throbber
United States Patent 19
`Hoshuyama
`
`54) BEAMFORMER USENG COEFFICIENT
`RESTRANED ADAPTIVE FILTERS FOR
`DETECTING INTERFERENCE SIGNALS
`75 Inventor: Osamu Hoshuyama, Tokyo, Japan
`73) Assignee: NEC Corporation, Tokyo, Japan
`
`21 Appl. No.: 523,059
`22 Filed:
`Sep. 1, 1995
`30
`Foreign Application Priority Data
`Sep. 1, 1994 IJP
`Japan .................................... 6-208635
`(51
`Int. Cl. ... G01S 15/00
`52 U.S. Cl. .......................... 367/121:367/901; 367/119;
`367/905; 381/94
`58. Field of Search .............................. 367/12, 119, 121,
`367/123, 129,901, 905, 103; 128/661.01;
`381/94
`
`56)
`
`References Cited
`U.S. PATENT DOCUMENTS
`3,763,490 10/1973 Hadley et al. .......................... 342/375
`4,956,867 9/1990 Zurek et al. ........................... 38/94.1
`OTHER PUBLICATIONS
`L. Griffiths et al., “An Alternative Approach to Linearly
`Constrained Adaptive Beamforming", IEEE Transactions
`on Antennas and Propagation, vol. AP-30, No. 1, Jan. 1982,
`pp. 27-34.
`S. Nordholm et al., “The Board-Band Wiener Solution for
`Griffiths-Jim Beamformers", IEEE Transactions on Signal
`Processing, vol. 40, No. 2, Feb. 1992, pp. 474-479.
`
`
`
`HIH III
`
`USOO5627799A
`Patent Number:
`11
`45 Date of Patent:
`
`5,627,799
`May 6, 1997
`
`I. Claesson et al., “A Spatial Filtering Approach to Robust
`Adaptive Beaming", IEEE Transactions on Antennas and
`Propagation, vol. 40, No. 9, Sep. 1992, pp. 1093-1096.
`"Processing Signals Carried By Propagating Waves". Mul
`tidimensional Digital Signal Processing, Prentice-Hall,
`Inc., pp. 289-315.
`M.M. Goodwin et al., "Constant Beamwidth Beamforming".
`Proceedings of International Conference on Acoustics,
`Speech and Signal Processing 93, pp. 1-169-1-172.
`Primary Examiner Ian J. Lobo
`Attorney, Agent, or Firm-Sughrue, Mion, Zinn, Macpeak &
`Seas
`ABSTRACT
`57
`In an adaptive array beamformer, a spatial beamforming
`filter is connected to a sensor array for respectively filtering
`and summing array signals to produce a first filter output
`containing a target signal that arrives in a specified direction.
`First adaptive filters provide transversal-filtering the first
`filter output to produce a second filter output not containing
`the target signal, using a first error signal by restraining their
`tap weight coefficients. The array signals are further coupled
`to subtractors. Each subtractor detects a difference between
`the second filter output of the corresponding first adaptive
`filter and the corresponding sensor signal to derive the first
`error signal. Second adaptive filters provide transversal
`filtering the first error signals of the subtractors to produce
`third filter outputs, using a second error signal, by restrain
`ing their tap weight coefficients. The third filter outputs are
`summed and subtracted from the first filter output to produce
`an output of the beamformer, which is supplied as the second
`error signal to the second adaptive filters
`
`10 Claims, 11 Drawing Sheets
`
`SPATA
`LOWPASS
`FILTER
`
`SPATAL
`HGHPASS
`FTER
`
`Meta Platforms, Inc. Exhibit 1008
`Page 1 of 17
`
`

`

`U.S. Patent
`
`May 6, 1997
`
`Sheet 1 of 11
`
`5,627,799
`
`FG,
`1
`PRIOR ART
`SPATAL LOWPASS FILTER 2
`
`
`
`TAP-WEIGHT MEMORY
`
`HIGHPASS
`
`LAF = leaky Adaptive Filter
`
`Meta Platforms, Inc. Exhibit 1008
`Page 2 of 17
`
`

`

`U.S. Patent
`
`May 6, 1997
`
`Sheet 2 of 11
`
`5,627,799
`
`FIG. 2 PRIOR ART
`
`SPATAL HIGHPASS FILTER BANK 6
`
`
`
`FILTER
`
`FER
`
`FILTER
`
`Meta Platforms, Inc. Exhibit 1008
`Page 3 of 17
`
`

`

`U.S. Patent
`
`May 6, 1997
`
`Sheet 3 of 11
`
`5,627,799
`
`FG, 3
`PRIOR ART
`32
`GE
`
`FROM DELAY 3
`
`
`
`300
`
`
`
`--------------------- ~~~– – – – – – – – ~- - ---------- – – – – – – – – – – – – – – -1-~~~~- - - - - - - - - - - )
`
`PTIVE FILTER
`EAKY ADA
`
`EAKY ADAPTIVE FILTER
`
`Meta Platforms, Inc. Exhibit 1008
`Page 4 of 17
`
`

`

`U.S. Patent
`
`May 6, 1997
`
`Sheet 4 of 11
`
`5,627,799
`
`
`
`FG, 4
`
`HGHPASS
`
`- ----? ? ? ? ---- » ~~~~• • • • • • • • ?= *
`
`----------------------
`
`Meta Platforms, Inc. Exhibit 1008
`Page 5 of 17
`
`

`

`U.S. Patent
`
`May 6, 1997
`
`Sheet 5 of 11
`
`5,627,799
`
`
`
`FG, 5
`
`NCAF = Norm-Constrained Adaptive Filter
`
`Meta Platforms, Inc. Exhibit 1008
`Page 6 of 17
`
`

`

`U.S. Patent
`
`May 6, 1997
`
`Sheet 6 of 11
`
`5,627,799
`
`FG, 6
`12
`FROMDELAY 3-GE
`
`
`
`
`
`CONSTRANT
`COEFFICENT
`GENERATOR
`
`- A D
`11
`
`FROM
`SUBTR
`ACTORS
`90-9M-1
`
`NORM.CONSTRANED ADAPTIVE FILTER
`13
`
`13M-1
`NORM-CONSTRANED ADAPTIVE FILTER
`
`Meta Platforms, Inc. Exhibit 1008
`Page 7 of 17
`
`

`

`U.S. Patent
`
`May 6, 1997
`
`Sheet 7 of 11
`
`5,627,799
`
`FROM
`UPDATE
`cuts
`
`
`
`
`
`
`
`
`
`
`
`FG, 10
`OUTPUT
`
`74
`
`DIVISION
`CIRCUIT
`
`MNMUM
`SELECTOR
`
`INPUT
`
`Meta Platforms, Inc. Exhibit 1008
`Page 8 of 17
`
`

`

`U.S. Patent
`
`May 6, 1997
`
`Sheet 8 of 11
`
`5,627,799
`
`
`
`FG, 8
`
`- A
`FILTER
`
`CCAF = Coefficient-Constrained Adaptive Filter
`
`Meta Platforms, Inc. Exhibit 1008
`Page 9 of 17
`
`

`

`U.S. Patent
`
`May 6, 1997
`
`Sheet 9 of 11
`
`5,627,799
`
`14
`
`FROMSUBTRACTOR 9,
`
`COEFFICIENT.
`CONSTRAINE)
`ADAPTIVE FILTER
`
`- - - -
`
`A
`
`
`
`(x)
`
`1
`
`FROM - - - -
`FILTER 2
`
`- ----------
`
`TO SUBR
`ACTOR 9
`
`j
`
`Meta Platforms, Inc. Exhibit 1008
`Page 10 of 17
`
`

`

`U.S. Patent
`
`May 6, 1997
`
`Sheet 10 of 11
`
`5,627,799
`
`
`
`FIG 11
`
`SPATAL
`
`CCAF = Coefficient-Constrained Adaptive Filter
`NCAF = Norm-Constrained Adaptive Filter
`
`Meta Platforms, Inc. Exhibit 1008
`Page 11 of 17
`
`

`

`U.S. Patent
`
`May 6, 1997
`
`Sheet 11 of 11
`
`5,627,799
`
`FG, 12
`
`2
`
`
`
`
`
`SPATAL
`LOWPASS
`FILTER
`
`TO DELAY 3
`
`
`
`SPATAL
`LOWPASS
`FILTER
`
`REFERENCE
`SIGNAL
`
`TO ADAPTIVE FILTERS
`80-8M-10R 140-14M
`
`lM-1
`
`/
`
`
`
`
`
`
`
`
`
`TO SUBTRACTORS 90 - 9M-1
`
`Meta Platforms, Inc. Exhibit 1008
`Page 12 of 17
`
`

`

`5,627,799
`
`1.
`BEAMFORMER USING COEFFICIENT
`RESTRANED ADAPTIVE FILTERS FOR
`DETECTING INTERFERENCE SIGNALS
`
`2
`canceling capability. The difference between the assumed
`direction and the actual arrival direction of the target signal,
`or a look-direction error, is of another concern because it
`degrades the target signal, or a look-direction error, is of
`another concern because it degrades the target signal. In
`order to compensate for this shortcoming, the spatial high
`pass filter bank of the prior art needs as many spatial
`highpass filters as is necessary to provide a wide range of
`angles to reject the target signal to prevent its leakage into
`the interference path of the beamformer.
`SUMMARY OF THE INVENTION
`It is therefore an object of the present invention to provide
`an adaptive array beamformer with a reduced number of
`sensors while allowing a look-direction error.
`According to the present invention, there is provided an
`adaptive array beamformer comprising an array of spatially
`distributed sensors, and a spatial beamforming filter con
`nected to the sensors for respectively filtering output signals
`of the sensors and summing the filtered output signals to
`produce a first filter output containing a target signal arriving
`at the array in a specified direction. A plurality of first
`adaptive filters are provided, each having a tapped-delay line
`connected to receive the first filter output, a coefficient
`update circuit for producing tap weight coefficients indicat
`ing correlations between tap signals from the tapped-delay
`line and a first error signal applied thereto, a plurality of
`multipliers for weighting the tap signals with the
`coefficients, respectively, and means for summing the
`weighted tap signals to produce a second filter output not
`containing the target signal. The coefficient update means
`includes restraining means for preventing the coefficients
`from increasing indefinitely. A plurality of first subtractors
`are provided, each detecting a difference between a corre
`sponding sensor signal and the second filter output of the
`corresponding first adaptive filter and supplying the differ
`ence to the coefficient update circuit of the corresponding
`first adaptive filter as the first error signal. A plurality of
`second adaptive filters are provided, each having a tapped
`delay line connected to receive the error signal from a
`corresponding one of the first subtractors, a coefficient
`update circuit for producing tap weight coefficients indicat
`ing correlations between tap signals from the tapped-delay
`line and a second error signal applied thereto, a multiply
`and-sum circuit for weighting the tap signals with the
`coefficients respectively and Summing the weighted tap
`signals to produce a third filter output. The coefficient update
`circuit includes restraining means for preventing the coef
`ficients from increasing indefinitely. An adder is provided
`for summing the third filter outputs from the second adaptive
`filters. A second subtractor detects a difference between the
`first filter output and the output of the adder and supplying
`the difference to the coefficient update circuit of the second
`adaptive filters as the second error signal.
`In a preferred embodiment, a second spatial beamforming
`filter is connected to the sensors for respectively filtering
`output signals of the sensors and summing the filtered output
`signals to produce a secondfilter output containing the target
`signal, the second spatial beamforming filter having a
`greater beam width than a beam width of the first spatial
`beamforming filter. The first adaptive filters are connected to
`the output of the second spatial beamforming filter, instead
`of to the output of the first-named spatial beamforming filter.
`BRIEF DESCRIPTION OF THE DRAWINGS
`The present invention will be described in further detail
`with reference to the accompanying drawings, in which:
`
`BACKGROUND OF THE INVENTION
`1. Field of the Invention
`The present invention relates generally to interference
`cancelers, and more particularly to a generalized sidelobe
`canceler, or adaptive beamformer for an array of sensors
`such as microphones and the like.
`2. Description of the Related Art
`It is known that wideband signals propagating across an
`array of sensors in directions that are different than the beam
`steering direction of the array suffer a distortion that is
`similar to lowpass filtering.
`According to a prior art microphone array, signals
`detected by an array of microphones are lowpass filtered and
`Summed together to detect a target signal that arrives in a
`particular direction. The adaptive microphone array beam
`former is one form of the generalized sidelobe canceler as
`described in an article "An alternative Approach to Linearly
`Constrained Adaptive Beamforming", Lloyd J. Griffiths and
`Charles W. Jim, the IEEE Transactions on Antenna and
`Propagation, Vol. AP-30, No. 1, January 1982, pages 27–34.
`As described in an article "The Broad-Band Wiener Solution
`for Griffiths-Jim Beamformers', S. Nordholm, I. Claesson
`and P. Eriksson, the IEEE Transactions on signal Processing,
`Vol. 40, No. 2, February 1992, pages 474-478 (hereinafter
`referred to as Document 1), the generalized sidelobe can
`celer comprises, a spatial lowpass filter connected to an
`array of microphones for filtering signals from the array and
`Summing the filtered signals so that only the desired signal
`is contained in the summed signal. A plurality of spatial
`highpass filters are provided to form a spatial highpass filter
`bank. Each spatial highpass filer is connected to a selected
`pair of microphones for filtering and Summing the sensor
`signals to detect the interference signals. A plurality of
`adaptive filters are provided for using the interference sig
`nals as reference signals to detect those components having
`high correlation with the interference signals contained in
`the detected target signal.
`Since the spatial highpass filters of Document 1 are of
`nonadaptive type and each uses two microphone outputs, the
`range of signals which must be rejected is very narrow. As
`a result, a slight departure from the intended direction causes
`a leakage of the desired signal into the interference path of
`the beamformer.
`To overcome the prior art shortcoming, a proposal has
`been made to implement a spatial highpass filter for receiv
`ing more than two microphone outputs as described in an
`article "A Spatial Filtering Approach to Robust Adaptive
`Beaming”, I. Claesson et al., the IEEE Transactions on
`Antennas and Propagation, Vol. 40, No. 9, September 1992,
`pages 1093 to 1096 (hereinafter referred to as Document 2).
`According to Document 2, each of the highpass filters that
`comprise the spatial highpass filter broadens the range of
`arrival angles by receiving multiple spatial samples from a
`selected set of microphone outputs using a plurality of leaky
`adaptive filters.
`However, a large number of microphones (the Qvalue)
`are required to implement a beamformer having a wide
`range of rejection angles, for each group of spatial highpass
`filters in the filter bank. If a sufficient number of micro
`phones is not provided, the degree of design freedom must
`be sacrificed, resulting in a beamformer having a low noise
`
`15
`
`25
`
`30
`
`35
`
`45
`
`50
`
`55
`
`65
`
`Meta Platforms, Inc. Exhibit 1008
`Page 13 of 17
`
`

`

`5,627,799
`
`5
`
`O
`
`15
`
`20
`
`30
`
`3
`FIG. 1 is a block diagram of a prior art adaptive array
`beamformer;
`FIG. 2 is a block diagram of the spatial highpass filter of
`the FIG. 1 prior art;
`FIG. 3 is a block diagram of the leaky adaptive filters of
`the FIG. 1 prior art;
`FIG. 4 is a block diagram of an adaptive array beam
`former according to a first embodiment of the present
`invention;
`FIG. 5 is a block diagram of an adaptive array beam
`former according to a second embodiment of the present
`invention;
`FIG. 6 is a block diagram of the norm constraint adaptive
`filters of the second embodiment;
`FIG. 7 is a block diagram of the constraint coefficient
`generator used in FIG. 6;
`FIG. 8 is a block diagram of an adaptive array beam
`former according to a third embodiment of the present
`invention;
`FIG. 9 is a block diagram of the coefficient-constrained
`adaptive filters of the third embodiment;
`FIG. 10 is a graphic representation of the input/output
`characteristic of the limiters of FIG. 9;
`25
`FIG. 11 is a block diagram of an adaptive array beam
`former according to a fourth embodiment of the present
`invention; and
`FIG. 12 is a block diagram of a modification of the present
`invention.
`
`35
`
`45
`
`DETALED DESCRIPTION
`Before proceeding with the detailed description of the
`present invention, it may provide helpful to provide an
`explanation of the prior art with reference to FIGS. 1 to 3.
`In FIG. 1, a linear array of microphones 1-1 of identical
`operating characteristics are located at sufficient distances
`from signal sources of interest so that the wavefront of each
`signal at the microphones is considered to be linear. The
`microphones are connected to FIR transversal filters
`40
`20-20 of a spatial lowpass filter 2, the outputs of the
`filters 20 being summed by an adder 26 to produce an output
`containing the target signal from a particular (assumed)
`direction and signals from other directions which are uncor
`related with the target signal. The outputs of filters 20 are
`applied through a timing adjustment delay circuit 3 to a
`Subtractor 32 of a canceler 4.
`The outputs of the M microphones are further connected
`to a spatial highpass filter bank 6 to produce (M-Q-1)
`output signals. The filter bank 6 operates so that the signals
`including the target signal as well as signals in the neigh
`borhood of the assumed direction are rejected. The outputs
`of the filter bank 6 thus contain the undesired signals as
`dominant components. The outputs of filter bank 6 are fed
`through leads Fo-F,
`to leaky adaptive filters 300-30
`of the canceler 4. Leaky adaptive filters 30 of the canceler
`detect undesired signals contained in the output signal of the
`beamformer atterminal 5 having a high correlation with the
`undesired signals detected by the spatial highpass filter 6 by
`adaptively updating their tap weight values using the output
`of the beamformer as a signal indicating the amount of
`correction error. The high correlation signals detected by the
`leaky adaptive filters 30 are combined by an adder 31 and
`fed to the subtractor 32 where it is subtracted from the
`time-coincident signal from spatiallowpass filter 2, whereby
`the undesired signals are canceled at the outputterminal 5 of
`the beamformer.
`
`50
`
`55
`
`65
`
`4
`Each of the filters 20 has a tapped delay line formed by
`delay elements 22-22 forming (G-1) delay-line taps
`which are connected to corresponding tap weight multipliers
`23 for respectively weighting the tap signals with particular
`tap weight coefficients supplied from a tap weight memory
`24 (where G is equal to or greater than 2), the weighted tap
`signals being summed by an adder 25 and fed to the adder
`26. The tap weight memory 24 of each filter 20 stores a set
`of tap weight coefficients whose values are determined so
`that filters 20 exhibit particular characteristics which result
`in an output containing the target signal. If the assumed
`direction is normal to the length of the microphone array, the
`integer G-2 is used and the tap weight coefficient of the
`multiplier 23 is set equal to "1". Other design approaches
`are described in "Multidimensional Digital Signal
`Processing", Prentice-Hall, Inc, pages 289-315, 1984 and
`IEEE, Proceedings of International Conference on
`Acoustics, Speech and Signal Processing 93, pages
`169-172.
`Spatial highpass filter bank 6 of the type described in
`Document 2 is shown in FIG. 2. Filter bank 6 is made up
`of(M-Q-1) groups 40 of Q highpass filters 41 each, and an
`adder 42, which each group forming a spatial highpass filter,
`where Q is equal to or greater than "3". Each spatial filter 40
`receives a selected set of the microphone outputs such that
`the signals from the microphones positioned closer to the
`center of the array are coupled to an increasing number of
`filters 41. Thus, the signals incident on the center area of the
`microphone array fare filtered through a greater number of
`filters 41 than the signals incident on the edges of the array
`are. Highpass filters 41 are basically of the same transversal
`filter configuration as the filters 20, but with different delay
`line lengths (G) and different filter characteristics.
`The characteristics of the highpass filters 41 offilter bank
`6 are those of a rejection filter wherein a group of signals
`propagating in the assumed direction are rejected at the
`output of adder 42 of each spatial highpass filter 40. A basic
`design method for this type of spatial filter is described in
`Document 2. One important consideration is the degree of
`design freedom which is determined by the number of
`microphones used. For an M-microphone array, it is repre
`sented by M-Q+1. With the use of a large number of
`microphones a beamformer having a wide rejection angle
`with high attenuation can be implemented. Advantageously,
`the target signal can be rejected in the interference path of
`such beamformers even though the assumed direction differs
`from its actual arrival direction.
`In each of the leaky adaptive filters 30 (FIG. 3), a
`corresponding output signal from the filter bank 5 is suc
`cessively shifted through delay-line taps formed by delay
`elements 50-502 and the tap signals are weighted respec
`tively by (L-1) multipliers 51 with tap weight coefficients
`Supplied from update circuits 53-53, and then summed
`by adder 52 for coupling to the adder 31. Each update circuit
`53 operates in accordance with the least mean square (LMS)
`algorithm. The output of beamformer from subtractor 32,
`representing a correction error, is weighted by a stepsize pu
`in a multiplier 54 and applied to a multiplier 55 of each
`update circuit 53 for detecting a correlation between the
`weighted error and a corresponding tap signal. Each update
`circuit 53 includes a leaky integrator formed by an adder 56,
`a multiplier 57 and a delay element 58. The correlation
`output of multiplier 55 is summed with a feedback signal
`from multiplier 57 and delayed by a symbol interval by
`delay element 58. The delayed symbol is applied to the
`corresponding tap weight multiplier 51 as an updated tap
`weight coefficient as well as to the multiplier 57 where it is
`
`Meta Platforms, Inc. Exhibit 1008
`Page 14 of 17
`
`

`

`S
`scaled down by a factor ol, (equal to less than unity) and fed
`back to the adder 56. Because of this scale-down feedback,
`the integrator operates as a leaky integrator which differs
`from normal integrators where the scale factor is unity. The
`leaky integration prevents the tap weight coefficient from
`growing indefinitely when the target signal, when there is a
`leakage of the target signal to the interference path (i.e., the
`outputs of filter bank 6) of the beamformer due to the
`inherent variability of microphone characteristics and posi
`tional errors of the microphones. Otherwise, the interference
`signals produced by the adaptive filters would become
`identical to the components of the signal in the main path of
`the beam former, and the resulting cancellation would sub
`stantially remove the target signal.
`However, in order to implement a beamformer having a
`wide range of rejection angles, a large number of micro
`phones (the Qvalue) are required for each group of spatial
`highpass filters in the filter bank. If a sufficient number of
`microphones is not provided, the degree of design freedom
`must be sacrificed, resulting in a beamformer having a low
`noise cancelling capability.
`Referring now to FIG. 4, there is shown an adaptive array
`beamformer according to a first embodiment of the present
`invention in which parts corresponding to those of FIG.1 are
`marked by the same numerals as those used in FIG. 1, the
`description thereof being omitted for simplicity. The adap
`tive array beamformer of this embodiment comprises a
`spatial highpass filter 16 and a canceler 17. Spatial highpass
`filters 16 includes M delay circuits 7-7
`connected
`respectively to the microphones 1-1, M leaky adaptive
`filters 8-8
`and M subtractors 9-9
`connected
`respectively to the outputs of the M delay circuits 7.
`The spatial lowpass filter 2, connected to the microphone
`array, provides spatial lowpass filtering of the individual
`microphone signals and summing the lowpass-filtered sig
`nals in the same manner as in the prior art beamformer to
`detect the target signal. The output of the spatial lowpass
`filter 2 is applied to all the leaky adaptive filters 8 as a
`reference signal as well as to the delay 3. The outputs the
`microphone array are passed through corresponding delay
`circuits 7 to subtractors 9 to which the outputs of leaky
`adaptive filters 8 are also supplied to be subtracted from the
`corresponding microphone outputs. The output of each
`subtractor 9 is coupled to the corresponding leaky adaptive
`filter 8 as an error signal to update their tap weight values.
`The M delay circuits 7 provide a delay to the microphone
`outputs so that they are time coincident at the inputs of
`corresponding subtractors 9 with the output signals of leaky
`adaptive filters 8.
`Each of the leaky adaptive filters 8 is identical in structure
`to that shown in FIG. 3. Correlations between the reference
`signal and each of the error signals are detected by the leaky
`adaptive filters 8. As described previously in connection
`with the prior art, the strength of a leaky adaptive filter for
`restraining the growth of tap weight is proportional to the
`magnitude of the tap weight value itself. As a result, if the
`optimum value for the tap weight coefficient (which mini
`mizes the error input of the leaky adaptive filter) is relatively
`large, the tap weight value cannot converge to the optimum
`value, resulting in a substantial amount of error from the
`optimum value. This implies that depending on the tap
`weight value the correlation capability of the leaky adaptive
`filters 8 differs significantly. Therefore, those signal
`components, which require a greater tap weight value for
`enabling their correlation to be detected, cannot sufficiently
`be removed, while those signals requiring allower tap weight
`value can be removed sufficiently.
`
`40
`
`45
`
`50
`
`55
`
`65
`
`5,627,799
`
`10
`
`15
`
`20
`
`25
`
`30
`
`35
`
`6
`With respect to the signal arriving in the assumed direc
`tion as well as to those arriving in near-assumed directions,
`the output of spatial lowpass filter 2 contains the same
`amount of such signal components as those detected by the
`microphone array, and the maximum tap weight value
`necessary for removing them from the interference path of
`the beamformer is as small as “1”. The leaky adaptive filters
`8 are therefore designed with a low maximum tap weight
`value so that the target signal components are completely
`removed at the outputs of subtractors 9.
`With respect to the interference signals, on the other hand,
`the output of the spatial lowpass filter 2 contains a smaller
`amount of interference signals than those detected by the
`microphone array. Therefore, the tap weight value necessary
`for the leaky adaptive filters 8 to remove the interference
`signals is much higher than “1”. Thus, the amount of
`removal at the outputs of subtractors 9 is much less in the
`case of the interference signals than in the case of the target
`signal components. If normal adaptive filters are used
`instead of the leaky adaptive filters 9, their tap weight values
`would be allowed to grow indefinitely, and as a result, not
`only the interference signals but the target signal compo
`ments are removed.
`Canceler 17 includes M leaky adaptive filters 10-10
`connected respectively to the outputs of corresponding sub
`tractors 9 to receive the interference signals detected in a
`manner just described. Each of the leaky adaptive filters 10
`is identical in characteristic to the prior art leaky adaptive
`filters. Although most of the target signal components are
`removed, there is still a small amount of their leakage at the
`outputs of subtractors 9. Due to the adaptive leaky integra
`tion offilters 10, the growth of their tap weight values due
`to the presence of such small amount of leakage of the target
`signal are restrained. The outputs of leaky adaptive filters 10
`are summed by adder 11 and supplied to subtractor 12 for
`canceling the interference signals contained in the main path
`of the beamformer.
`Since the output of each subtractor 9 contains only a small
`amount of the target signal, the latter is not canceled in the
`subtractor 12 even though there is a look-direction error.
`the leaky adaptive filters 8 of the spatial highpass filter 16
`operate in effect as variable spatial highpass filters. The
`degree of design freedom of the present embodiment is not
`less than that of Document 2 and a large look-direction error
`is allowed using a smaller number of microphones than in
`the case of Document 2.
`A second embodiment of the present invention is shown
`in FIG. 5 in which parts corresponding to those in FIG. 4 are
`marked with the same numeral as those used in FIG. 4. The
`beamformer of FIG. S differs from the first embodiment in
`that the leaky adaptive filters 10 of FIG. 4 are replaced with
`norm-constrained adaptive filters 13-13.
`As shown in detail in FIG. 6, each norm-constrained
`adaptive filter 13 comprises a tapped-delay line formed by
`delay elements 600-60
`tap weight multipliers 61-61
`connected to the delay-line taps, and adder 62 for summing
`the weighted tap signals. Update circuits 630-63,
`are
`provided which are connected to a constraint coefficient
`generator 69. Each update circuit 63 receives an error signal
`from the output of the beamformer from subtractor 12 via
`multiplier 64 where it weighted by the stepsize u. Correla
`tion between the corresponding tap signal and the weighted
`error signalis taken by a multiplier 65 and summed by adder
`66 with a tap weight value of a previous sample supplied
`from multiplier 67. The output of delay element 68 is scaled
`down by multiplier 67 with a constraint control parameter B
`
`Meta Platforms, Inc. Exhibit 1008
`Page 15 of 17
`
`

`

`5,627,799
`
`7
`from the constraint coefficient generator 69. To the con
`straint coefficient generator 69 is connected the output of
`multiplier 65 of each update circuit 63. The output of the
`adder 66 is supplied to the constraint coefficient generator 69
`as the output of the update circuit 63.
`Constraint coefficient generator 69 controls the constraint
`control parameter B such that the p-th power of norm L.
`(where p is an integer equal to or greater than unity) of the
`tap weight coefficients does not exceed a positive integer O
`using the following Equation:
`
`O
`
`(1)
`
`8
`A second spatial lowpass filter 15 may be provided as
`shown in FIG. 12. This second filter is connected to the
`microphone array to produce a signal which can be used as
`a reference signal, instead of using the output of the first
`spatiallowpass filter 2, for the leaky adaptive filters 8 as well
`as for the coefficient-constrained adaptive filters 14 of the
`previous embodiments. In this embodiment, the first spatial
`lowpass filter 2 is designed to form a mainlobe of greater
`widthin the assumed direction in comparison with the width
`of the mainlobe formed by spatiallowpass filter 15. With the
`wider mainlobe of the first spatial lowpass filter 2, the
`overall characteristic of the beamformer is fit to the char
`acteristic of this filter. This arrangement is particularly
`useful when there is a large look-direction error.
`What is claimed is:
`1. An adaptive array beamformer comprising:
`an array of spatially distributed sensors;
`a spatial beamforming filter connected to said sensors for
`respectively filtering output signals of the sensors and
`summing the filtered output signals to produce a first
`filter output containing a target signal arriving at said
`array in a specified direction;
`a plurality of first adaptive filters, each having a tapped
`delay line connected to receive said first filter output,
`coefficient update means for producing tap weight
`coefficients indicating correlations between tap signals
`from the tapped-delay line and a first error signal
`applied thereto, a multiply-and-sum circuit for weight
`ing said tap signals with said coefficients respectively
`and Summing the weighted tap signals to produce a
`second filter output not containing said target signal,
`said coefficient update means including restraining
`means for preventing said coefficients from increasing
`indefinitely;
`a plurality of first subtractors, each detecting a difference
`between an output signal of a corresponding one of said
`sensors and the second filter output of a corresponding
`one of said first adaptive filters and supplying the
`difference to the coefficient update means of the cor
`responding first adaptive filter as said first error signal;
`a plurality of second adaptive filters, each having a
`tapped-delay line connected to receive said first error
`signal from a corresponding one of said first
`Subtractors, coefficient update means for producing tap
`weight coefficients indicating correlations between tap
`signals from the tapped-delay line and a second error
`signal applied thereto, a multiply-and-sum circuit for
`weighting said tap signals with said coefficients respec
`tively and summing the weighted tap signals to produce
`a third filter output, said coefficient update means
`including restraining means for preventing said coef
`ficients from increasing indefinitely;
`an adder for summing the third filter outputs from the
`second adaptive filters; and
`a second subtractor for detecting a difference between the
`first filter output and a summed signal from said adder
`and supplying the difference to the coefficient update
`means of said second adaptive filters as said second
`error signal.
`2. An adaptive array beamformer comprising:
`an array of spatially distributed sensors;
`a first spatial beamforning filter connected to said sensors
`for respectively filtering output signals of the sensors
`and Summing the filtered output signals to produce a
`first filter output containing a target signal arriving at
`said array in a specified direction;
`
`where w is the tap weight coefficient at the i-th delay-line
`tap. By constraining the Lp value below the O-value, the
`growth of tap weights is restrained.
`As shown in detail in FIG. 7, the constraint coefficient
`generator 69 includes a calculator 70 for calculating the p-th
`power of norms. This calculator is formed by a plurality of
`circuits 71-71 for raising the corresponding outputs of
`the update cir

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket