throbber
United States Patent (19)
`Wilcox
`
`54 LOW DROP-OUT SWITCHING REGULATOR
`ARCHITECTURE
`75) Inventor: Milton E. Wilcox, Saratoga, Calif.
`(73) Assignee: Linear Technology Corporation,
`Milpitas, Calif.
`
`(21) Appl. No.:723,575
`22 Filed:
`Sep. 30, 1996
`(51
`int. Cl. G05F1A56
`52 U.S. C. .............
`... 323/282; 323/268
`58 Field of Search ............................ 323/268, 271-275,
`323/282, 284-287
`
`56)
`
`References Cited
`U.S. PATENT DOCUMENTS
`4,881,023 11/1989 Perusse et al. ..........................
`323,266
`5,309,082 5/1994 Payne ..................
`... 323/270
`5,359,278 10/1994. Notohara et al.
`... 323/222
`... 327/109
`5,365,118 11/1994 Wilcox .......
`es
`... 323/287
`5,481,178
`1/1996 Wilcox et al. ..
`5,563,501 10/1996 Chan ...........................
`... 323/282
`OTHER PUBLICATIONS
`1992 Linear Databook Supplement, pp. 4-102 to 1-121,
`published by Linear Technology Corporation, Milpitas, CA
`in 1990.
`
`
`
`US005705919A
`Patent Number:
`11
`45 Date of Patent:
`
`5,705,919
`Jan. 6, 1998
`
`1995 Linear Databook vol. IV, pp. 13-3 to 13-15, published
`by Linear Technology Corporation, Milpitas, CA in 1995.
`GE Integrated Power Systems Application Note, AN-8829,
`pp. 1 to 5, published by Harris Semiconductor Corporation
`in Dec. 1995.
`LT 1336 Data Sheet, pp. 1-16, published by Linear Tech
`nology Corporation, Milpitas, CA in 1996.
`
`Primary Examiner-Matthew V. Nguyen
`Attorney, Agent, or Firm-Fish & Neave; Douglas A.
`Cardwell
`
`57
`
`ABSTRACT
`
`Circuits and methods are provided for low drop-out opera
`tion of switching regulator circuits that include a switching
`transistor and an output circuit adapted to supply current at
`a regulated voltage to a load. The circuits and methods
`generate a limiting signal that allows the switching transistor
`to remain in a continuous conductive state for a predeter
`mined number of oscillator cycles. The predetermined num
`ber of oscillator cycles is preferably set by a counter that
`initiates a signal that turns the switching transistor OFF
`
`28 Claims, 4 Drawing Sheets
`
`Petitioner Intel Corp., Ex. 1020
`IPR2023-00783
`
`

`

`U.S. Patent
`
`Jan. 6, 1998
`
`Sheet 1 of 4
`
`5,705,919
`
`WMd
`
`TOHINOO
`
`OSO
`
`Petitioner Intel Corp., Ex. 1020
`IPR2023-00783
`
`

`

`U.S. Patent
`
`Jan. 6, 1998
`
`Sheet 2 of 4
`
`5,705,919
`
`09-,ly
`
`=v6iY#
`
`801
`
`ND
`
`'9901
`
`HOA
`
`LNO|,OtyOrt
`0S]Ty]|ze
`NigfTdo
`
`6UlA
`
`LNOA
`
`Petitioner Intel Corp., Ex. 1020
`IPR2023-00783
`
`Petitioner Intel Corp., Ex. 1020
`IPR2023-00783
`
`
`

`

`U.S. Patent
`
`Jan. 6, 1998
`
`Sheet 3 of 4
`
`5,705,919
`
`
`
`* * = = = = = => • • • =T== = = = • • • – – – – – – –). - - - - - _ _
`
`100A
`
`Petitioner Intel Corp., Ex. 1020
`IPR2023-00783
`
`

`

`Jan. 6, 1998
`Jan. 6, 1998
`
`Sheet 4 of 4
`Sheet 4 of 4
`
`5,705,919
`5,705,919
`
`U.S. Patent
`
`U.S. Patent
`
`
`
`Petitioner Intel Corp., Ex. 1020
`IPR2023-00783
`
`Petitioner Intel Corp., Ex. 1020
`IPR2023-00783
`
`

`

`1
`LOW DROP-OUT SWITCHING REGULATOR
`ARCHITECTURE
`BACKGROUND OF THE INVENTION
`The present invention relates to switching regulator cir
`cuits. More particularly, the present invention relates to
`switching regulator architectures for providing low drop-out
`operation.
`The purpose of a voltage regulator is to provide a sub
`stantially constant output voltage to a load from a voltage
`source which may be poorly-specified or fluctuating. Voltage
`regulator circuits require a minimum voltage differential
`between the input supply voltage and the regulated output
`voltage in order to function properly. This voltage differen
`tial is known as the dropout voltage of the regulator. For a
`step-down regulator, the dropout voltage limits the maxi
`mum regulated voltage which can be supplied to the load.
`Conversely, for a given output voltage, the dropout voltage
`determines the minimum supply voltage required to main
`tain regulation.
`One potential deficiency in known voltage regulators is
`the tendency for such regulators to consume a larger per
`centage of the supplied power as the output voltage
`decreases. For example, a linear voltage regulator providing
`a 10 volt output with a 1 volt dropout results in a ten percent
`power loss, while an output of 2 volts (i.e., a output voltage)
`with the same 1 volt dropout results in a fifty percent power
`loss. However, there have been increasing requirements for
`voltage regulators to operate at lower and lower voltages
`(e.g., the voltage at which microprocessors are powered has
`continued to fall from 5 volts to below 3 volts). As micro
`processor voltages continue to fall, their clock speeds and
`supply currents are increasing. Thus, low dropouts are
`required, for example, to efficiently supply modern micro
`processor regulated voltage inputs.
`A voltage regulator having a low dropout voltage is
`therefore capable of providing a regulated output voltage at
`a lower supply voltage than can a voltage regulator having
`a higher dropout voltage. A low dropout voltage regulator
`can also operate with greater efficiency, since the input/
`output voltage differential of the regulator, when multiplied
`by the output current, equals the power dissipated by the
`regulator in transferring power to the load. For at least these
`reasons, a voltage regulator circuit having a low dropout
`voltage has many useful applications, and can improve the
`performance and reduce the cost of other circuits in which
`the regulator circuit is used.
`Generally, regulators can be classified into several cat
`egories: step-down or boost and linear or switching.
`A step-down regulator is one in which the power transfer
`is from a higher voltage to a lower voltage. Aboost regulator
`is one in which the power transfer is from a lower Voltage
`to a higher voltage.
`A linear regulator employs a pass element (e.g., a power
`transistor) coupled in series with a load and controls the
`voltage drop across the pass element to regulate the voltage
`which appears at the load. In contrast, a switching regulator
`employs a switch including a switching element (e.g., a
`power transistor) coupled either in series or parallel with the
`load. The switching regulator controls the timing of the
`turning ON and turning OFF of the switching element (i.e.,
`the duty cycle) to regulate the flow of power to the load.
`Typical switching regulators employ inductive energy stor
`age elements to convert switched current pulses into a steady
`load current. Thus, power in a switching regulator is trans
`mitted across the switch in discrete current pulses, whereas
`
`25
`
`30
`
`35
`
`45
`
`50
`
`55
`
`65
`
`5,705,919
`
`5
`
`15
`
`20
`
`2
`power in a linear regulator is transmitted across the pass
`element as a steady flow of current.
`Switching regulators are generally more efficient than
`linear regulators (where efficiency is defined as the ratio of
`the power provided by the regulator to the power provided
`to the regulator). Because of this, switching regulators are
`often employed in battery-operated communication systems
`such as cellular telephones, cordless telephones, pagers,
`personal communicators, and wireless modems.
`One significant component of operating loss in switching
`regulators is the power dissipated by the switching element,
`where power dissipation is a function of the voltage drop
`across the switching element and the current flowing
`through it. The amount of this voltage drop, and thus the
`efficiency of the circuit, can depend on the particular con
`figuration of the switching regulator. Bootstrapped switch
`drives are commonly required when the voltage required to
`turn on the switch is higher than the input voltage of the
`regulator.
`Drop-out for step-down switching regulators is the state at
`which the regulator input voltage has dropped to the point at
`which the regulator output voltage starts to go out of
`regulation. The drop-out voltage is the voltage difference
`between the input and output voltages of a voltage regulator
`when the output voltage drops out of regulation. For
`example, if a step-down regulator designed to produce a
`regulated 5W output voltage lost regulation at a 6V input
`voltage, it would have a 1V drop-out.
`The required duty cycle (defined as the ratio of the ON
`time of a switch to the switch's switching period) for such
`switches is set by the input and output voltages. For ideal
`step-down switching regulators, it can be shown that the
`duty cycle is equal to the ratio of V to V. For ideal
`boost switching regulators, it can be shown that the duty
`cycle is equal to the ratio of (V-V) to Wor
`Near drop-out in a step-down switching regulator, when
`the input voltage is not much larger than the output voltage,
`high duty cycles are required in order to maintain a regulated
`output voltage. Conventional step-down switching regula
`tors require very short minimum OFF times or low operating
`frequencies to achieve the high duty cycles required for low
`drop-out while still maintaining adequate bootstrapped
`switch drives. Each of these requirements has associated
`disadvantages.
`One disadvantage of using a short minimum OFF time is
`that the switch drivers have a finite delay due to the rise and
`fall times which limits their ability to respond to control
`signals less than a certain duration.
`The use of low operating frequencies also has associated
`disadvantages. During normal operation, low operating fre
`quency produces large inductor ripple currents unless a large
`inductor is used. Also, large capacitors are often required to
`operate the regulator at lower frequencies. The result is a
`larger, heavier and more expensive switching regulator. A
`low operating frequency also may cause audible noise or
`interference in lower frequency bands, such as the audio or
`intermediate frequency bands.
`Boost switching regulators require corresponding short
`minimum ON times to achieve low drop-out. Thus, there is
`a need for a step-down/boost switching regulator having
`high/low duty cycles during low drop-out and which does
`not have the disadvantages of operating with short minimum
`OFFION times and at low operating frequencies.
`SUMMARY OF THE INVENTION
`It is an object of the present invention to provide step
`down/boost switching regulators having high/low duty
`cycles during low drop-out.
`
`Petitioner Intel Corp., Ex. 1020
`IPR2023-00783
`
`

`

`5,705,919
`
`10
`
`15
`
`30
`
`35
`
`45
`
`3
`It is a further object of the present invention to provide
`step-down/boost switching regulators having high/low duty
`cycles during low drop-out which do not operate with short
`minimum OFF/ON times.
`It is also an object of the present invention to provide
`step-down/boost switching regulators having high/low duty
`cycles during low drop-out which do not operate at low
`frequencies under normal operating conditions.
`It is yet another object of the present invention to provide
`step-down/boost switching regulators which maintain boot
`strapped switch drives during low drop out.
`The disadvantages and limitations of previous switching
`regulators are overcome by the present invention in which
`switching regulators are provided that efficiently operate at
`high frequency. The switching regulators of the present
`invention provide efficient operation by only reducing fre
`quency to defined lower levels when low frequency is
`required to meet duty cycle requirements near drop-out. This
`is accomplished in a step-down/boost regulator circuit by
`allowing the supply switch to remain ON/OFF continuously
`for more than one cycle which allows higherflower duty
`cycles. The higher/lower duty cycles lead to lower drop-out
`than if the supply switch were forced to turn OFFION every
`cycle. Additional control circuitry is provided to prevent the
`25
`ON/OFF time from exceeding a predetermined limit to
`avoid audible noise or damage to switch components from
`excessive heating due to loss of bootstrapped gate drive.
`BRIEF DESCRIPTION OF THE DRAWENGS
`The above and other objects and advantages of the
`invention will be apparent upon consideration of the fol
`lowing detailed description, taken in conjunction with the
`accompanying drawings, in which like reference characters
`refer to like parts throughout, and in which:
`FIG. 1 is a circuit diagram illustrating a known switching
`regulator;
`FIG. 2 is a circuit diagram showing an illustrative
`embodiment of a step-down switching regulator constructed
`in accordance with the principles of the present invention;
`FIG. 3 is a circuit diagram showing an illustrative
`embodiment of a non-synchronous step-down switching
`regulator constructed in accordance with the principles of
`the present invention; and
`FG. 4 is a circuit diagram showing an illustrative
`embodiment of a synchronous boost switching regulator
`constructed in accordance with the principles of the present
`invention.
`DETALED DESCRIPTION OF THE
`NVENTION
`The present invention includes an architecture for step
`down/boost switching regulators that provides low drop-out
`operation without having to operate with short minimum
`55
`OFF/ON times or at constant low operating frequencies to
`achieve high/low duty cycles.
`FIG. 1 illustrates a known step-down switching regulator
`circuit 70 which provides a regulated DC output voltage
`Wrat output terminal 60 (e.g., 5 volts) for driving load 50
`which, for example, may be a portable or lap-top computer
`or other battery-operated system.
`Driver circuit 45 comprises two drivers 24 and 26 which
`may include, for example, CMOS power inverter stages.
`Driver 24 includes circuitry for translating ground
`referenced logic signals to gate-drive logic signals refer
`enced to the switch node 110 voltage.
`
`4
`Driver circuit 45 is used to drive switch circuit 15, which
`is a push-pull switch including a pair of synchronously
`switched switching transistors 32 and 34 stacked in series at
`switch node 110, between supply rail voltage V and
`ground. As used herein, the term "synchronously-switched”
`means that the two switching transistors are driven out of
`phase to supply current at a regulated voltage to load 50.
`Bootstrap capacitor 106 (C) is required to provide the
`necessary operating voltage for driver 24 because the volt
`age at the source of switching transistor 32 moves between
`ground and V. Input capacitor 108 (C) smooths varia
`tions in the supply rail voltage V.
`Switching transistors 32 and 34 are used to provide a
`switching supply of current to output circuit 72, which
`includes inductor 120 (L) and output capacitor 122 (C).
`When switching transistor 32 is OFF, switching transistor 34
`is ON and conducts. Diode 94 conducts during the dead time
`(i.e., the time when both transistor 32 and transistor 34 are
`OFF). Output circuit 72 smooths the switching voltage of
`switch node 110, so that load 50 is provided a regulated
`voltage V. In order to supply inductor 120 current,
`switching transistors 32 and 34 are respectively driven by
`driver 24 and driver 26, which in turn are both controlled by
`a pulse-width modulator ("PWM") control circuit 14.
`Driver 24 is controlled by the output of inverter 22, whose
`input is the output of NAND gate 20. The output of NAND
`gate 20 is produced based upon signal 16 from oscillator 12
`and control signal 18 from the output of PWM control circuit
`14. Driver 26 is controlled directly by the output signal of
`NAND gate 20. The PWM control circuit 14 uses a signal
`from oscillator 12, the output voltage V, and a feedback
`current I, that is proportional to inductor current I, to
`generate control signal 18. During drop-out, control signal
`18 is high, which causes switching transistor 32 to be ON
`and switching transistor 34 to be OFF whenever oscillator
`12's output signal 16 is high.
`One disadvantage of switching regulator 70 shown in
`FIG. 1 is that, even if control signal 18 is continuously high,
`oscillator pulse 10 (i.e., a portion of output signal 16) forces
`switching transistor 32 to turn OFF for a minimumperiod of
`time for each cycle of oscillator 12. This minimum OFF time
`must be very short for switching regulator circuit 70 to
`operate at the required switch duty cycle during low drop
`out operation. However, if the minimum OFF time is too
`short, drivers 24 and 26 may not be able to respond and the
`switch node 110 may not swing low enough to recharge
`bootstrap capacitor 106. Forcing drivers 24 and 26 to
`adequately respond to such short signals, on the other hand,
`would result in an increase in peak currents and current slew
`rates that would undesirably increase electromagnetic inter
`ference.
`Another disadvantage of switching regulator circuit 70 of
`FIG. 1 is that, if the minimum OFF time of switching
`transistor 32 is kept at a magnitude compatible with drivers
`24 and 26, then the duty cycle can only be increased by
`reducing the operating frequency. As previously discussed,
`however, such low operating frequencies result in larger,
`heavier, and more expensive switching regulators.
`FIG. 2 is a schematic block diagram that incorporates a
`preferred embodiment of the presentinvention for providing
`low drop-out operation of a step-down switching regulator.
`The switching regulator circuits of the present invention
`overcome the disadvantages of known switch regulators by
`including a limiting circuit 80 that allows PWM control
`circuit 14 to have more complete control over switching
`transistors 32 and 34.
`
`50
`
`65
`
`Petitioner Intel Corp., Ex. 1020
`IPR2023-00783
`
`

`

`5
`While the circuits shown in FIGS. 1-4 operate with an
`n-channel MOSFET for switching transistors 32 and 34,
`persons skilled in the art will appreciate that such a con
`figuration is merely a design choice and that the principles
`of the present invention may be equally carried out with
`NPN bipolar transistors and only minor changes to the
`remaining circuitry.
`The drop-out operation of the circuit of FIG. 2 differs
`from that of the circuit of FIG. 1 in that oscillator pulse 10
`is not allowed to force switching transistor 32 to turn OFF
`every cycle. Each time switching transistor 32 is turned OFF,
`a counter 40 is set, which causes the inverted Q output 42 of
`counter 40 to be a logic low. The signal 42 is clocked from
`the D input of flip-flop 44 to flip-flop 44's Q output 46,
`which results in a logic high at input 48 of NAND gate 20.
`This allows PWM control circuit 14 to turn switching
`transistor 32 ON continuously for more than one cycle of the
`oscillator output signal 16. This in turn allows higher duty
`cycles and lower drop-out operation than if switching tran
`sistor 32 were forced to turn OFF once every cycle during
`drop-out by oscillator pulse 10.
`Once counter 40 is set, counter 40 monitors the number of
`cycles of oscillator 12 during which switching transistor 32
`is turned ON. On the Nth count, inverted Q output 42 of
`25
`counter 40 changes from low to high. On the N+1 count, the
`high signal is clocked from the D input of flip-flop 44 to Q
`output 46 of flip-flop 44. At the same time oscillator output
`signal 16 is inverted by inverter 47 (i.e., the output of
`inverter 47 is low), so that the signalatinput 48 remains high
`until the N+2 oscillator pulse 10. At that time oscillator pulse
`10, which is now low, is passed through NAND gate 20 and
`inverter 22, causing switching transistor 32 to turn OFF and
`switching transistor 34 to turn ON for the duration of
`oscillator pulse 10. At the same time, counter 40 is again set,
`causing inverted Q output 42 to go low. On the subsequent
`oscillator pulse 10, this low output signal is again clocked to
`Q output 46 of D flip-flop 44, resulting in a high at input 48.
`This high signal at input 48 again allows switch transistor 32
`to remain ON and switching transistor 34 to remain OFF.
`Thus, the regulator is maintained in drop-out by control
`signal 18 being continuously high, so that switching tran
`sistor 32 is only turned OFF once every N+2 cycles of
`oscillator 12. N may be adjusted to extend the maximum
`duty cycle while still preventing audible operation in drop
`45
`Out
`FIG. 3 is a schematic block diagram that incorporates
`another preferred embodiment of the present invention for
`providing low drop-out operation of a non-synchronous
`step-down switching regulator.
`The non-synchronous step-down switching regulator cir
`cuit of FIG. 3 is similar to the switching regulator circuit of
`FIG. 2, except that driver 26 is replaced by one-shot circuit
`90. Unlike switching transistor 34 of the step-down switch
`ing regulators of FIGS. 1 and 2, switching transistor 34 of
`55
`FIG. 3 turns ON only for a brief time after switching
`transistor 32 turns OFF. Turning switching transistor 34 ON
`pulls the lower plate of boot-strap capacitor 106 (C) close
`to ground thereby ensuring that boot-strap capacitor 106
`(C) is able to recharge and provide the necessary operating
`voltage for driver 24. Because switching transistor B4 is ON
`only for the time required to recharge boot-strap capacitor
`106 (C), it can be smaller than switching transistor 32.
`FIG. 4 is a schematic block diagram that incorporates still
`another preferred embodiment of the present invention for
`providing low drop-out operation of a synchronous boost
`Switching regulator.
`
`35
`
`30
`
`65
`
`5,705,919
`
`O
`
`5
`
`6
`Driver circuit 45 is used to drive switch circuit 15, which
`is a push-pull switch including a pair of synchronously
`switched switching transistors 32 and 34. Switching tran
`sistor 34 is coupled between switch node 110 and ground.
`Switching transistor 32 is coupled between switch node 110
`and output terminal 60.
`Switching transistors 32 and 34 are used to provide an
`switching supply of current to an output circuit that includes
`inductor 120 (L) coupled between input terminal 61 and
`Switch node 110, and output capacitor 122 (C) coupled
`between output terminal 60 and ground. The output circuit
`couples the peaks of the switch node 110 waveform to output
`terminal 60 so that load 50 is provided a regulated voltage
`Wo. In order to supply inductor 120 current, switching
`transistors 32 and 34 are respectively driven by driver 24 and
`driver 26, which in turn are both controlled by a pulse-width
`modulator (PWM) control circuit 14.
`Driver 24 is controlled by the output of inverter 22, whose
`input is the output of NAND gate 20. The output of NAND
`gate 20 is produced based upon signal 16 from oscillator 12
`and control signal 18 from the output of PWM control circuit
`14. Driver 26 is controlled directly by the output signal of
`NAND gate 20. PWM control circuit 14 uses a signal from
`oscillator 12, the output voltage V and a feedback
`current I, that is proportional to inductor current I, to
`generate control signal 18.
`During drop-out operation of the synchronous boost
`switching regulator of FIG. 4, limiting circuit 80 prevents
`oscillator pulse 10 from forcing switching transistor 32 OFF
`and switching transistor 34 ON every cycle. Each time
`switching transistor 32 is turned OFF, a counter 40 is set,
`which causes inverted Q output 42 of counter 40 to be a logic
`low. The signal 42 (i.e., now a logic low) is clocked from the
`D input of flip-flop 44 to flip-flop 44's Q output 46, which
`results in a logic high at input 48 of NAND gate 20. This
`allows PWM control circuit 14 to turn driver 26 OFF and
`allows switching transistor 32 to remain ON and switching
`transistor 34 to remain OFF continuously for more than one
`cycle of oscillator output signal 16. This in turn allows lower
`duty cycles and lower drop-out operation than if switching
`transistor 32 were forced to turn OFF and switching tran
`sistor 34 were forced to turn ON once every cycle during
`drop-out by oscillator pulse 10.
`Once counter 40 is set, counter 40 monitors the number of
`cycles of oscillator 12 during which switching transistor 32
`is turned ON. On the Nth count, inverted Q output 42 of
`counter 40 changes from low to high. On the N+1 count, the
`high signal is clocked from the D input of flip-flop 44 to Q
`output 46 of flip-flop 44. At the same time oscillator output
`signal 16 is inverted by inverter 47 (i.e., the output of
`inverter 47 is low), so that the signal at input 48 remains high
`until the N+2 oscillator pulse 10. At that time oscillator pulse
`10, which is now low, is passed through NAND gate 20 and
`inverter 22, causing switching transistor 32 to turn OFF and
`switching transistor 34 to turn ON for the duration of
`oscillator pulse 10. At the same time, counter 40 is again set,
`causing inverted Q output 42 to go low. On the subsequent
`oscillator pulse 10, this low output signalis again clocked to
`Q output 46 of D flip-flop 44, resulting in a high at input 48.
`This high signal at input 48 again allows switch transistor 32
`to remain ON and switching transistor 34 to remain OFF
`Thus, the synchronous boost regulator of FIG. 4 is main
`tained in drop-out by control signal 18 being continuously
`low, so that switching transistor 34 is only turned ON once
`every N+2 cycles of oscillator 12.
`Step-down/boost switching regulators having high/low
`duty cycles during drop-out operation are provided.
`
`Petitioner Intel Corp., Ex. 1020
`IPR2023-00783
`
`

`

`5
`
`10
`
`15
`
`20
`
`25
`
`30
`
`35
`
`7
`Although three particular illustrative embodiments have
`been disclosed, persons skilled in the art will appreciate that
`the present invention can be practiced by other than the
`disclosed embodiments, which are presented for purposes of
`illustration, and not of limitation, and the present invention
`is limited only by the claims that follow.
`What is claimed is:
`1. A switching voltage regulator circuit comprising:
`a switch circuit coupled to a source of input voltage, said
`switch circuit comprising a first switching element
`coupled to a switch node;
`a driver circuit comprising a first driver coupled to said
`first switching element;
`an output circuit coupled to said switch circuit, said output
`circuit comprising an inductive storage element and a
`capacitive storage element coupled between an output
`terminal and ground;
`a control circuit that generates a control signal based at
`least in part on an oscillator signal from an oscillator
`circuit, said control circuit being coupled to said driver
`circuit to provide said control signal to said driver
`circuit; and
`a limiting circuit coupled to said control circuit to change
`the state of said control signal when said first switching
`element has been in a continuous conductive state for
`a predetermined number of oscillator cycles.
`2. The switching voltage regulator circuit of claim 1,
`further comprising a second switching element coupled
`between said switch node and ground.
`3. The switching voltage regulator circuit of claim 2.
`wherein said driver circuit further comprises a second driver
`coupled to said second switching element.
`4. The switching voltage regulator circuit of claim 3,
`wherein said control circuit comprises:
`a pulse-width modulator controller that generates an out
`put based at least in part on a feedback signal that
`corresponds to current flowing in said inductive storage
`element and a feedback signal that corresponds to
`voltage at said output terminal.
`5. The switching voltage regulator circuit of claim 1,
`further comprising a second capacitive storage element
`coupled between a source of drive voltage and said switch
`node.
`6. The switching voltage regulator circuit of claim 1
`wherein said limiting circuit comprises:
`a counter having a clock input driven by said oscillator
`signal, a reset input and an output that changes state
`when said counter has counted a predetermined number
`of oscillator cycles, said counter being reset each time
`said first switching element is turned OFF; and
`a logic circuit coupled to said counter and said control
`circuit, said logic circuit changing the state of said
`control signal as a result of said output of said counter
`changing state.
`7. The switching voltage regulator circuit of claim 6,
`wherein said logic circuit comprises:
`a flip-flop having a clockinput driven by said oscillator
`signal and a signal input coupled to said output of said
`counter, said flip-flop having an output that changes
`from low to high when a high signal is at said signal
`input and said clock input is driven high by said
`oscillator signal;
`a first limiting circuit logic gate that inverts said oscillator
`signal; and
`a second limiting circuit logic gate having a first input
`coupled to said first gate and a second input coupled to
`
`5,705,919
`8
`said output of said flip-flop, said second gate producing
`an output signal that changes state when said first
`switching element has been in a continuous conductive
`state for a predetermined number of oscillator cycles.
`8. The switching voltage regulator circuit of claim 1
`wherein said first switching element is a MOSFET.
`9. The switching voltage regulator circuit of claim 1,
`wherein said first switching element is coupled between said
`source of input voltage and said switch node.
`10. The switching voltage regulator circuit of claim 1,
`wherein said inductive storage element is coupled between
`said switch node and said output terminal.
`11. The switching voltage regulator circuit of claim 4,
`wherein said control circuit further comprises:
`a first control circuit logic gate with a first input coupled
`to said limiting circuit and a second input coupled to
`said output of said pulse-width modulator controller,
`said first control circuit logic gate producing a first
`control circuit logic gate signal; and
`a second control circuit logic gate coupled to said first
`control circuit logic gate, said second control circuit
`logic gate for inverting said first control circuit logic
`gate signal.
`12. The switching voltage regulator circuit of claim 11,
`wherein said first driver comprises an input coupled to said
`second control circuit logic gate.
`13. The switching voltage regulator circuit of claim 12,
`wherein said second driver comprises an input coupled to
`said first control circuit logic gate.
`14. The switching voltage regulator circuit of claim 11,
`wherein said limiting circuit comprises:
`a counter having a clock input driven by said oscillator
`signal, a reset input and an output that changes state
`when said counter has counted a predetermined number
`of oscillator cycles, said counter being reset each time
`said first switching element is turned OFF; and
`a logic circuit coupled to said counter and said control
`circuit, said logic circuit changing the state of said
`control signal as a result of said output of said counter
`changing state.
`15. The switching voltage regulator circuit of claim 14,
`wherein said logic circuit comprises:
`a flip-flop having a clock input driven by said oscillator
`signal and a signal input coupled to said output of said
`counter, said flip-flop having an output that changes
`from low to high when a high signal is at said signal
`input and said clock input is driven high by said
`oscillator signal;
`a first limiting circuit logic gate that inverts said oscillator
`signal; and
`a second limiting circuit logic gate having a first input
`coupled to said first gate and a second input coupled to
`said output of said flip-flop, said second gate producing
`an output signal that changes state when said first
`switching element has been in a continuous conductive
`state for a predetermined number of oscillator cycles.
`16. The switching voltage regulator circuit of claim 3,
`wherein said second driver comprises a one-shot circuit.
`17. The switching voltage regulator circuit of claim 1,
`further comprising a conducting element coupled between
`said switch node and ground, said conducting element
`conducting when said first switching element is OFF
`18. The switching voltage regulator circuit of claim 1,
`wherein said first switching element is coupled between said
`switch node and said output terminal.
`19. The switching voltage regulator circuit of claim 1,
`wherein said inductive storage element is coupled between
`said source of input voltage and said switch node.
`
`45
`
`50
`
`55
`
`65
`
`Petitioner Intel Corp., Ex. 1020
`IPR2023-00783
`
`

`

`5,705,919
`
`O
`
`15
`
`2S
`
`35
`
`9
`20. The switching voltage regulator circuit of claim 4,
`wherein said control circuit further comprises:
`a first control circuit logic gate with an input coupled to
`said output of said pulse-width modulator controller for
`inverting said output of said pulse-width modulator
`controller;
`a second control circuit logic gate with a first input
`coupled to said limiting circuit and a second input
`coupled to said first control circuit logic gate, said
`second control circuit logic gate producing a second
`control logic gate signal; and
`

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket