throbber
(19) United States
`(12) Patent Application Publication (10) Pub. No.: US 2005/0243774 A1
`Choi et al.
`(43) Pub. Date:
`Nov. 3, 2005
`
`US 2005O243774A1
`
`(54) REPETITION CODING FOR A WIRELESS
`SYSTEM
`(75) Inventors: Won-Joon Choi, Sunnyvale, CA (US);
`Qinfang Sun, Cupertino, CA (US);
`Jeffrey M. Gilbert, Sunnyvale, CA
`(US)
`Correspondence Address:
`VAN PELT, YI & JAMES LLP
`10050 N. FOOTHILL BLVD #200
`CUPERTINO, CA 95.014 (US)
`(73) Assignee: Atheros Communications, Inc.
`(21) Appl. No.:
`10/666,952
`
`(22) Filed:
`
`Sep. 17, 2003
`
`Publication Classification
`
`(51) Int. Cl. ............................................. H04B 71216
`(52) U.S. Cl. .............................................................. 370/335
`
`(57)
`
`ABSTRACT
`
`A System and method are disclosed for transmitting data
`over a wireleSS channel. In Some embodiments, transmitting
`data includes receiving convolutionally encoded data and
`enhancing the transmission of the data by further repetition
`encoding the data.
`
`TRANSMTTER
`202
`
`
`
`204
`
`2O6
`
`
`
`208
`
`210
`
`CONVOLUONAL
`NCODER
`
`802.11a
`INTERLEAVER
`
`RTITION
`ENCOOER
`
`PSEUDORANDOM
`MASK
`
`INTEL-1008
`10,079,707
`
`

`

`Patent Application Publication Nov. 3, 2005 Sheet 1 of 5
`
`US 2005/0243774 A1
`
`
`
`C
`
`CN
`
`CN
`
`CD
`
`n
`
`(N
`
`N
`
`

`

`Patent Application Publication
`
`Nov. 3, 2005 Sheet 2 of 5
`
`US 2005/0243774 A1
`
`
`
`WOONV/>|OCITESd
`
`XISV/W
`
`
`
`W/Z "SOI
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`

`

`Patent Application Publication
`
`Nov. 3, 2005 Sheet 3 of 5
`
`US 2005/0243774 A1
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`}}EAVETAJELNIECI
`
`
`
`NOLLI LEdE}}
`
`XJENCJOONE
`
`TV/NOLLITTOANOO
`
`>]ECJOONE
`
`

`

`Patent Application Publication Nov. 3, 2005 Sheet 4 of 5
`
`US 2005/0243774 A1
`
`
`
`14
`
`WRITE IN
`
`1
`
`FG. 4A
`
`

`

`Patent Application Publication Nov. 3, 2005 Sheet 5 of 5
`
`US 2005/0243774 A1
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`11937.7 2543.1331
`22038.826441432
`27 45 1533
`O 28 46
`
`2222 4.321
`
`4443 1O9
`
`1
`
`9 4 87
`
`2 12 30 4
`
`111 876
`
`
`
`FIG. 4B
`
`READ OUT -o-
`
`11937 72543.1331
`22038826441432
`321399 27451533
`42240 102846.1634
`523411129.471735
`62442 1230481836
`
`FIG. 4C
`
`

`

`US 2005/0243774 A1
`
`Nov. 3, 2005
`
`REPETITION CODING FOR AWIRELESS
`SYSTEM
`
`FIELD OF THE INVENTION
`0001. The present invention relates generally to a data
`transmission Scheme for a wireleSS communication System.
`More Specifically, a repetition coding Scheme for a wireleSS
`System is disclosed.
`
`BACKGROUND OF THE INVENTION
`0002 The IEEE 802.11a, 802.11b, and 802.11g stan
`dards, which are hereby incorporated by reference, Specify
`wireleSS communications Systems in bands at 2.4 GHz and
`5 GHz. The combination of the 802.11a and 802.11g stan
`dards, written as the 802.11a/gstandard, will be referred to
`repeatedly herein for the purpose of example. It should be
`noted that the techniques described are also applicable to the
`802.11b standard where appropriate. It would be useful if
`alternate Systems could be developed for communication
`over an extended range or in noisy environments. Such
`communication is collectively referred to herein as extended
`range communication. The IEEE 802.11a/g Standard Speci
`fies a robust data encoding Scheme that includes error
`correction. However, for extended range communication, a
`more robust data transmission Scheme at reduced data rates
`is required.
`
`BRIEF DESCRIPTION OF THE DRAWINGS
`0003. The present invention will be readily understood by
`the following detailed description in conjunction with the
`accompanying drawings, wherein like reference numerals
`designate like Structural elements, and in which:
`0004 FIG. 1A is a diagram illustrating the data portion
`of a regular 802.11a/g OFDM packet.
`0005 FIG. 1B is a diagram illustrating the data portion
`of a modified 802.11a/g OFDM packet where each symbol
`is repeated twice (r=2).
`0006 FIG. 2A is a diagram illustrating a transmitter
`System with a repetition encoder placed after the output of
`an interleaver such as the one specified in the IEEE
`802.11a/g Specification.
`0007 FIG. 2B is a diagram illustrating a receiver system
`for receiving a signal transmitted by the transmitter System
`depicted in FIG. 2A.
`0008 FIG. 3A is a diagram illustrating a transmitter
`System with a repetition encoder placed before the input of
`an interleaver designed to handle repetition coded bits Such
`as the one described below
`0009 FIG. 3B is a diagram illustrating a receiver system
`for receiving a signal transmitted by the transmitter System
`depicted in FIG. 3A.
`0010 FIGS. 4A-4C are tables illustrating an interleaver.
`DETAILED DESCRIPTION
`0011. It should be appreciated that the present invention
`can be implemented in numerous ways, including as a
`
`process, an apparatus, a System, or a computer readable
`medium Such as a computer readable Storage medium or a
`computer network wherein program instructions are Sent
`over optical or electronic communication linkS. It should be
`noted that the order of the Steps of disclosed processes may
`be altered within the scope of the invention.
`0012. A detailed description of one or more preferred
`embodiments of the invention is provided below along with
`accompanying figures that illustrate by way of example the
`principles of the invention. While the invention is described
`in connection with Such embodiments, it should be under
`stood that the invention is not limited to any embodiment.
`On the contrary, the scope of the invention is limited only by
`the appended claims and the invention encompasses numer
`ous alternatives, modifications and equivalents. For the
`purpose of example, numerous Specific details are Set forth
`in the following description in order to provide a thorough
`understanding of the present invention. The present inven
`tion may be practiced according to the claims without Some
`or all of these Specific details. For the purpose of clarity,
`technical material that is known in the technical fields
`related to the invention has not been described in detail So
`that the present invention is not unnecessarily obscured.
`0013 In a typical system as described below, bits repre
`Senting a set of data that is to be communicated are convo
`lutionally encoded or otherwise transformed into values.
`Various types of modulation may be used such as BPSK,
`QPSK, 16QAM or 32OAM. In the case of BPSK, which is
`described further herein, each BPSK symbol may have one
`of two values and each BPSK symbol corresponds to one bit.
`An OFDM symbol includes 48 values that are transmitted on
`different Subchannels. To provide extended range, each
`value that is Sent is repeated Several times by the transmitter.
`In one embodiment, the bits are convolutionally encoded
`using the same encoding Scheme as the encoding Scheme
`specified for the IEEE 802.11a/g standard. Each encoded
`value is repeated and transmitted. Preferably, the values are
`repeated in the frequency domain, but the values may also
`be repeated in the time domain. In Some embodiments, the
`repetition coding is implemented before interleaving and a
`Specially designed interleaver is used to handle repeated
`values. In addition, a pseudorandom code may be Superim
`posed on the OFDM symbols to lower the peak to average
`ratio of the transmitted Signal.
`0014. The receiver combines each of the signals that
`correspond to the repetition coded values and then uses the
`combined Signal to recover the values. In embodiments
`where the values are combined in the frequency domain, the
`Signals are combined coherently with correction made for
`different subchannel transfer functions and phase shift
`errors. For the purpose of this description and the claims,
`“coherently” combining should not be interpreted to mean
`that the Signals are perfectly coherently combined, but only
`that Some phase correction is implemented. The Signals from
`different Subchannels are weighted according to the quality
`of each Subchannel. A combined Subchannel weighting is
`provided to a Viterbi detector to facilitate the determination
`of the most likely transmitted Sequence.
`
`

`

`US 2005/0243774 A1
`
`Nov. 3, 2005
`
`0.015 Using the modulation and encoding scheme incor
`porated in the IEEE 802.11a/g Standard, the required signal
`to noise ratio decreases linearly with data rate assuming the
`Same modulation technique and base code rate are not
`changed and repetition coding is used. Some further gains
`could be achieved through the use of a better code or outer
`code. However, in a dual mode System that is capable of
`implementing both the IEEE 802.11a/g standard and an
`extended range mode, the complexity introduced by those
`techniques may not be worth the limited gains that could be
`achieved. Implementing repetition of values is in compari
`Son Simpler and more efficient in many cases.
`0016. The repetition code can be implemented either in
`the time domain or in the frequency domain. For time
`domain repetition, the OFDM symbols in the time domain
`(after the IFFT operation) are repeated a desired number of
`times, depending on the data rate. This Scheme has an
`advantage in efficiency Since just one guard interval is
`required for r-repeated OFDM symbols in the time domain.
`0017 FIG. 1A is a diagram illustrating the data portion
`of a regular 802.11a/g OFDM packet. Each OFDM symbol
`102 is separated by a guard band 104. FIG. 1B is a diagram
`illustrating the data portion of a modified 802.11a/g OFDM
`packet where each Symbol is repeated twice (r=2). Each set
`of repeated Symbols 112 is separated by a single guard band
`104. There is no need for a guard band between the repeated
`symbols.
`0018. The OFDM symbols can also be repeated in the
`frequency domain (before the IFFT). The disadvantage of
`this Scheme is that one guard interval has to be inserted
`between every OFDM symbol in the time-domain since the
`OFDM symbols with frequency-domain repetition are not
`periodic. However, repetition in the frequency domain can
`achieve better multipath performance if the repetition pat
`tern is configured in the frequency-domain to achieve fre
`quency diversity.
`0019. In a typical environment where signals are reflected
`one or more times between the transmitter and the receiver,
`it is possible that certain reflections and direct Signals will
`tend to cancel out at the receiver because the phase differ
`ence between the paths could be close to 180 degrees. For
`different frequencies, the phase difference between the paths
`will be different and So Spreading the repeated values among
`different frequencies to achieve frequency diversity ensures
`that at least Some of the values will arrive at the receiver with
`Sufficient signal Strength to be combined and read. To
`maximize the benefit of frequency diversity, it is preferable
`to repeat values acroSS Subchannels that are as widely spaced
`as is practicable, Since the phase difference between adjacent
`Subchannels is Small.
`0020 FIG. 2A is a diagram illustrating a transmitter
`System with a repetition encoder placed after the output of
`an interleaver such as the one specified in the IEEE
`802.11a/g specification. In this example system, BPSK
`modulation is implemented and the repetition encoder and
`the interleaver are described as operating on bits, which is
`equivalent to operating on the corresponding values. In other
`embodiments, other modulation Schemes may be used and
`values may be repeated and interleaved. The interleaver is
`included in the IEEE 802.11a/g transmitter specification for
`
`the purpose of changing the order of the bits Sent to remove
`correlation among consecutive bits introduced by the con
`volutional encoder. Incoming data is convolutionally
`encoded by convolutional encoder 202. The output of con
`volutional encoder 202 is interleaved by IEEE 802.11a/g
`interleaver 204. Repetition encoder 206 repeats the bits and
`pseudorandom mask combiner 208 combines the output of
`repetition encoder 206 with a pseudorandom mask for the
`purpose of reducing the peak to average ratio of the Signal,
`as is described below. The signal is then processed by IFFT
`processor 210 before being transmitted.
`0021
`FIG. 2B is a diagram illustrating a receiver system
`for receiving a signal transmitted by the transmitter System
`depicted in FIG. 2A. The received signal is processed by
`FFT processor 220. The output of FFT processor 220 is input
`to mask remover 218 which removes the pseudorandom
`mask. Data combiner 216 combines the repetition encoded
`data into a stream of nonrepetitive data. The operation of
`data combiner 216 is described in further detail below. IEEE
`802.11a/g deinterleaver 214 deinterleaves the data and Vit
`erbi decoder 212 determines the most likely Sequence of
`data that was input to the transmission System originally.
`0022. The system depicted in FIGS. 2A and 2B can use
`the same interleaver and deinterleaver as the regular
`802.11a/g System, and also has flexibility in designing the
`repetition pattern Since the repetition coder is placed right
`before the IFFT block. However, it has certain disadvan
`tages. Data padding is required at the transmitter and data
`buffering is required at the receiver. Bits have to be padded
`according to the number of bytes to be sent and the data rate.
`The number of padded bits is determined by how many bits
`one OFDM symbol can carry. Since the 802.11a/g inter
`leaver works with 48 coded bits for BPSK modulation, bits
`need to be padded to make the number of coded bits a
`multiple of 48. Since the repetition coder is placed after the
`interleaver, it may be necessary to pad the data by adding
`unnecessary bits for lower data rates than 6 Mbps.
`0023 For example, one OFDM symbol would carry
`exactly 1 uncoded repeated bit at a data rate of '4 Mbps.
`Since the OFDM symbol could be generated from that one
`bit, there would never be a need to add extra uncoded bits
`and So padding would not be necessary in principle. How
`ever, due to the Special Structure of the 802.11a/g interleaver,
`several bits would need to be padded to make the number of
`coded bits a multiple of 48 before the interleaver. The
`padded bits convey no information and add to the overhead
`of the transmission, making it more inefficient.
`0024. On the other hand, if the repetition encoder is
`placed after the interleaver, the repetition coded bits gener
`ated from the 48 interleaved bits are distributed over mul
`tiple OFDM symbols. Therefore, the receiver would need to
`process the multiple OFDM symbols before deinterleaving
`the data could be performed. Therefore, additional buffers
`would be necessary to Store frequency-domain data.
`0025 The system can be improved and the need for data
`padding at the transmitter and data buffering at the receiver
`can be eliminated by redesigning the interleaver So that it
`operates on bits output from the repetition encoder.
`0026 FIG. 3A is a diagram illustrating a transmitter
`System with a repetition encoder placed before the input of
`an interleaver designed to handle repetition coded bits Such
`
`

`

`US 2005/0243774 A1
`
`Nov. 3, 2005
`
`as the one described below. Incoming data is convolutionally
`encoded by convolutional encoder 302. The output of con
`volutional encoder 302 is repetition coded by repetition
`encoder 304. Interleaver 306 interleaves the repetition coded
`bits. Interleaver 306 is designed so that data padding is not
`required and So that for lower repetition levels, the bits are
`interleaved So as to Separate repeated bits. Pseudorandom
`mask combiner 308 combines the output of Interleaver 306
`with a pseudorandom mask for the purpose of reducing the
`peak to average ratio of the Signal, as is described below. The
`signal is then processed by IFFT processor 310 before being
`transmitted.
`0.027
`FIG. 3B is a diagram illustrating a receiver system
`for receiving a signal transmitted by the transmitter System
`depicted in FIG. 3A. The received signal is processed by
`FFT processor 320. The output of FFT processor 320 is input
`to mask remover 318 which removes the pseudorandom
`mask. Deinterleaver 316 deinterleaves the data. Data com
`biner 314 combines the repetition encoded data into a stream
`of nonrepetitive data. The operation of data combiner 314 is
`described in further detail below. Viterbi decoder 312 deter
`mines the most likely Sequence of data that was input to the
`transmission System originally.
`0028 Interleaver 306 is preferably designed such that the
`same (repeated) data are transmitted well separated in the
`frequency domain to achieve full frequency diversity. For
`example, a repetition pattern in the frequency domain for in
`1 Mbps mode in one embodiment would repeat each bit 6
`times. Denoting data in the frequency domain as d, d, . .
`., ds, the repeated Sequence of data is given by:
`d1 d1 d1 d1 d1 d1 d2 d2 d2 d2 d2 d2 ... disds disds disds
`0029. The same data are placed in a group fashion
`because it is easy to combine those data at the receiver. Note
`that the repeated data can be combined only after r (6 in this
`example) data are available.
`0030 The repetition pattern in the above example does
`not provide the greatest possible frequency diversity since
`the Spacing between the same data transmitted on adjacent
`Subchannels may not be large enough and the Subchannels
`corresponding to the Same data are not completely indepen
`dent. Greater frequency diversity would be desirable espe
`cially for multipath channels with large delay spreads.
`Interleaver 306, therefore, is designed to spread the repeated
`data in the frequency domain to achieve frequency diversity
`as much as is practical.
`0031. In one embodiment, the interleaver is designed to
`optimize the frequency diversity provided by the interleaver
`for data rates faster than 1 Mbps (repetition number<=6).
`For lower data rates /2 and 4 Mbps, there is enough
`repetition that Sufficient Subchannels are covered to provide
`frequency diversity even if adjacent Subchannels are used. In
`the preferred interleaver described below, repeated bits are
`Separated at least by 8 Subchannels and consecutive coded
`bits from the convolutional encoder are Separated at least by
`3 Subchannels. The interleaver is designed according to the
`following Steps:
`0032 1. A 6x8 table is generated as shown in FIG. 4A
`to satisfy the first rule which specifies that bits are
`Separated at least by 8. Subchannels.
`
`0033 2. As shown in FIG. 4B, the columns are
`Swapped to meet the Second rule which specifies that
`consecutive coded bits are separated at least by 3
`Subchannels.
`0034) 3. As shown in FIG. 4C, separation between
`repeated bits is increased by Swapping rows. In the
`example shown, repeated bits are separated by at least
`16 bins for 3 Mbps (Repetition number=2 for 3 Mbps
`So each bit is repeated once.)
`0035. For the example interleaver shown, if the input to
`the interleaver is {1, 2, 3, . . . , 48, then the output would
`be: {1, 19, 37, 7, 25, 43, 13, 31, 4, 22, 40, 10, 28,46, 16,34,
`2, 20, 38, 8, 26, 44, 14, 32, 5, 23, 41, 11, 29, 47, 17, 35, 3,
`21, 39, 9, 27, 45, 15, 33, 6, 24, 42, 12, 30, 48, 18, 36.
`0036 Repetition of the values in the frequency domain
`tends to generate a peak in the time domain, especially for
`very low data rates (i.e., for large repetition numbers). The
`large peak-to-average ratio (PAR) causes problems for the
`System, especially the transmit power amplifier. This prob
`lem can be ameliorated by Scrambling or masking the values
`transmitted on different frequencies So that they are not all
`the Same. AS long as the masking Scheme is known, the
`Scrambling can be undone at the receiver. In one embodi
`ment, the frequency-domain data is multiplied by the long
`symbol of 802.11a/g, which was carefully designed in terms
`of PAR. As can be seen in FIG. 2, the mask operation is
`performed right before the IFFT operation. In general, any
`masking Sequence can be used that causeS repeated values to
`differ enough that the PAR is suitably reduced. For example,
`a pseudorandom code is used in Some embodiments.
`0037. At the receiver, decoding includes: (1) mask
`removal, (2) deinterleaving, (3) data combining, (4) channel
`correction, (5) Viterbi decoding. It should be noted that in
`Some embodiments, the order of the StepS may be changed
`as is appropriate.
`0038. In embodiments using frequency repetition, the
`transmitter preferably masks the frequency-domain Signal to
`reduce the peak-to-average ratio (PAR) in the time-domain.
`The receiver removes the mask imposed by the transmitter.
`If, as in the example above, the mask used by the transmitter
`consists of +/-1S, then the mask is removed by changing the
`signs of the FFT outputs in the receiver. After the mask is
`removed, the data is deinterleaved according to the inter
`leaving pattern at the transmitter.
`0039 The repeated signal is combined in the frequency
`domain at the receiver to increase the SNR of the repeated
`signal over the SNR had the signal not been repeated. The
`SNR is increased by multiplying the complex conjugate of
`the channel response as follows.
`
`jeSc
`
`jeSc
`
`0040) where Y is the signal in subchannel j, H, is the
`response of Subchannelj, Y is the combined signal, H is the
`combined channel, and S is the set of indices corresponding
`to the frequency Subchannels that contain the same data.
`
`

`

`US 2005/0243774 A1
`
`Nov. 3, 2005
`
`0041. The channel effect is preferably removed before the
`data is input to the Viterbi decoder so that the Viterbi
`decoder is able to use the same Soft decision unit regardless
`of the actual channel response. In the extended-range mode,
`the combined channel is used in the channel correction unit.
`0042. The frequency-domain signals are weighted for
`calculating the path-metrics in the Soft-decision Viterbi
`decoder, and the optimal weights are determined by the
`corresponding SNR.
`0043. The resulting SNR for the combined signal
`becomes:
`
`jeSc.
`
`0044) where E is the signal power, and o, is the noise
`power for the subchannel j. The combined SNR is used to
`evaluate the Viterbi weights.
`004.5 The 802.11a/gstandard specifies that there are four
`pilot signals included in each OFDM symbol for the purpose
`of estimating timing offset and frequency offset and tracking
`phase noise in 802.11a/g Signals. The 802.11a/g System
`assumes that these 4 pilots are reliable enough to estimate
`the phase information. That assumption may not be true for
`a System with a very low SNR. The redundancy that exists
`in the frequency-domain Signal is exploited to help the pilots
`to estimate and track phase.
`0046) The phase information is estimated from the fre
`quency domain data as follows:
`0047 1. The repeated signals are combined in the fre
`quency domain to increase the SNR, with a channel estimate
`determined from a preamble Sequence of long Symbols and
`an estimated slope, which captures the effect of timing
`offset.
`2. Hard decisions are made for each of the com
`0.048
`bined signals after removing the phase offset estimated from
`the previous Symbol.
`0049. 3. The combined signals are multiplied by their
`own hard decisions. The average of the hard-decision cor
`rected Signal is used to evaluate an angle to estimate the
`phase offset for the current symbol.
`0050. A filter is applied to the estimated phase offset to
`reduce the effect of noise. In one embodiment, a nonlinear
`median filter is used. The nonlinear median filter effectively
`detects and corrects an abrupt change in the phase offset,
`which could be caused by hard decision errors.
`0051. An encoding and decoding scheme for a wireless
`System has been disclosed. Preferably, repetition coding in
`the frequency domain is used. An interleaver that provides
`frequency diversity has been described. In various embodi
`ments, the described techniques may be combined or used
`Separately according to specific System requirements.
`0.052 Although the foregoing invention has been
`described in Some detail for purposes of clarity of under
`Standing, it will be apparent that certain changes and modi
`fications may be practiced within the Scope of the appended
`
`claims. It should be noted that there are many alternative
`ways of implementing both the proceSS and apparatus of the
`present invention. Accordingly, the present embodiments are
`to be considered as illustrative and not restrictive, and the
`invention is not to be limited to the details given herein, but
`may be modified within the Scope and equivalents of the
`appended claims.
`What is claimed is:
`1. A method of transmitting data over a wireleSS channel
`comprising:
`receiving convolutionally encoded data, and
`enhancing the transmission of the data by further repeti
`tion encoding the data.
`2. A method of transmitting data over a wireleSS channel
`as recited in claim 1 wherein the data is repeated in the
`frequency domain.
`3. A method of transmitting data over a wireleSS channel
`as recited in claim 1 wherein the data is repeated in the time
`domain.
`4. A method of transmitting data over a wireleSS channel
`as recited in claim 2 further including masking the data to
`reduce its peak to average ratio.
`5. A method of transmitting data over a wireleSS channel
`as recited in claim 1 further including masking the data by
`applying a pseudorandom Sequence.
`6. A method of transmitting data over a wireleSS channel
`as recited in claim 1 wherein the data is encoded using an
`IEEE802.11a/g encoder.
`7. A method of transmitting data over a wireleSS channel
`as recited in claim 1 wherein the data is interleaved after
`repetition encoding whereby a need to pad the data prior to
`interleaving is reduced.
`8. A method of receiving data over a wireleSS channel
`comprising:
`receiving convolutionally encoded and repetition encoded
`data;
`combining the repetition encoded data to produce com
`bined data; and
`decoding the combined data.
`9. A method of receiving data over a wireleSS channel as
`recited in claim 8 wherein the combined data is decoded
`using a Viterbi decoder.
`10. A method of receiving data over a wireleSS channel as
`recited in claim 8 wherein the repetition encoded data is
`repeated in the time domain.
`11. A method of receiving data over a wireleSS channel as
`recited in claim 8 wherein the repetition encoded data is
`repeated in the frequency domain.
`12. A method of receiving data over a wireleSS channel as
`recited in claim 8 wherein the received data is further
`encoded by a pseudorandom mask, further including remov
`ing the pseudorandom mask.
`13. A method of receiving data over a wireleSS channel as
`recited in claim 8 wherein the convolutional encoding
`conforms to the IEEE 802.11a/g standard convolutional
`encoding.
`14. A method of receiving data over a wireleSS channel as
`recited in claim 8 further including deinterleaving the data
`before combining the data.
`15. A method of receiving data over a wireleSS channel as
`recited in claim 8 wherein the repetition encoded data is
`
`

`

`US 2005/0243774 A1
`
`Nov. 3, 2005
`
`repeated in the frequency domain on Subchannels, and
`wherein combining the repetition encoded data to produce
`combined data includes compensating for the effect of each
`Subchannel.
`16. A method of receiving data over a wireleSS channel as
`recited in claim 8 wherein the repetition encoded data is
`repeated in the frequency domain on Subchannels and
`wherein combining the repetition encoded data to produce
`combined data includes weighting data received on different
`Subchannels according to the quality of the Subchannels.
`17. A method of receiving data over a wireleSS channel as
`recited in claim 8 wherein the repetition encoded data is
`repeated in the frequency domain on Subchannels and
`wherein an aggregate channel quality estimation is made for
`bits included in the combined data and wherein the aggre
`gate channel quality estimation is used by the Viterbi to
`determine a maximum likely transmitted data Sequence.
`18. A method of receiving data over a wireleSS channel as
`recited in claim 8 further including estimating a phase offset
`using the received repetition encoded data.
`19. A method of receiving data over a wireless channel as
`recited in claim 8 further including estimating a phase offset
`using the received repetition encoded data by making a hard
`decision and determining a hard decision corrected Signal.
`20. A method of receiving data over a wireleSS channel as
`recited in claim 8 further including:
`estimating a phase offset using the received repetition
`encoded data by making a hard decision and determin
`ing a hard decision corrected Signals, and
`filtering the estimated phase offset using a median filter.
`21. A System for encoding data for transmission over a
`wireleSS channel comprising:
`
`a convolutional encoder configured to convolutionally
`encode data; and
`a repetition encoder configured to enhance the transmis
`sion of the convolutionally encoded data by further
`repetition encoding the data.
`22. A System for encoding data as recited in claim 21
`further including an interleaver.
`23. A System for encoding data as recited in claim 21
`further including a masking processor configured to Super
`impose a pseudorandom mask on the repetition coded data.
`24. A System for receiving data over a wireleSS channel
`comprising:
`a receiver configured to receive convolutionally encoded
`and repetition encoded data;
`a data combiner configured to combine the repetition
`encoded data to produce combined data; and
`a decoder configured to decode the combined data.
`25. A System for receiving data as recited in claim 24
`further including a deinterleaver configured to deinterleave
`the combined data.
`26. A System for receiving data as recited in claim 24
`wherein the decoder is a Viterbi decoder.
`27. A System for receiving data as recited in claim 24
`further including a mask remover.
`A System for receiving data as recited in claim 24 further
`including a phase offset processor configured to deter
`mine a phase offset by making a hard decision and
`determining a hard decision corrected Signals.
`
`

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket