (a techni.que which is well-known in
`single-channel speech enhancement applications) with the spatial filtering af-
`forded by multi-channel array processing.
`Part II is devoted to the source localization problem. The ability to locate
`and track one or more speech sources is an essential requirement of micro-
`phone array systems. For speech enhancement applications, an accurate fix
`on the primary talker, as well as knowledge of any interfering talkers or coher-
`ent noise sources, is necessary to effectively steer the array, enhancing a given
`source while simultaneously attenuating those deemed undesirable. Location
`data· may be used as a guide for discriminating individual speakers in a multi-
`source scenario. With this information available, it would then be possible to
`automatically focus upon and follow a given source on an extended basis. Of
`particular interest lately, is the application of the speaker location estimates
`for aiming a camera or series of cameras in a video-conferencing system. In
`this regard, the automated localization information eliminates the need for a
`human or number of human camera operators. Several existing commercial
`products apply microphone-array technology in small-room environments to
`steer a robotic camera and frame active talkers. Chapter 8 summarizes the
`various approaches which have been explored to accurately locate an individ-
`
`\
`
`- 6 -
`
`

`

`Preface
`
`VII
`
`ual in a practical acoustic environment. The emphasis is on precision in the
`face of adverse conditions, with an appropriate method presented in detail.
`Chapter 9 extends the problem to the case of multiple active !lourccs. While
`again considering realistic environments, the issue is complicated by the pres-
`ence of several talkers. Chapter 10 further generalizes the source localization
`scenario to include knowledge derived from non-acoustic sensor modalities.
`In this cas€ both audio and video signals are effectively combined to track
`the motion of a talker.
`Part Ill of thls text details some specific applications of microphone array
`technology available today. Microphone arrays have been deployed for a vari-
`ety of practical applications thus far and their utility and presence in our daily
`lives is incL'casing rapidly. At one e..xtreme are large aperture arrays with tens
`to hundreds of elements designed for large rooms, distant talkers, and adverse
`acoustic conditions. Examples include the two-dimensional, harmonic array
`installed in the main auditorium of Bell Laboratories, Murray Hill and the
`512-element Huge Microphone Array (HMA) developed at nrown University.
`\Vhile these systems provide tremendous functionality in the environments
`for which they are intended, small arrays consisting of just a handful (usu-
`ally 2 to 8) of microphones and encompassing only a few centimeters of space
`have become far more common and affordable. These systems arc intended
`for sound <:apture in close-talking, low to moderate noise conditions (such
`as an individual dictating at a workstation or using a hands-free telephone
`in an automobile) and have exhibited a degree of effectiveness, especially
`when compared to their single microphone counterparts. The technology has
`developed to the point that microphone arrays are now available in off-the-
`shelf consumer electronic devices available for under $150. n ccausc of their
`growing popularity and feasibility we have· chosen to focus primarily on the
`issues associated with small-aperture devices. Chapter 11 addresses the in-
`corporation of multiple microphones into hearing aid devices. The ability of
`beamforrning methods to reduce background noise and interference has boon
`shown to dramatically improve the speech understanding of the hearing im-
`paired and to increase their overall satisfaction with the device. Chapter 12
`focuses on the case of a simple two-element array combined with po:>tfiltering
`to achieve noise and echo reduction. The performance of this configuration
`is analyzed under realistic acoustic conditions and its utility is demonstrated
`for desktop conferencing and intercom applications. Chapter 13 is concerned
`with the problem of acoustic feedback inherent in full-duplex communica-
`tions involving loudspeakers and microphones. Existing single-channel echo
`cancellation methods are integrated within a bcamforming context to achieve
`enhanced echo suppression. These results are applied to single- and multi-
`channel confercncing scenarios. Chapter 14 explores the usc of microphone
`arrays for sound capture in automobiles. The issues of noise, interference, and
`echo cancellation specifically within the car environment are addressed and a
`particularly effective approach is detailed. Chapter 15 discusses the applica-
`
`- 7 -
`
`

`

`VIII
`
`Preface
`
`tion of microphone arrays to improve the performance of speech recognition
`systems in adverse conditions. Strategies for effectively coupling the acous-
`tic signal enhancements afforded through bearnforming with existing speech
`recognition techniques are presented. A specifi.c adaptation of a recognizer to
`function with an array is presented. Finally, Chapter 16 presents an overview
`of the problem of separating blind mixtures of acoustic signals recorded at a
`microphone array. This represents a very new application for microphone ar-
`rays, and is a technique that is fundamentally different to the spatial filtering
`approaches detailed in earlier chapters.
`In the final section of the book, Part IV presents expert· summaries of
`current open problems in the field, as well as personal views of what the future
`of microphone array processing might hold. These summaries, presented in
`Chapters 17 and 18, describe both academically-oriented research problems,
`as well as industry-focused areas where microphone array research may be
`headed.
`The individual chapters that we selected for the book were designed to
`be tutorial in nature with a specific emphasis on recent important results.
`We hope the result is a text that will be of utility to a large audience, from
`the student or practicing engineer just approaching the field to t he advanced
`researcher with multi-channel signal processing experience.
`
`Cambridge MA, USA
`London, UK
`January 2001
`
`Michael Brandstein
`Darren Ward
`
`- 8 -
`
`

`

`Contents
`
`Part I. Speech Enhancement
`
`1 Constant Directivity Beamforming
`. . . . . . . .
`3
`Darren B. Ward, Rodney A. Kennedy, Robert C. Williamson
`1.1 Introduction.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`3
`6
`1.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`1.3 Theoretical Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`7
`J .3.1 Continuous sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`7
`8
`1.3.2 Beam-shaping function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`1.4 Practical Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`9
`9
`1.1.1.1 Dimension-reducing parameteri~aLion . . . . . . . . . . . . . . . . . . . .
`1.4 .2 Reference beam-shaping filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
`1.1.3 Sensor placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
`1.4.1 Summary of implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
`1.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
`1.6 Conclusions .. ....... ... ... . .. .... ·.. . . . . . . . . . . . . . . . . . . . . . . . . 16
`References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
`2 Superdirective Microphone Arrays
`Joerg Bitzer, K. Uwe Simmer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
`2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
`2.2 Evaluation of Beamformers................ . ................. . 20
`2.2.1 Array-Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
`2.2.2 Beampattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
`2.2.3 Directivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
`2.2.4 Front-to-Back Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
`2.2.5 White Koise Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
`2.3 Design of Superdirective Beamformers . . . . . . . . . . . . . . . . . . . . . . . . . 24
`2.3.1 Delay-and-Sum Beamformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
`2.3.2 Design for spherical isotropic noise . . . . . . . . . . . . . . . . . . . . . . . 26
`2.3.3 Design for Cylindrical Isotropic Noise . . . . . . . . . . . . . . . . . . . . 30
`2.3.4 Design for an Optimal Front-to-Back Ratio . . . . . . . . . . . . . . . 30
`2.3.5 Design for Measured Noise Fields . . . . . . . . . . . . . . . . . . . . . . . . 32
`2.4 Extensions and Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
`2.1.1 Alternative For.rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
`
`- 9 -
`
`

`

`X
`
`Contents
`
`2.4.2 Comparison with Gradient Microphones . . . . . . . . . . . . . . . . . . 35
`2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
`References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
`3 Post-Filtering Techniques
`K. Uwe Simmer, Joerg Bitzer, Claude Marro . . . . . . . . . . . . . . . . . . . . . . . 39
`3.1 Introduction.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39-
`3.2 Multi-channel Wiener Filtering in Subbands . . . . . . . . . . . . . . . . . . . . 41
`3.2.1 Derivation of the Optimum Solution . . . . . . . . . . . . . . . . . . . . . 41
`3.2.2 Factorization of the Wiener Solution . . . . . . . . . . . . . . . . . . . . . 42
`3.2.3 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
`3.3 Algorithms for Post-Filter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 46
`3.3.1 Analysis of Post-Filter Algorithms . . . . . . . . . . . . . . . . . . . . . . . 47
`3.3.2 Properties of Post-Filter Algorithms . . . . . . . . . . . . . . . . . . . . . 49
`3.3.3 A Kew Post-Filter Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
`3.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
`3.4.1 Simulation System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
`3.4.2 Objective Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
`3.4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
`3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
`4 Spatial Coherence Functions for Differential Microphones
`in Isotropic Noise Fields
`Gary W. Elko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
`4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
`4.2 Adaptive Noise Cancellation... . ..... ........ ..... . ........... 61
`4.3 Spherically Isotropic Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
`4.4 Cylindrically Isotropic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
`4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
`References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
`5 Robust Adaptive Beamforming
`Osamu Hoshuyama, Akihiko Sugiyama.......................... ... 87
`5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
`5.2 Adaptive Bearnformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
`5.3 Robustness Problem in the GJBF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
`Solutions to Steering-
`5.4 Robust Adaptive Microphone Arrays -
`Vector Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
`5.4.1 LAF-LAF Struc:ture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
`5.4.2 CCAF-LAF Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
`5.4.3 CCAF-NCAF Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
`5.4.4 CCAF-NCAF Structure with an AMC . . . . . . . . . . . . . . . . . . . 97
`5.5 Software Evaluation of a Robust Adaptive Microphone Array . . . . . 99
`5.5.1 Simulated Anechoic Environment . . . . . . . . . . . . . . . . . . . . . . . . 99
`5.5.2 Reverberant Environment .................... . .. . ...... 101
`
`- 10 -
`
`

`

`-·~
`
`1 I
`
`J
`J .j
`
`!
`
`Contents
`
`XJ
`
`5.6 Hardware Evaluation of a Robust Adaptive Microphone Array .... 104
`5.6.1 Tmplementation ... ....... ...... ..... ......... ...... ... 104
`5.6.2 Evaluation in a Real Environment ........ ... .......... .. 104
`5. 7 Conclusion ................. ........ ........................ 106
`References ...................................... ....... ....... . 106
`
`6 GSVD-Based Optimal Filtering for Multi-Microphone Speech
`Enhancement
`Simon Doclo, Marc Moonen ...................................... 111
`6.1 Introduction ......... ........... ................... ......... 111
`6.2 GSVD-Based Optimal Filtering Technique ..................... 113
`6.2.1 Optimal Filter Theory .... .... .......... ...... ......... 114
`6.2.2 General Class of Estimators .... ....... .......... ....... . 116
`6.2.3 Symmetry Properties for Time-Series Filtering ............ 117
`6.3 Performance of GSVD-Based Optimal Filtering ........ ......... 118
`6.3.1 Simulation Environment . ...... ............. . ........... 118
`6.3.2 Spatial Directivity Pattern .............................. 119
`6.3.3 Noise Reduction Performance . .......................... 121
`6.3.4 Robustness Issues ...................................... 121
`6.4 Complexity Reduction ....................................... 122
`6.4.1 Linear Algebra Techniques for Computing GSVD .......... 122
`6.4.2 Recursive and Approximate GSVD-Updating Algorithms ... 123
`6.4.3 Downsampling Techniques .............................. 125
`6.4.4 Simulations ........................................... 125
`6.4.5 Computational Complexity .............................. 126
`6.5 Combination with ANC Postprocessing Stage ................... 127
`6.5.1 Creation of Speech and Noise References .. .. ............. 127
`6.5.2 Noise Reduction Performance of ANC Postprocessing Stage . 128
`6.5.3 Comparison with Standard Bearnforming Techniques ....... 129
`6.6 Conclusion ................................................. 129
`References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
`7 Explicit Speech Modeling for M icrophone Array Speech
`Acquisition
`Michael Brandstein, Scott Griebel ................................. 133
`7.1 Introduction ................................................ 133
`7.2 Model-Based Strategies ...................................... 136
`7.2.1 Example 1: A Frequency-Domain Model-Based Algorithm .. 137
`7.2.2 Example 2: A Time-Domain Model-Based Algorithm ....... 140
`7.3 Conclusion ................... . ............................ . 148
`References ....... .......... ....... ...... .......... ............. 151
`
`Part II. Source Localization
`
`- 11 -
`
`

`

`Xll
`
`Contents
`
`8 Robust Localization in Reverberant Rooms
`Joseph H. DiBiase, Jiar·vey F. Silverman, Michael S. Brandstein ..... 157
`8.1 Introduction ................................................ 157
`8.2 Source Localization Strategies . ... . ........ . .................. 158
`8.2.1 Steered-Beamformer-Dased Locators ................. . ... 159
`8.2.2 High-Resolution Spectral-Es~imation-Based Locat.ors ....... 1p0
`8.2.3 TDOA-Based Locators .................... . ...... . ..... 161
`8.3 A Robust LocalizaLion Algorithm ............................. 161
`8.3.1 The Impulse Response Model ........ ... .... . ........... 164
`8.3.2 The GCC and PHAT Weighting Function ............... . 166
`8.3.3 ML TDOA-Based Source Localization .................... 167
`8.3.4. SRP-Based Source Localization .......................... 169
`8.3.5 The SRP-PHAT AlgoriLhm ......... .. .................. 170
`8.4 Experimental Comparison .................................... 172
`References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 78
`9 Multi-Source Localiza tion Strategies
`Elio D. Di Claudio, Raffaele Parisi . . . . . ..................... . ..... 181
`9.1 Introduction ................................................ 181
`9.2 Background .. . .......... .... ........ .... .... . ........ . ..... 18-1.
`9.2.1 Array Signal Model ................. . .................. 184
`9.2.2 Incoherent Approach .... . .................... ..... ..... 185
`9.2.3 Coherent Signal Subspace Method (CSSM) .. ....... . ..... 185
`9.2.1 Wideband WeighLed Subspace Fitting (WB-WSF) ......... 186
`9.3 The Issue of CoherenL MuHipath in Array Processing ............ 187
`9.4 Implementation Issues ...... .... ........... . ........... . ..... 188
`9.5 Linear Predict.ion-ROOT-MUSIC TDOA Estimat.ion ............ 189
`9.5.1 Signal Pre-Whitening .................................. 189
`9.5.2 An Approximate Model for MulLiple Sources in Reverberant.
`Environments .......... . .............................. 191
`9.5.3 Robust. TDOA Estimation via ROOT-MUSIC . . ..... . ..... 192
`9.5.4 Estimat.ion of the Number of Relevant Reflections ....... . . 194
`9.5.5 Source Clustering .... .. .......... .. .. ..... . . .... ....... 195
`9.5.6 Experimental Results .. ... .. ... .................. . ..... 196
`References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
`10 Joint Audio-Video Signal P r ocessing for Object Localiza-
`t ion and Tracking
`Norbert Strobel, Sascha Spors, Rudolf Rabenstein . ................... 203
`1 0.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
`10.2 Recursive State Estimation ..................... .. ... ......... 205
`10.2.1Linear Kalman Filter .................................. 206
`10.2.2Extended Kalman Fil~er due Loa Measurement Nonlinearity 210
`10.2.3 Decentralized Kalman Filter .. ... .................... . .. 212
`10.3 Implementation . ...... . .................. . ..... .. ........... 218
`
`- 12 -
`
`

`

`10.3.1 System description ... .. .... ... .... ................. .. .. 218
`10.3.2RcsuJts .................... ......... .................. 219
`10.4 Discussion and Conclusions ............ ....... ... ..... ... ... . 221
`References ..................................... . . . .... . ........ 222
`
`Contents
`
`XTTI
`
`Part III. Applications
`
`11 Microphone-Array Hearing Aids
`Julie E. Greenberg, Patrick M. Zurek ..................... .... ..... 229
`ll.llntro<luction ..... ... . ...... . ..... .. ...... ....... ..... .. .... . 229
`11.2 Implications for Design and Evaluation ............ . ..... . ..... 230
`11.2.1 Assumptions Regarding Sound Sources .... . ........... ... 230
`11.2.2Implementation Issues ... ..... .. .............. ....... ... 231
`11.2.3Assessing Performance ................................. 232
`11.3 Hearing Aids with Directional Microphones .................. .. 233
`11.4 Fixed-Beamforming Bearing Aids ........ .. ........... .... .. .. 234
`11.5Adaptive-Beamforming Hearing Aids .......................... 235
`11.5.1 Generalized Sidelobe Canceler with Modifications .. . ... ... . 236
`11.5.2Scaled Projection Algorithm .... ..... .... ............... 242
`11.5.3Direction of ArrivaJ Estimation ........ ......... ......... 243
`11.5.4 0 ther Adaptive Approaches and Devices ... .. ............ 243
`11.6 P hysiologically-Motivated Algorithms .............. . ........... 244
`11.7 Beamformers with Binaural Outputs ...................... ... . 245
`11.8 Discussion ... .. ... ... .................. . ........... .. .. ... . 246
`References ........... .......... ..... .. ..... ................ .... 249
`12 Small Microphone Arrays with Postfilters
`for Noise and Acoustic Echo Reduction
`Rainer Martin .... . ..... . ...... . ... ... .................. . . . ... .. 255
`l 2.1lntroduction ..... ..... ............................... . ... ... 255
`12.2 Coherence of Speech and Noise ....................... .. ...... 257
`12.2.1 The Magnitude Squared Coherence .... .. ..... .... . ...... 257
`12.2.2Tbe Reverberation Distance .......... .. .... ..... .. .. ... 258
`12.2.3 Coherence of Noise and Speech in Reverberant Enclosures . . 259
`12.3 Analysis of the Wiener Filter with Symmetric Input Signals ..... . 263
`12.3.1 No Near End Speech ........ . .. .. .. .. ................. . 265
`12.3.2 High Signal to Noise Ratio . ...... ............... . ....... 265
`12.4 A Noise Reduction Application .......... . ..... .. ........... .. 266
`12.4.1 An Implementation Based on the NLMS Algorithm .. ..... . 266
`12.4..2 Processing in the 800- 3600 Hz T3and .................... 268
`12.4.3 Processing in the 240 - 800 Hz Band ..................... 269
`12.4.4 Evaluation .............................. .. . ... ....... . 269
`12.4.5 Alternative Implementations of the Coherence Based Postfilter271
`12.5 Combined Noise and Acoustic Echo Reduction ........... . .... . . 271
`
`•
`
`- 13 -
`
`

`

`XIV
`
`Contents
`
`12.5.1 Experimental Results ........... .. ..................... 274
`12.6 Conclusions ............................... .. .... . .......... 275
`References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
`13 Acoustic Echo Cancellation for Beamforming
`Microphone Arrays
`Walter L. Kellermann ... ..... .... ....... . ...... ... . ....... .. .... 281
`13 .1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
`13.2 Acoustic Echo Cancellation . ................................. 282
`13.2.1 Adaptation algorithms . ........ ..... ....... ............ 284
`13.2.2AEC for multi-channel sound reproduction ... .... ......... 287
`13.2.3 AEC for multi-channel acquisition ....... ... ............. 287
`13.3 Beamforming . .. ............................................ 288
`13.3.1 General structure .... ... ........ ...... ........ .. . ...... 288
`13.3.2Time-invariant beamforming ............................ 290
`13.3.3Tirne-varying bearnforming ................ . ........ . ... 291
`13.3.4 Computational complexity .. ....... .. ............... .. .. 292
`13.4 Generic structures for combining AEC with beamforming ........ 292
`13.4.1 Motivation ............ ......... ..... ....... .. .. : ..... . 292
`13.4.2Basic options ......................................... 293
`13.4.3 'AEC first' . ................. .. . .. .. ................... 293
`13.4.4 'Beamforming £rst' ..... . . .... .... .... . ..... ........... 296
`13.5lntegration of AEC into time-varying bcamforrning ............. 297
`13.5.1 Cascading time-invariant and time-varying beamforrning .. .. 297
`13.5.2AEC with GSC-type beamforming structures . .. .. . ....... 301
`13.6 Combined AEC and beamforming for multi-channel recording and
`multi-channel reproduction .... ....... .... .................... 302
`13.7 Conclusions ......... .. ..... . ..... ...... . ........ .. ........ . 303
`References ....... .. ....... . ......... . . ........ .. ..... .......... 303
`14 Optimal and Adaptive Micr ophone Arrays for Speech In-
`put in Automobiles
`Sven Nordholm, Ingvar Claesson, Nedelko Grbic ....... ..... ..... ... 307
`14.1 Introduction: Hands-Free Telephony in Cars ...... ... .. ......... 307
`14.2 Optimum and Adaptive Bcamforming ................. .. ...... 309
`14.2.1 Common Signal Modeling ... . ..... .. . ... .. . ..... .... . . . 309
`14.2.2 Constrained Minimum Variance Beamforming and the Gen-
`eralized Sidelobe Canceler .............................. 310
`14.2.3In Situ Calibrated Microphone Array (ICMA) ...... .. ..... 312
`14.2.4 Time-Domain Minimum-Mean-Square-Error Solution ..... .. 313
`14.2.5 Frequency-Domain Minimum-Mean-Square-Error Solution .. 314
`14.2.6 Optimal Near-Field Signal-to-Noise plus Interference Beam-
`former .................... .. ... ............. ....... .. 316
`14.3 Subband Implementation of the Microphone Array . .... ....... .. 317
`14.3.1 Description of LS-Subband Beamforming . ...... . ........ . 318
`
`- 14 -
`
`

`

`Contents
`
`XV
`
`14.4 Multi-RE>Ac;olution Time-Frequency Adaptive Deamforming ........ 319
`14.4.1 Memory Saving and Improvements ....................... 319
`14.5 Evaluation and Examples ... ...... ........................... 320
`14.5.1 Car Environment ...................................... 320
`14.5.2 Microphone Configurations ......... ....... ............. 321
`14.5.3Performance Measures ................................. 321
`14.5.4Spectral Performance Measures ....................... .. . 322
`14.5.5 Evaluation on car data ................................. 323
`14.5.6Evaluation Results ................................... ' .. 323
`14.6 Summary and Conclusions . ......... ......... . ............... 324
`References ................

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket