`
`Li
`
`n for, 342
`
`Oscillators)
`tirrtend)
`total ene
`1, 551
`
`welocity is
`fia
`
`underdamped, 948 ‘Oscillatory monon
`4G
`electron
` throngh, 530
`Oscilloscop
`Oxygen,
`magnetic field
`anri
`‘Oxygen molecule, 268
`
`
`rotational frequency of,
`284,
`24
`‘Ovone, 714
`
`PP
`
`
`
`aciterr (5),
`
`air production, 923
`Parabota,
`60, 61
` Parallel axis theo
`Parallel-plate capacitor. Ser
`
`parallelplate
`Parallelogramrule of adelition, 17, 17
`Paramagnetic substances, 659
`Pare
`uclenss, O04
`Particle(s}, charged, electric and magnetic
`forces on, 641
`in magnetic field, magnetic force on,
`640, 659
`in uniformelectric field, 562, 562
`of, 926-928
`ntof, 15,
`15
`
`elementary, 932
`O31
` productic
`in box, B40-845, S40
`allowed energies for, 841-842, 842, A458
`allowed wave function for, 840-841,
`
`R45
`Schrdcliny
`jon for, H43-B844, S44
`
`in matter,
`
`
`interacting, potential energy and.
`182n
`interactions of, 9221
`mastenergy of, 208
`momentumof, changein, 199
`
`network de
`by, 148
`
`182,
`
`[82
`
` resonance, 95
`
`strange, 930-95],
`
` TESS,
`and str
`syst
`
`
` sof, 828.
`
`ional force between, S04.
`constant acceleration,
`|
`
`
`Nucleus(i) (Comin)
`size of, BO2—893, 893
`stability of, 893-895, #4
`volume of, and density, 893
`
`
`
`oO
`
`Occhialini, Guiseppe, 925
`Occultations, astranomic, 806
`
`Oersted, Hans, 522, 525, G97, 6377, 6
`Ohm, Georg Simon, 601, 60!
`Obmic materials, 601, 607, 627
`‘Ohm's law, 601, 627
`
`resistance
`and, 600-605
`Ohms(
`0, G27
`
`Ohl, on
`er, imterference im, 704
`
`
`Onnes, Heike Kamerlingh, 605
`Optical activity, polarization and, 722-723,
`729
`
`Optical stress analysis, 725,
`723
`
`
`746, 747
`Optics,
`fiber, 746—747_
`gee
`ic, 76
`
`ray approximationin, 732-733, 732, 747
`wave, 734-815
`Orbital, definition of, 871
`Orbital magnetic mat
` tum numbers, 858,
`
`Orbital magnetic
`R591,
`865-867,
`
`884
`Orbital quantum qumbers, 858, 8591, 465,
`BB4
`‘Orbit(s), Bohr, radii of,
`in hydrogen, 522,
`322
`circular, electrons moving im, 657, 637
`S15, 315
`satelll
`
`‘BY for,
`total
`
`elliptical, $09, 30% 311, 372, 314
` 15-316, 316
`satelli
`total mechanical energy for, 314
`Order number, of fringes in light waves, 787,
`09
`Order-of-magnitude calculations, 1-11
`Oscillating body, with simple harmonic
`-3i
` methon,
`
`$48= 34, Sal
`Oscillation(s), damped,
`drag force and, 48
`forced, 349-351
`frequency «
`af mass on spring, 40
`
`51
`ce, 343-344
` 339
`
`S59,
`period of, of mass on 4
`348
`Oscillator(s), critically damped, 348-549,
`damped, 48,
`348
`amplitude versus frequency for,
`350, 350
`overdamped, 348, 349
`
`
` simple harmonic, acceleratic
`energy of, 341-344
`kinetic energy of, 41,
`potential energy of, 341
`
`
`
`
`
`NN
`
`ambu, Yoichiro, 939
`Navigational instruments, 756
`| Ne'eman, Yuval, 935
`Neutrino, 907
`Neutron(s), and proton interaction, Yukawa’s
`theoryof pion exchange and, 940,
`Oo
`charges and masses of, 527t
`masses of, #92, 8921
`slowing down of, by collisions, 205
`Neutron number, 891, 912
`Neutron star, 282, 283
`Newton,Isaac, 2, 80, 86, 304, 307, 730
`Newton (unit), 87
`Newtonian mechanics, 1-2, 227-228
`Newtonian principleof relativity, 228=230
`Newton-meter (N-m), 143, 1441
`Newton's law of universal gravitation, 129,
`03-207, 308, 308, 309, 324
`Newton's laws of motion, applications of, 93—
`100, A, 18141
`first, 83-84, 100
`and inertial frames, 84
`objects in equilibrium and, 94-95
`
`relativistic form of, 247-252
`second, 46-89, 96-97, 100, 199, 199
`accelerating objects and, 96-97
`alternative statement of, 195
`component form of, 87
`for system of particles, 212, 218
`uniform circular motion and, 115-120,
`HS, 133
`third, 90-03, 97, 92, 100,
`
`Nichrome wire, resistance of, 603-604
`Noble gases, 873
`| Nodes, position of, 394
`Nonohmic materials, 601-602, 607, 627
`
`Nuclear force, 890-89], 894,
`912
`
`binding energy of nuclei and, 899-900,
`ao
`» Nuclear magnetic resonance, 35, 56,
`597
`
`clear spin, 895, #95, 915
`Nuclear
`reactor, 253, 254
`Nucleon,binding energy of, 899-899, 898
` wmnucheus, energy requiredfor,
`
`removal
`S00)
`Nucleus(i), binding energyof, 897
`daughter, 004
`density of, 893, 893
`heavy,
`fission of, 900
`masses of, 892
`parent, 904
`properties of, 891] -897
`
`radius of, §
`
`112
`
`dridex
`
`
`
`Mechanics (Comtinued)
`Newtonian, 227-228
`quantum, 2, 816, 838
`interpretation of, 37-840
`
`Melting process, 505
`
`Mendeleev, Dminri, 872
`Mercury, resistance versus temperatitr
`608
`Mercury thermometer, #41, 44/, 442
`Meson(s), 824, 926
`heavy, 937
`Meson number, conservau
`
` Meter, defini
`Michelson, All
`
`
`
`1, 251, 795
`Michelson inte
`
`Michelson—Morley experiment, 240-251,
`231n
`Microfaradls, 573-
`Microscope(s), electron, de Broglie wave-
`lengths and, 830-831
`Scanning Cunimeting, B46
`Microwave: ty
`nn, 44, Ad
`Microwaves, 710
`Mirror(s), 772
`concave, 759-76, 759, 760, 704
`
`convex, 761-762,
`76d, 762, 764
`761-762, 76)
`formed by, TGi=
`
`
`
`image polit
`Lloyd's, 702,
`
`optical lusion using, TB, 734
`
`parabolic light rays reflected by, 760
`paraxia
`
`principal wxi
`ray diagrams bor
`rearview, 758,
`7!
`
`
`for,
`7
`sign convention
`
`spherical, images formed by, 754
`
`76, 761
`sphencal aberration on, 759, 761?
`1 by, 758-759,
` 76t,
`
` Molecule(s),
`
`root-meamsquare speed of, 45-4,
`#at,
`456
`Moment (s), of inertia,
`for systern of pau
` id beovely,
`
`
`
`Momentum (Continued)
`angular, 278-281, 278, 293, 870, BR4, Aa5
`and space quantization, 866, 566, 869
`and torque, 279, 293
`conservation of, 281-283, 282
`Kepler's second law and, 311-812,
`ait
`nuclear, #05
`of electron, 865.
`of photon, 877
`quantization of, 284-285, 657
`in Bohr made], 329-830, 830n
`spin, 285
`of electron, 868-869, #68n, 869, 871
`total, 261
`conservation of, 14— 195, 247, 252-253,
`22
`definition of, 247
`delivered to absorbing surface, 715
`delivered to reflecting surface, 715
`
`199=201
`angular, 278
`
`linear, 195-198, 217
`conservationof, in two-particle eystem,
`196,
`J 9%
`
`definition of,
`
`lawof conservation of, 196-197
`of electron(s), 248
`uncertainty in,
`AAT
`
`of particle, change in, 199
` relativistic equation for, 247-248, 257
`total, 196
`ef sytemof particles, 212, 213-214,
`2l¢4
`on of, 808, 308
`¢ between, SM
`
`escape sponds for, 417
`Morley, EW, 231
`Moseley, Het
`nty GJ. 878
`
`for xray lines, 878
`Moseley ple
`Motion, acocleraicd, 41
`and force, 85
`ular frequency of, for pendulum, 345
`ular, 265, 243, 2
`280
`
`
`120
`
`Newton's second law and, 115=
`
`115, 134
`direction of, length contraction and, 240,
`240
`in one dimension, 29-53
`in plane, 59-60
`
`nt acceleration,
`instraight line under cons
`4A al
`tin ove with constant acceleration, 57-60
`laws of, BO- 107, Ser alu Newton's laws of
`mation,
`
`Motion (Continued)
`linear, under constant acceleration, kine-
`matic equations for, 265, 2650
`of disturbance, 361
`of mass attached to spring, 336-341, 336,
`37
`of satellite, 311, 311
`of system of particles, 212-214
`on curved track, 178, 178
`one-dimensional, with constant accelera-
`on, 39-41
`orbital, and hydrogen atom, 303-331
`oscillatory, 382-359
`period of, for pendulum, 44, 344, 345
`for physical pendulum, 446
`periodic, 392~ $59
`planctary, 311, 321
`and satellite, energy considerations in,
`313-318, 317
`Kepler's laws of, 307, 324-325
`projectile, 60-67, G1, 62, 66, 72
`quantity of, See Momentum.
`rolling. of rigid body, 289-290, 289, 290
`rotational, 262-302
`under constant acceleration, kinematic
`equations for, 265, 2650
`work and energy in, 288-289, 283
`work-kinetic energy relationship for,
`2Ao
`
`simple harmonic, 334-886, 334
`acceleration in, 334, 351
`amplitude of, 338
`angular frequencyof, 333-394
`displacement versus time for, 333, 333
`for mass—spring system, 341, 343
`frequency of, 953, 351
`period of, 333, 551
`phase constant of, 393
`phase of, 333
`properties of, 345
`velocity in, 334, 351
`uniform, 84, 54
`uniform circular, 67-69
`wawe, 360-388
`with velocitydlependent resistive forces,
`
`1
`26
`
`Motion diagram(s), 37-38, 3#
`
`Motor, power delivered by, 158-159, 158
`Motorcycles,
`racing at relativistic speeds, 246—
`247, 246
`
`Muller, K. Alex, 606
`Multiplication, distributive law of, 146
`Muonis), 287, 237, 239, 925
`
`
`
`
`decaying, 237-258, 238
`
`Musgrave. F. Story,
`303
`Musical instrument(s), sound wave patterns
`produced by, 406, 406
`
`stringed, frequencyof, 399
`warming up of, 402
`
`
`
`Petitioner Intel Corp., Ex. 1038
`IPR2023-00783
`
`
`
`
`
`
`conve
`
` sigpRefraction, am images formed|ol,
`7 hinekew (i
`
`a4
`
`and wave
`797
` niggas,
`micasut
`at
`
`
`
` 7.
`A=736, 735, 738
`of light,
`eld
`Refrigerators.
`261
`Relativity,
`4-257
`
`principle of, 228-230
`principle of
`35)
`special, 228, 242-233, 257
`quences of
` and Ohm's how, 600—605
`
`Quarks (Coutinurd)
` &, SS6t
`properties of, 15
`
`
`quannuim chromedyn:
`
`Quasar,
`recession of,
`946
`
`mics ave, O90
`
`RR
`
`17
`
`
`
`
`
`
`
`
`
`
`
`Panicle devector, at CERN, Geneva, Switeer-
`Photoelectric effect, 731, 820-823, 820, $22,
`B47
`land,
`920, 942
`
`for sodium, 822
`Panicle dynamics, numerical modeling in,
`126-129
`photon theory of light and, 821-822
`
`Photoelectric effect equation, 821
`Particle physics, problems and perspectives in
`
`48
`Photoclectrons, 120, 822, 647
`
`731, 782, 818, 818 847
`Photon(s),
`263
`adian,
`Particle physics, and coamology, 920-054
`Standard Model in, 941-942, O47
`and electromagnetic waves, 826-827
`Racliation, 483-484, 891)
`Paseal, Blaise, 419
`angular momentum of, 877
`black-body, 817, 817, B18, 818, 347
`
`Pascal (unit), 417
`emitted by radioactive decay, 989
`energy in, 817-814, 817
`Pascal's law, 419, 431
`energy of, 251, 731, 825, 827
`electromagnetic, 467
`
`momentumof, 828
`Path difference, arm
` phase difference, 740
`scanered, B26
`
`Taneous emission of, by atom, 8B), Ai)
`of Tight w
`
`
`7 from human boay, 41therma
`Path inte
`lated absorption of, by atom, 880, 880
`Path
`ted emission of, RAO, S00
`per
` ¢ in phase
`three forms of, 901-902, On)
`
`delivered byelevator motor, 158=159, 158
`difference in, and differ
`virtual,
`925, 925
` pressure, and momentum, 715
`Radiat
`
`
`delivered to rigid body, 288
`Photon theoryoflight, photoelectric effect
`angle, 392
`exerted
`ace, 715
`absorbing sw
`and, 821-K22
`dissipated by resistor, 610-611, 627
`Paul, Wolfgang, 860, 860, 871, 877
`momentum and, 715-717
` nspectrum, of Big Bang, 945, 045
`Resistance
`electrical energy and, 610-612, 627
`Physical quantities, 3, 4
`Pauli exchision principle, 871-872, BBS
`RadliaRadio am
`
`instantaneous, 157, 159
`symbols, dimensions, and units of, A3=A4
`Pendulum(a), conical, 118, 748
`definition of, 601
`
`
`Physics, atomic, ao
`driven, 349
`mt. G14, 628
`Radio wave
`
`modern, 2
`
` 377, SRS
`
`motion of, simple harmon
`finding of,
`(18, 678
`Radioactive
`dating, 909
`nuclear, 890-910
`47
`Radioactive nuclei, natural series of, 91 Dt
`of resistors connected imparallel, 616
`
`
`Powers, algebraic, A.14
`particle. SeParticle physics
`periodof
`of several resistors in series, 614, 628
`Radioactive substance, activity of, G02
`Powers of ten, 6, it, AL2-A13
`quantum, 816-854
`physical, 346-347, 346, 351
`board, 615
`half-lifeof,
`
`reson:
`theories of,
`1
`Poynting vector, 713-714, 713, 724=725
`nce phenomenonand, 350)
`of conductor, 600-601, 627
`Radioactivity, 901
`for wire, 717, 717
`Picofarads, 573
`of nichrome wire
`605-604
`artificial, 911
`
`Pressure, 416-418, 431
`
`Pion({s), 9
`26
` requeney of motion for, 345
`
`aver wire, (
`natural, 911
`
`absolute, 421
`
`equation of
`motion for, 345
`exchange, between protonand neutron,
`tivity
`of,0S
`Resistivity (ies),
`ch
`Radium,
`in, with temperature,
`
`bed of
`nails and, 417, 417
`925, 925
`motion
`of, M4347
`
` ; OOF
`GlHt=é
`ted in, 0G
`dh
`.
`
`
`energy lit
`
`
`
`definition of, 417
`comductiviey and,
`04-000, 609n
`Pipe, closed atone end, navural frequencies
`period of motion for, 44, 44, 3
`radioactive decay of, luminous watch and,
`of, 400, 401
`gauge, 421
`904
`lime exposure of, 372
`(2,
`G27
`definition of,
`im fluid, 418421, 478
`qias, Arno AL, S4d=t65, Od, 940
`
`
`
`of various mater
`openat both ends, natural frequencies of,
`602
`Rainbow, 730, 740-741, 747
`400, 401
`formance, cocficients of, 5O0—5(H
`deviee for measuring, 416
`symbol fre, 0kn
`Rarefactions, of soundwaves, S78
`
` Period, 68
`resonance in, 405
`measurement(s) of, 421
`
`39.
`nt al, 4
`temperaturecoeff
`Ray approximation, in geometric optics, 732-
`Quadratic equations, A.15
`
`devices for, 421, #21
` ror
`Pitching m:
`ic, recoiling, 197-298, 197
`for mass—spring system, 337-334), 334,
`wr (s), definition.
`‘602
`743,
`732, TAT
`139
`
`Quantization, of ap
`k, Max, 751, 818, #78, 819, 847, B57
`rm
`eal gas, molecular model tor, 451-454,
`
`28h
`
`Ray diagrams,
`for mirrors, 762-764, 767
`
`in parallel,615,675, 616
`451, 456
`stant, 264, 657,
`731, 81a
`af motion, for pendulum, M44,
`3441, 345,
` mses, 771,
`in series, G14,
`6
`
`77
`
`racha
`Mah
`
`Quantized oscillator, 20
`and momentum, 715
`
`Plane of pe
`20, 721
` 1, 49
`Rayleigh’'s criterion, 801-802, 402, 810)
`
`Quantum chromodynamics.
`
`and in parallel, 613-619, 6/4
`i< mation, 433,
`al simple harme
`exerted on absorbing surface, 715
` orkie rection,
`Plane polar coc
`
`19, 19
`
`oe, 9
`Rays, gamma, 719.
`
`7-359
`Pe:
`Planet(s}, data on, 310t
`“Quantum-corral,”
`#76
`power dissipated by, 10-611, 627
`momentum and, 715-717
`syrtbrol
`a2
`Rea
`tathermic, 912
`‘Quartus
`
`nics, 2, 816, 88
`
`ments, 872
`Peri
`fic
`table of ek
`
`
`
`escape speeds for, 317¢
`
`variation of, with depth, 418=421, 418
`exothermic, 912
`interpretation of, 33
`ASI
`three, in parallel, 618-619, 6/8
` rowel
`Pressure amplitude, in sound waves, 378
`motion of, and satellite motion, energycon
`915
`binnnitin
` vlution,
`
`
` Quantum numberis).
`:
`and, 875
`effectivesize of atoms
`jonin, S15=318, 347
`allow 1,
`Prince Rupert drops, 784
`
` neability of free spae
`Rea
`312, O13
` aperture, 802
`Pe
`‘648, 660
`sof, S07, 324-525
`for atom up
`Prism, dispersion of light by,
`
`Tal, 741,
`a72
`Mo
`Reactors, nuclear,
`for slit, B02
`44
`
`orbits of, $09, 309, 30%
`Permittivity, of free space, 527
`858, B50, 865, 884
`Reet
`
`of eves oF cat,
`HUF
`rular coordinate system, 13.
`
`
`
`
`total internal reflection throu
`won, 311
`Phase, changein, die to reflection, 72-798,
`
`
`Ref
`
`etic, 858,
`859, 865-867, 884
`
`1g surface, momentum deliv
`745
`792, 793
`4, Bidh, BR4
`715
`Polarization
`Probabilitv(ies). entropy and, 510
`
`Phase angle,
`See Phase comstant
`Reflection, angle of
`spin magnetic, 860-861, S84
`
`Phase changes, 468
`for electron in hydrogen, 863
`optical activity and, T22
`chan
` wie che to, 7
`Probability density, 838,
`840, 840
`Quantum physics, 816-854
`
`description of, 470
`plane of, 720, 721
` Mn state
`
`Polarizer, 7
`Ou
`S18, 847
`latent heat and, 468-471, 486
`tom, 862, 862, #63,
`
`radial, for hydrogen
`M7
`t
`Ntyd
` se CONS
`Quark model, or
` microwaves, 72%
`Quarks, 151-1
`nection, T2E
` color anc, &
`
`Problem-solving straicgy, 13=14
`difference in, and difference in path
`
`traction betwee
`accelerated motion, 41
`21
`length, 992
`
` atiding vectc
`of simple harmonic motion, 355
`Population inversion, 88)
`charmed
`30, 32, 33, 34
`Position-t
`30,
`Phase difference, pathdifference and, 790
`applying Ganss's law,
`farce bew
`Position vecte
`
`calonmety pr
`
` colored, 9—04
`5 functi
`of time, 58, 5% 62
`capacitors
`3
`nd capacitance, 587
`ir
`collisions, 2
`901, 922
`
`
`Li4
`
`Index
`
`Jnadex
`
`Problem-solving straicgy (Confined)
`ic
`consery
`
`of energy, 177
` eh
`ds, 534
`
`potential, 570-571
`eh
`Kirchhotf's rules, G20)
`
`tenses and mirrors, 72
`
`objects in equilibrium, 2
`resistors, 617
`voltage, 575
`
`displacement vector of,
`2
`horizontal rangeof, G3, 67
`maxi
`
`tajectory(ies) of, 60, b0n, 4, 6#
`Projectile motion, 60-67,
`él, 62, 66, 72
`
`Propulsion,
`rocker, 214-217, 215
`Protan(s)
`neutren
`
`
`theory of pion exchange and,
`oH
`Change(s) of, 527, 892
`
`and masses of, 527t
`
`masses of, 892, 8921
` civic Held,
`imetion of, in uniform ¢
`563
`
`moving in magnetic field, 642-648, 642
`
`
`|
`speedy, energyof, 2
`) Proton accelerator, H2
`Proton volts, 560
`
`
`Proton-preton collisia
`Piolemy, Claudius, 307
`Pulse, of wave. SerWave, pulse of
`
`) Pythagorean theorem,
`236, 452, A.20
`
`
`
` 63,
`
`6
`
`208
`
`Positron(s) (Continurd)
`and other antiparticles, 922-024
`production of, 925
`Positron decay, 910
`
`Potassium, work function for, 823
`Potential, clectric, Ser Electric potential,
`Pot
`al difference(s), 559-560, 588
`
`fd electric potential, 559-560
`in charging of capacitor, 623
`in uniform electric field, 561-563
`Potential energy. See Energy, potential.
`Powell, Cecil Frank, 025
`
`
`
`
`
` rent, 820-821, 32]
`
`
`
`
`
`Petitioner Intel Corp., Ex. 1038
`IPR2023-00783
`
`
`
`Stefin’s law, 484
`Stepped leader, 872-573
` acd “out of phase,”
`Stereo speakers,
`con
`7a9
`
`riment, 870)—871
` serlachexp
`
`icaieo
`d, B67, 867, 860-870
`quid
`
`
`
`miial, 821
`Stopping pot
`J=451, 930, 032
`
`
`Strange particles, 4
`
`os0—931_ 949
`and strangen
`Strangeness, 925
`conservation of, 931
`law of conservation of 931
`940-951, 40
`Streamlines,
`
`27, 431
`and equation of ec
`
`Stress analysis, aptical,
`72
`
`Stud finder, electric
`tomic,
`Subshells,
`
`
`418
`Suction cur
`Sun, as source of ultraviolet waves, 719
`
`escapespeeds for, 3171
`Superconducting magnets, G1
`
`8), 605-606, 616
`
`ical temperatures of, 605, 60t
`
`
`xidesbasedd, 60M
`gbemperature copper
`resistance-temperature graph for, 605,
`Hy
`43, 517
`
`
`raed inv ference of sinu
`icon,
` waves, 390—
`
`4, OF
`
`Superposition principle, 370, 376, 371, 3i
`uF
`
`elecromagnetic waves and, 708, 708
`
`linear waves and, S70
`Swinson, Derek, 262
`
`
` Telescope(s},
`mia Narrows Bridge, 350), 357
`
`radio, 702
`resolution of, 803
`
`
`Television picture,
`ghost images on, 78!)
`
`Temperature(s), absolute, 442, 445,
`443, 455
`45:
`and average molecular kinetic energy,
`ie, 456
`ar! kinetic theory of gases, 459-461
`440
`and zeroth law of thermodynamics,
`141,
`455
`cha
`in resistivity with, 604-605, 605
`1. 515-514
`chime (4)
`err
`
`transfer mechanisms in,
`47468
`irce expansion of
`gas and,
` y of molecules and,
`ed
`
`nitty) vity, G4
`re
`of
`1s materials, G2
`
`iK1
`
`Imadex
`
`Li7
`
`
` Hhernemeters and, 441—
`
`es),
`141
`to
`
`481
`
`m1
`
` A
`Tempe
`4a
`Tension, defi
`
`Tesla, 40,
`Thermal conduct)
`4
`Thermal contact,
`Thermal energy, 18!
`aver
`ion of tee
`
`469
`equiliirium, 440-44
` expansion, of solids and liquids
`
`Thermal expansion joints, 445, 44
`Thermal radianon, 817
`from human body, 815)
` al speed, average, MSH, 600n
`The
`Thermistor, 605
`Thermodynamic
`first lawof, 47!
`applications of
`
` tesimal ch
`for infix
`hes
`462-492
`
`of heat engines, 476
`sae
`
`49din, 495
`nd law of, 4M,
`
`
`3,514
`alternative statement of
` 408, 502-508
`nT
`eMIropy statement
`temperature and, 40—441
` law of,
`
`Thermogram, #62
` voor
`The
`wis), 441-445, 447
`alcok
`
`ales, 4-444
`and temperanure
`4442
`discrepancies betwee
`$42, 442, #43
`gas, constantvn
`mercury,
`44, #4,
`4
`
`am resistance, 605
`bottle, 484,
`48d
`
`Ho
`
` Thin-lens equations, 76
`Thomson, George P., 830
`Thomsan, J J.. 86
`Threshold energy, #12
`in rocket propuls
`Thrust,
`Thunder, und produced by
`
`Time,
`approximate wales
`arrow «
`
`current versus, charge
`for disthar
`dilar
`
`Arh
`‘
`
`proper
`
`
`ft
`
`16,
`
`B,
`2
`f,
`BM,
`ad, 234
`
`244
`$9, 42
`
`A
`
`\
`
`99,
`
`f,
`function
`
`39
`of,
`
`68, 34
`
`
`
`ee Speed(s) (Comtinned)
`
`molecules, 454,
`
`4
`
`in copper wire, 599, 627
`cxcape, 316-317, 316
`
`for planets, Mooi
`
`high, air crag
`at, 12
`instantanecus, 32
` instantaneous angular,
`linear, and angular, rela
`
`266
`of electromagnetic wave, 706
`of electron, 227
`of light, 706, 70Gn
`
`electromag
`ef light in silica, 739
`af pulse, 363
`of sinusoidal traveling waves, 366
`of tranwerse waves, on strings, 372~374,
`72, 373
`of wave, 364
`root
`
` terminal, ct falling throughviscous
`
`
`liquid, 125, 123, 134
` 126,
`ofobjects falling throughair, 1
`126
`thermal, average, 608-609, 604m
`
`averse, 369
`ged, 554
` rolling downincline, 201-202
`uniformly charged, 534
`
`electric potential af, 569=570, $70
`
`895, 495, O18
` nuclear,
`of electron(s), 658, 658, 860, 560, 867-871
`S680
`
`Spin angular momentum
`SH, R6R—869, S6Hn, 869 ATI
`Fs, 80-86)
`
`» Vesto Melvin, $45
`Willebrord, 735
`
`Snell's law, 735, 735n, 736-739, 744, 748,
`765-766
`Snowshoes, 4/7
`Soapfilm bubbles, interference in, 797, 706
` Sodium, photoelectric effect for, B22
`
`Sodium chloride,
`crystalline structure of, 808,
`sas
`Sodium spectral lines, resolving of, 807
`Solar cells, nonreflecting coatings for, 796,
`705
`
`Solar energy, 717
`Solar system, dust particles in, 716
`Soleneiel, ideal, tit
`inductance of, G5
`
`calculation of, 646
`magnetic field of, 655-057, 655, 656, 661
`Solid(s), 415
`
`number of
`atoms in, 10
`thermal expansion of, 445—448, 445, 446
`So
`crfeld, Arnold, 858, 860-86)
`
`wel wawes, N78,
`IFN
`
`Space quantization, 884
`for hydrogen, 867
`orbital angular momentum and, 866, 866
`spin angular momentum and, £69
`Stem—Gerlach experiment and, 867, 867,
`S6-870)
` pal, 26
`Spaceship(s), length contraction and, 239
`relative velocity of, 246, 246, 247
`
`gular,
`241, 247
`
`Speakers, amplifier connected “out of phase”
`w, 599
`two, driven by same source, 393, 397
`Specific heat. Ser Heat, specific.
`
`Spectrometer, diffraction grating, 805, #05
`Spectnum(a),
`absorption,
`320
`
`
`for hydrogen, 7/4
`atomic, and Bohr theory of hydrogen, 319—
`
`at
`emission, 319, 379
`for
`hydrogen,
`320, 320
`
`ire
`anelic waves, TIR—T2O, 7/8,
`
`of visible light, 740, 74)
`of x-rays, 877-878, 877
`radiation, of Big Bang, 945, 945
`visible, of
`ht, 319;
`379
`
`Speed(s), 46, 56, 61
`angular, andlinear, relationship between,
`266
`4
`average angular
`
` ne acces constant, and canst
`constant linear, OF
` drift, 6), 607-608, 627
`
`ion, 42
`
`
`
`|
`
`|
`
`|
`/
`
`|
`
`Savart, Felix, (48
`Scalaris), 14-15, 23
`
`vector multiphed by, 18
`Scalar producr(s), 146, 147
`af two vectors, 18
`work expressed as, 116
`
`Scanning tunneling microscope, B46
`Scattering, Compton, 826.
`elastic, 912
`inelastic, 912
`Scattering event, 912
`
`Schrodinger, E
`S38, 843, #47
`Schrédinger wave
`equation,
`834, 543-844,
`
`B48
`applied io hydrogen atem, 856, 858
`
`for particles in box, 43-844, #44
`time-independent, 845
`
`Schwarzschild radius, 318, 718
`Scienaific notation, ALT=A1S
`Scuba diver, 415
`
`Second, definition of,
` Scliinductance, 643-686, 647
`Self-induction, 671
`Semiconductor(s), definition of, 525
`
`examples «
`resistivity values of, 605, 60°F
`Series expansions, A.22
`
`Sewer pipe, vent of,
`40-451, #0
`Shells, atomic, 459, RU,
`BRS
`
`SI system, 4,
`
`SI unit(s),
`of activity,
`
` of capacitance
`651
`
`
`
`tic Hus, 67:
`
`etic moment, 647, 660
`
`of mass, 4,85
`of power, 157
`af Poyn 1 veck
`
`of pressure, 417
`nee, GOL, 627
`
`
`
`Significant
`ures, 11-12
`Silo, 424
`Silver wire, resistance of, 605
`Stmultaneity, and relativity of time,
`
`235
`timedilation and, 255
`hs, 236,
`Singleslit aperture, resolution of, BOD-H02,
`sat, 802
`
`on, TOR, 798, 799
`Sangle-slit difft;
`Sinus
`dal wave.
`See Wave (s), sinusoidal.
`Siren, of speeding ambulance, 382
`
`L16
`
`Jnedex
`
`Resonatoris), 818-819, #19
`
`allowed energylevels for, 819, 879
`Rest energy, 250,
`
`Restoring force, 149-150
`Return stroke, 573
`Reversible process, 496_ 497, 497, 514
`Revolving ball, on herieontal frictionless sur-
`face, 283, 283
`Richter, Burton, 937
`Righthand rule, 264-265, 264, 271-272, 270
`and magnetic force, HO, @7f
`direction of magnetic field surrounding
`wire and, 44, 649
`vector direction and, 647, 647
`
`Rigid body(ies), equilibrium of, 274=277,
`273, 274
`moments of inertia of, 286, 286
`power delivered to, 288
`
` uniformly charged, electric potential duc
`
`
`
`524
`
`
`569
`to,
`
`Ripple tank, 743
`Roadways, barked, 117
`Rocket, in space, 217
`W4-207, 215
`
`Rocket propulsion,
`Rodis), charged, elecunic field duc to,
`595, 533
`cd, oppositely changed, 824,
`ig, S47, FF
`
`
`
`Room, area
`of, measur
`Rotating ball, 121,
`(27
`Rotating rod, 287-288, 247
`291,
`291
`Rotating steal,
`200:
` ating WE
`
`1, of rigiel bovis,
`| dynamics,
`‘
`
`
`
`26, G4
`Rubbia, Carlo, §
`“41, B56, BOO, ROZ, OG, GIT
`Rutherford, Err
`
`Rydberg constant, S20
`
`$S
`
`alam, Abdus, 41
`, Allan R.,6
`
`Satellive,
`Earth, 310, 370
`
`aynchronous, S14
`in circular orbit
`s14—315,
`313
`t15-916, 316
`inelliptical orbit
`
`
`and planctary motion, energy considera-
`ons in
` Saturn, image take
`
`
` ANCLEH
`
`
`) Spontaneous decay, 905
`Spreadsheet problems, A.S3—/
`
`Spring, force constant of, 149
`motion of
`mass attached to, 396=%41, 336,
`
`330
`
`potential energy seored im, 108, 169
`stretching of, work required for, 151-152,
`152
`to measure force, 82-83, 83
`tworborty
`sions with, DO, 20
`k done
`149-151,
`150
`
`force, 149-150
`.-
`1 Model, 94)
`|
`
`r
`ticle physics, 941-9482, 4)
`283
`a4
`7K),
`SON
`“7
`
`
`
`Petitioner Intel Corp., Ex. 1038
`IPR2023-00783
`
`
`
`Index
`
`Li9
`
`366
`lar,
`articles, #28-851
`
`
`
`705
`4. 704-705
`
`Universe (Continued)
`expansion of, duration of,46-947, 946
`evidence of, 045
`history of, from Big Bang to presenr, 945,
`ond
`missing mass in(?), 47-048.
`total energy of, 10-181, $13, 323
`Uranium, 890
`
`vV
`
`1.18
`
`Index
`
`7
`Wavelets,
`Wave(s} (Continued)
`Velocity (Continued)
`Time ((Gorstinwed)
`Ware(s) (Continued)
`Waive numbe
`relative, 246, 246
`versus current, for RE circuit, 687-688,
`speedof, Std
`linearly polarized,
`
`
`687, 688
`7H4
`Wave optics,
`square, harmonic synthesis of, 407, 407
`Maxwell's eqquati
`tangential, 266, 266
`Time constant, 624, 628
`transformation, Galilean, 245
`standing, 389, 390, 40%
`Wave properties
`photons and, 826-8:
`
`Lorentz, 244-245, 257
`of RLcircuit, 687, 688-689, 689
`Wave speed, 307
`amplitude of, 594
`plane, 713
`Wave velocity,
`formation of, 395-396
`inverse, 245
`Ting, Samuel, 047
`production of, by antenna, 711-713, 712,
`
`Weber (unit), 675
`jams, 400-405
`qe
`transverse, 364
`Tornado, 428-429
`
`Weight, 89
`of, energy associated with, 395,
`Velocity-time graph, 35-36, 36, 37, 39
`properties of, 705-706, 71
`4
`
`Toroid, magnetic field created by, 654, 654,
`
`and foree, R1
`IS
`661
`Velocity vector, as function of time, 58, 59
`of, 718-720, 7/8, 725
`spectrum
`yd mans, 86, 100
`
`patterns of,
`im stretchedstring, 39%
`Vent, sewer gas and, 430-441, 430
`Torque, 270-271, 270, 271, 293
`speed of, 706
`
`ry
`707
`Venturi tube, 429, 429
`rminations of an moving ele
`traveling in opposite directions, wave pat-
`and angular acceleration, 277-278
`superpositionprinciplh
`1, 100
`terns of, 34-395, 305
`acuum,object falling in, 127, 127
`Very Lange Array, telescope af, 702
`and anpular momentum, 279, 205
`
`wave equationfor,
`space, 7
`in free
`
`
`e and, 39-00, #9
`wave function
`f
`gravits
`Van de Graaffgenerator, 558
`wavelength
`and periodof, 708, 708
`Vibrating hall, standing waves on, 389
`and vector product, 270-273
`
`definition of, 270
`es amd, 464
`Vibration, modes of, 300
`van der Meer, Simon, 926, 41
`loss of, cab
`superposition
`ane,
`
`frequencyof, 461
`normal, 396
`infrared, 719
`Vaperization, latent heat of, 468, 46%
`magnitude of, 271
`g, Steven, 941
`andinterferenceof,
`2
`superposition
`
`Vascular flutter, 430, 430
`transmission of, 374-375, 374, 375
`angular acceleration of, 2A6—%
`
`net, on cylinder, 272-273, 272
`
`‘of vocal cords, fundamental frequency and,
`fight, fringes in, order number of, 787. 809
`407
`
`Vector(s), 14, 15, 16, 23
`transere, 362,
`3462, 382, 707, 707
`
`rotating, 266
`on current loop, 647
`intensity of, douwble-slit interference pat-
`
`Viscosity, 425,
`addition of, 16-17
`
`tern and, 74)—791, 790, 791, S08
`in uniform magnetic field, 5-647, 646
`Wien's displacementlaw, 818
`speed of, 372-374, 372, 373
`onstrings,
`Vocal cords, vibration of, fundamental fre-
`Wilson, Robert W., 44-945, OF4, 40
`using components, 15-21
`on planet, 311
`transverse traveling, one-dimensional,
`
`path difference of,
`787, 792
`
`
`365,
`367
`
`components of, 18-19, 19 20
`
`quency and, 407
`vector expression for, 647
`Windshieldwipers,
`interminent, 625
`polarization of,
`720-724
`Volt(s), eheewon, 251, 660
`Wire(s), carryi
`direction, right-hand rule and, 647, 647
`Torque vector, 271, 277
`
`traveling, 362, 362
`
`unpolarized, 720, 721 Urrentinopposite dinec-
` thons,
`
`651
`linear, 370, SK2
`Torricelli, Evangelista, 421
`displacement,
`22-23, 30, 55, 56
`proton, 560
`on stretched strings, 370, 371
`Torsion bal;
`. 524, 524, 716
`cunmentcarrying,
`b
`of projectile, 62-68, 62
`Voltage, 575
`magnetic field cre-
`
`and superposit
`m principle, 370
`hwo, of different frequencies but equal am-
`ated by
`Hi, 653, 634, 560
`Trajectory(ies), of projectile, 60, 60n, 64, 64
`multiphed by scalar, 18
`open-circuit, 613
`
`
`linearly polarized,
`plitude, resultant of, 404, 405
`
`
`Transformation, Galilean, 243=244, 245.
`terminal, of battery, 612, 612
`
`negative of, 17
`vector superposition af, 740
`formed into
`circular loop, 649
`longitudinal, 3
`of coordinates, 229-230, 229
`Volume, dimensions of, Bt
`
`matter, 838, 847
`magnetic field due to, 69, 649
`position, 55
`types of, 362-363
`Lorents, 257
`as function of time, 58, 59, 62
`nichrome, resistance of, 63-614
`Volume expansion, average coefficient of,
`frequencyof, 828
`water, interference pattern involving, 788
`
`plastic araular
`inverse, 245
`in center of mass, 210-211, 216
`446, 456
`universal nature of, 830
`oscillations of, 401-402
`ng with bar magnets encie:
`
`Volume flow rate, 427
`mechanical, 360, 96)
`surface,
`360, 362, 367
`
`Lorentz equationsfor, 243-47, 247
`Poynting, 713-714, 713, 724-725
`cling, 654-655,
`639
`
`Transmission, electrical, 467
`von Laue, Max, 807= Ae
`
`mation, 360-388
`properties of, 16-18
`Poynting vector for, 717, 747
`Wave equation (s), electric field, for electro-
`
`
`‘Transmissionax
`I
`silver,
`resistance of, 605
`nonlinear, 370
`rectangular components of, 18
`
`gnetic wavein free space,
`
`
`Transmission coefficient, for electron, 445
`subtraction
`of, 17, 18
`‘cuits, (49
`twisted together in
`
`on Vibrating ball, 789
`general, 706, 706n,
`te
`
`Triangle method of addition, 16-17
`torque, 271, 271
`magnetic field, for electromagnetic wave in
`Work, and energy,
`14!
`plane, 705
`
`
`Trigonometric identities, A-21
`nwo, equality
`of, 16
`free space, 70
`compared,
`463
`plane-polarized, 721
`Trigonometry, A19-A21
`multiplication of, 18
`Schrodinger. Se Schrodinger wave equa-
`producing interference, 371
`and thermal energy in thermodynamic pro
`tiom
`cesses,
`47;
`
`Triple point of water, 443
`scalar product of, 146-147, 159
`propagation of, 361
`
`Tube of flow, 427
`sum of, 22
`Waveform(s), 364
`a5 transfer mechanism, 467
`pulse of, traveling toleft, 364
`
`|. 19:
`
`
`, 18
`
`
`calculation of,
`406
`harmonic analysis of, 406-407,
`Tuning fork, frequency of, 403, 403, 405.
`traveling wo right, 363, 34-365, 745, 366
`
`
`ents,
`406,
`definition af, 14
`fadio,
`713,
`
`719
`waveform produced by, (06
`cross products of,
`
`producedby musical instru
`
`Tunnel diode, 845
`teflection of, 374-375,
`374,
`775
`scalar products of, 146.
`produced by runing fork, 406
`
`
`done by comsery
`Tunneling, applic
`of, 845-846
`velocity, as functionof time, 58, 59
`366,
`sinusoidal, 319-320, 320, 565-366,
`Wave function(s), 44, 458, A98n, 839
`
`donebyc snstant
`3389
`through barrier, 844-846, 848
`Vector product(s), 18
`allowed,
`for particles im box, 840-841, 4,
`
`Turbulentflow, 425, 426
`
`B48
`sition and, 340—
`properties of, 272
`dowe by gaa.
`[
`interference of, supery
`
`S61-St4,
`&
`303, 39)
`for hydr
`2, 864
`Turning points, 184
`torque and, 270-273
`
`e by gravitat
`
`
`
` aplitude,
`for sinusoid
`done by m
`Twins paradox, 241-242, 247
`Vector quantity, 599
`longitudinal, displacement
`traveling waves, 367, 382
` plitude, y
`
`i positionfor,
`es. MM
` done by
`Velocity, See alw Speeds)
`for standing
`
`265-265
`
`
`1 RA)
`79
`normalized, &:
`done by
`ng f
`angular, and angular acceleral
`
` ‘onstrings, S68=
`
`360
`as functionof position, for simy
`
`961,
`20,
`
`monic oscillator, 342
`
`transmittedby
`color and, 720
`
`as functionof time, 39, 39
`
`average,
`30-31, 53-34,
`34, 46, 55, 36
` BB, 828n, B47
`dimensi
`Galilean
`,
`electro#
`
`in simple harmonic motion, 334, 351
`indices of
`
`
`instantaneous, 31-35,
`34, 46,
`55-56, 56
`
`7.)
`
`213, 218
`
`of simple harmonicoscillator, $51—352
`
`
`
`Ww
`‘Water, boiling of, 480
`heating of, 444
`ice point of, 441
`liquids forming thin films on, 795
`seam point of, 441
`temperature of, and variation in density,
`447-448, 448
`tiple point of, 443
`Water hose, to fill bucket, 427
`Wan, James, 157
`‘Wate (unit), 157
`Wave(s), amplitude of, 363, 363
`characteristics of, 361
`complex, 406-407
`de Broglie. See Wave(s), matter:
`S60, 702-729
`
`as plane wave, 705
`as transverse wave, TOT, TOF
`ergy carried by, 713-715, 724-725
`ergy densityof, 714
`
`generation af, Herte's apparatus for, 709,
`TL, Ft
`in free space, clectric field wave equation
`for, 706.
`magnetic field wave equation for, 706
`imensity of, 713-714
` erference and, 784-785
`
`
`
`503-394
`
`of light
`
`406
`
`367
`
`
`
`
`
`
`
`UU
`
`blenbeck, George, 860, 868
`Uhraviolet catastrophe, 818
`Uhraviolet light, 719
`Uncertainty principle, 834-837, 836, 847
`Unit vector(s), 19-20, 19
`
`cross products of
`scalar products of, 146
`Units, conversion of, 9-10
`SL.
`Ser SI unit(s).
`
`Universal gas constant, 449, 510
`Universe, critical density of, 947, 947
`entropy of, 506, 515
`
`Petitioner Intel Corp., Ex. 1038
`IPR2023-00783
`
`
`
`
`
`
`
`1.20
`
`Index
`
`Work-kinetic energy theorem, 142,153, 159
`175
`kinetic energy and, 152-157
`
`XM-rar(s) ((Gontinued)
`scattering, from electrons, 825, #24
`specirum(a) of, 877-878, 877
`
`Yukawa's theory of pion exchange. proton
`and neutron interaction and, 940,
`ann
`
`Zz
`445
`Zero, absolute,
`Zerrpoint energy, 443, 842
`Zeroth-order maximum, 787
`
`
`‘Zweig. George. §
`
`YY
`
`ard, as unit of measurement, 4
`Young, Thomas, 731, 785
` it experiment, 785-792,
`joung’s double-
`
`786, 787
`Yukawa, Hideki, 924, 924
`
`xX
`
`-ray(s), 719
`beam of, reflection of, BO8-—AIK), S08
`Bohr theory and, 878-879
`
`character