throbber
exhibitsticker.com
`
`Exhibit #
`
`Baker 07
`
`01/10/2024 - JL
`
`IPR2023-00697
`Theta EX2019
`
`

`

`This page intentionally left blank
`
`IPR2023-00697
`Theta EX2019
`
`

`

`
`
`Multipliers
`
`[ Name |__Symbol Value
`terra
`T
`10"
`
`
`giga
`G
`-
`10”
`mega
`M (MEG inSPICE)
`10°
`
`kilo
`k
`10°
`|
`
`milli
`|
`m
`10:
`
`micro
`|
`ut (or u)
`10°
`
`nano
`n
`10°
`
`pico
`|
`p
`10°"
`
`femto
`f
`10?
`atto
`a (not used in SPICE)
`“10°8
`
`
`
`
`
`Physical Constants
`
` Symbol = Value/Units
`
`
`Vacuum dielectric
`E,
`8.85 aF/um
`
`
`constant
`
`
`
`Silicon dielectric
`constant
`
`6,
`
`11,7g,
`
`
`
`
`
`SiO, dielectric
`constant
`
`3.97,
`
`16e,
`SIN, dielectric
`constant
` Boltzmann’s constant
`1.38 * 107 J/K
`Electronic charge
`Temperature
`
`Kelvin
`
`16x 10°C
`
`Thermalvoltage
`
`
`
`kT/q = 26 mV @300K|
`
`IPR2023-00697
`IPR2023-00697
`Theta EX2019
`Theta EX2019
`
`

`

`CMOS
`
`IPR2023-00697
`IPR2023-00697
`Theta EX2019
`Theta EX2019
`
`

`

`IEEE Press
`445 Hoes Lane
`Piscataway, NJ 08854
`
`IEEE Press Editorial Board
`Lajos Hanzo,Editor in Chief
`
`R. Abari
`J. Anderson
`F. Canavero
`T. G. Groda
`
`M. El-Hawary
`B. M. Hammerii
`M. Lanzerotti
`O. Malik
`
`S. Nahavandi
`W. Reeve
`T. Samad
`G. Zobrist
`
`Kenneth Moore, Director of IEEE Book and Information Services (B/S)
`
`IEEE Solid-State Circuits Society, Sponsor
`
`IPR2023-00697
`IPR2023-00697
`Theta EX2019
`Theta EX2019
`
`

`

`CMOS
`
`Circuit Design, Layout, and Simulation
`
`Third Edition
`
`R. Jacob Baker
`
`IEEE Press Series on Microelectronic Systems
`
`Stuart K. Tewksbury and Joe E. Brewer, Series Editors
`
`IEEE
`
`IEEE PRESS
`
`@)WILEY
`
`A JOHN WILEY & SONS, INC., PUBLICATION
`
`IPR2023-00697
`IPR2023-00697
`Theta EX2019
`Theta EX2019
`
`

`

`Copyright © 2010 by the Institute of Electrical and Electronics Engineers, Inc. All rights reserved.
`
`Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
`Published simultaneously in Canada.
`
`Nopart of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
`by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
`permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
`written permission of the Publisher, or authorization through paymentof the appropriate per-copy fee to
`the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
`(978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should
`be addressed to the Permissions Department, John Wiley & Sons,Inc., 111 River Street, Hoboken, NJ
`07030, (201) 748-601 1, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.
`
`Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
`preparing this book, they make no representations or warranties with respect to the accuracy or
`completeness of the contents of this book andspecifically disclaim any implied warranties of
`merchantability or fitness for a particular purpose, No warranty may he created or extendedby sales
`representatives or written sales materials. The advice and strategies contained herein may not be suitable
`for your situation, You should consult with a professional where appropriate. Neither the publisher nor
`author shall be liable for any loss of profit or any other commercial damages, including but not limited
`to special, incidental, consequential, or other damages.
`
`For general information on our other products and services or for technical support, please contact our
`Customer Care Department within the United States at (800) 762-2974, outside the United States at
`(317) 572-3993 or fax (317) 572-4002.
`
`Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
`notbe available in electronic format. For information about Wiley products, visit our web site at
`www. wiley.com.
`
`Library ofCangress Cataloging-in-Publication Data:
`
`Baker, R. Jacob, 1964-
`CMOS; circuit design, layout, and simulation / Jake Baker. — 3rd ed.
`p. cm.
`Summary: “The third edition of CMOS: Circuit Design, Layout, and Simulation continues to cover the
`practical design of both analog and digital integrated circuits, offering a vital, contemporary view of a
`wide range of analog/digital circuit blocks, the BSIM model, data converter architectures, and much
`more. The 3rd edition completes the revised 2nd edition by adding one more chapter (chapter 30) at the
`end, which describes on implementing the data converter topologies discussed in Chapter 29. This addi-
`tional, practical information should make the book even more useful as an academic text and companion
`for the working design engineer.
`Images, data presented throughout the book were updated, and more
`practical examples, problemsare presented in this new edition to enhancethe practicality of the book”—
`Provided by publisher.
`Summary: “The third edition of CMOS: Circuit Design, Layout, and Simulation continues to cover the
`practical design of both analog and digital integrated circuits, offering a vital, contemporary view of a
`wide range of analog/digital circuit blocks, the BSIM
`model, data converter architectures, and much more"— Provided by publisher.
`ISBN 978-0-470-88 132-3 (hardback)
`|. Metal oxide semiconductors, Complementary—Design and construction. 2. Integrated circuits—
`Design and construction. 3. Metal oxide semiconductor field-effect transistors.
`[. Title.
`TK7871.99.M44B35 2010
`621.39'732—de22
`
`2010016630
`
`Printed in the United States of America.
`
`W998 7654321
`
`IPR2023-00697
`IPR2023-00697
`Theta EX2019
`Theta EX2019
`
`

`

`To mywife Julie
`
`IPR2023-00697
`IPR2023-00697
`Theta EX2019
`Theta EX2019
`
`

`

`Brief Contents
`
`Chapter1 Introduction to CMOS Design
`Chapter 2 The Well
`Chapter 3 The Metal Layers
`Chapter4 The Active and Poly Layers
`Chapter 5 Resistors, Capacitors, MOSFETs
`Chapter 6 MOSFET Operation
`Chapter 7 CMOS Fabrication by Jeff Jessing
`Chapter 8 Electrical Noise: An Overview
`Chapter 9 Models for Analog Design
`Chapter 10 Models for Digital Design
`Chapter 11 The Inverter
`Chapter 12 Static Logic Gates
`Chapter 13 Clocked Circuits
`Chapter 14 Dynamic Logic Gates
`Chapter 15 VLSI Layout Examples
`Chapter 16 Memory Circuits
`Chapter 17 Sensing Using AZ Modulation
`Chapter 18 Special Purpose CMOSCircuits
`Chapter 19 Digital Phase-Locked Loops
`Chapter 20 Current Mirrors
`Chapter 21 Amplifiers
`Chapter 22 Differential Amplifiers
`Chapter 23 Voltage References
`Chapter 24 Operational Amplifiers |
`Chapter 25 Dynamic Analog Circuits
`Chapter 26 Operational Amplifiers II
`Chapter 27 Nonlinear Analog Circuits
`Chapter 28 Data Converter Fundamentals by Harry Li
`Chapter 29 Data Converter Architectures by Harry Li
`Chapter 30 Implementing Data Converters
`Chapter 31 Feedback Amplifiers with Harry Li
`
`vi
`
`1
`31
`59
`83
`105
`131
`161
`213
`269
`311
`331
`353
`375
`397
`411
`433
`483
`523
`551
`613
`657
`711
`745
`773
`829
`863
`909
`931
`965
`1023
`1099
`
`IPR2023-00697
`IPR2023-00697
`Theta EX2019
`Theta EX2019
`
`

`

`Contents
`
`Preface
`
`XXxi
`
`Chapter 1 Introduction to CMOS Design
`1.1 The CMOSIC Design Process 11... .660scesseee tee ceseeieieeeees
`1.1.1 Fabrication
`
`Layout and Cross-Sectional Views
`Te CMOS Backsraund!
`4 iccsonscicatinge sat cage eae ater ae aeke eel
`The CMOSAcronym
`CMOS Inverter
`
`The First CMOS Circuits
`
`Analog Design in CMOS
`OAM Hioduction to SPICES ©
`
`a. <eae vps wis Waele veo mabey VARY eee ns
`
`Generating a Netlist File
`Operating Point
`Transfer Function Analysis
`The Voltage-Controlled Voltage Source
`An Ideal Op-Amp
`The Subcircuit
`
`DC Analysis
`Plotting IV Curves
`Dual Loop DC Analysis
`Transient Analysis
`The SIN Source
`
`An RC Circuit Example
`Another RC Circuit Example
`AC Analysis
`Decades and Octaves
`
`Decibels
`
`onanom
`
`ooo
`
`10
`
`11
`
`12
`
`13
`
`13
`
`14
`
`15
`
`15
`
`16
`
`17
`
`18
`
`19
`
`20
`
`20
`
`IPR2023-00697
`IPR2023-00697
`Theta EX2019
`Theta EX2019
`
`

`

`Vill
`
`Contents
`
`Pulse Statement
`
`Finite Pulse Rise time
`
`Step Response
`Delay and Rise time in RC Circuits
`Piece-Wise Linear (PWL) Source
`Simulating Switches
`Initial Conditions on a Capacitor
`Initial Conditions in an Inductor
`
`Q of an LC Tank
`
`Frequency Response of an Ideal Integrator
`Unity-Gain Frequency
`Time-Domain Behaviorof the Integrator
`Convergence
`Some CommonMistakes and Helpful Techniques
`Chapter 2 The Well
`The Substrate (The Unprocessed Wafer)
`A Parasitic Diode
`
`Using the N-well as a Resistor
`2 PASTS: tates ccoactsmiataaaliil dagirbieacacneendce deg aeee een ele
`2.1.1 Patterning the N-well
`2.2 Laying Out the N-well
`..............-2-22-220-005220seeeee
`2.2.1 Design Rules for the N-well
`2.3 Resistance Calculation ................ ccc cece cece nee
`
`Layout of Corners
`2.3.1 The N-well Resistor
`
`2.4 The N-well/Substrate Diode .................00..220 02000
`
`2.4.1 A Brief Introduction to PN Junction Physics
`Carrier Concentrations
`
`Fermi Energy Level
`2.4.2 Depletion Layer Capacitance
`2.4.3 Storage or Diffusion Capacitance
`2.4.4 SPICE Modeling
`2.5 The RC Delay through the N-well
`RC Circuit Review
`
`.............00.eeeeeee
`
`Distributed RC Delay
`Distributed RC Rise Time
`
`21
`
`24
`
`22
`22
`23
`24
`24
`25
`
`25
`
`26
`26
`27
`28
`29
`31
`31
`31
`
`32
`32
`35
`36
`36
`37
`
`38
`38
`
`39
`
`39
`40
`
`42
`43
`45
`47
`49
`50
`
`50
`52
`
`26 TWir Well ProGGSS@S:
`
`cavcansacevyesvece pea stibveearantbracsreerss 52
`
`IPR2023-00697
`IPR2023-00697
`Theta EX2019
`Theta EX2019
`
`

`

`Contents
`
`Design Rules for the Well
`SEM Viewsof Wells
`
`53
`55
`
`59
`Chapter 3 The Metal Layers
`S21 Fhe: Banding) Pad ccdccss se csk ioc detep dckaniacaatmncackigedtas 59
`3.1.1 Laying Out the Pad |
`60
`Capacitance of Metal-to-Substrate
`60
`Passivation
`62
`
`62
`An Important Note
`3.2 Design and Layout Using the Metal Layers ................00005 63
`3.2.1 Metal1 and Via
`63
`
`An Example Layout
`3.2.2 Parasitics Associated with the Metal Layers
`Intrinsic Propagation Delay
`3.2.3 Current-Carrying Limitations
`3.2.4 Design Rules for the Metal Layers
`Layout of Two Shapesor a Single Shape
`A Layout Trick for the Metal Layers
`3.2.5 Contact Resistance
`
`63
`64
`65
`68
`69
`69
`69
`70
`
`3.3 Crosstalk and Ground Bounce ....... 200.0 c cece eee eee eee 71
`
`3.3.1 Crosstalk
`
`3.3.2 Ground Bounce
`
`DC Problems
`
`AC Problems
`
`A Final Comment
`
`71
`
`72
`
`72
`
`72
`
`74
`
`3.4: Layout Examples i020. ccc 5s eect ae cass ene see aes cuacemas cade TS
`3.4.1 Laying Out the PadII
`75
`3.4.2 Laying Out Metal Test Structures
`78
`SEM View of Metal
`79
`
`83
`Chapter 4 The Active and Poly Layers
`4.1 Layout Using the Active and Poly Layers ....... AREAL BAA gle 83
`The Active Layer
`83
`The P- and N-Select Layers
`84
`The Poly Layer
`86
`Self-Aligned Gate
`86
`The Poly Wire
`88
`Silicide Block
`89
`
`4.1.1 Process Flow
`
`89
`
`IPR2023-00697
`IPR2023-00697
`Theta EX2019
`Theta EX2019
`
`

`

`fe
`
`Contents
`
`90
`Damascene Process Steps
`4.2 Connecting Wires to Poly and Active .......-......2-2...22.---. 92
`Connecting the P-Substrate to Ground
`93
`Layout of an N-Well Resistor
`94
`Layout of an NMOS Device
`95
`Layout of a PMOSDevice
`96
`A Comment Concerning MOSFET Symbols
`96
`Standard Cell Frame
`97
`
`98
`Design Rules
`4.3 Electrostatic Discharge (ESD) Protection ............. even 100
`Layout of the Diodes
`100
`Chapter 5 Resistors, Capacitors, MOSFETs
`105
`BW ReSIStors: 223. ciasaas shad aperteascdede pau ctemtaauwiny cham ebep bas 105
`
`105
`Temperature Coefficient (Temp Co)
`106
`Polarity of the Temp Co
`107
`Voltage Coefficient
`109
`Using Unit Elements
`110
`Guard Rings
`110
`Interdigitated Layout
`114
`Common-Centroid Layout
`113
`Dummy Elements
`Sie CAPACHOND: agieraplaathereinacuns wacy Lasiaaedaneamsmennnieak 113
`Layout of the Poly-Poly Capacitor
`114
`Parasitics
`115
`
`116
`Temperature Coefficient (Temp Co)
`116
`Voltage Coefficient
`Sa MOSRENS 3:02 aghisc chisegsaeecen al aalessadaetdanaieveaaad 116
`
`Lateral Diffusion
`
`Oxide Encroachment
`
`Source/Drain Depletion Capacitance
`Source/Drain Parasitic Resistance
`
`116
`
`116
`
`117
`118
`
`120
`Layout of Long-Length MOSFETs
`121
`Layout of Large-Width MOSFETs
`123
`A Qualitative Description of MOSFET Capacitances
`5.4 Layout Examples .............-...20022-0-eeeeeee cece ee eeeene 125
`Metal Capacitors
`125
`Polysilicon Resistors
`127
`
`IPR2023-00697
`IPR2023-00697
`Theta EX2019
`Theta EX2019
`
`

`

`Contents
`
`Xi
`
`131
`Chapter 6 MOSFETOperation
`6.1 MOSFET Capacitance Overview/Review .............0.000005 132
`Case |; Accumulation
`132
`
`CaseII: Depletion
`CaseIII: Strong Inversion
`Summary
`B22 The Threshold Voltage:
`Contact Potentials
`
`133
`133
`135
`':4s)2cs\roseus 2 classlesia: segs clacsaue veces 135
`137
`
`140
`Threshold Voltage Adjust
`6.3 IV Characteristics of MOSFETS ............0.. 20.000 cece eee 140
`
`144
`6.3.1 MOSFET Operation in the Triode Region
`143
`6.3.2 The Saturation Region
`145
`Cgs Calculation in the Saturation Region
`6.4 SPICE Modeling of the MOSFET .........--.--..-.-.-.---.-- 145
`Model Parameters Related to V,,,,
`146
`Long-Channel MOSFET Models
`146
`Model Parameters Related to the Drain Current
`146
`
`SPICE Modeling of the Source and Drain Implants
`Summary
`6.4.1 Some SPICE Simulation Examples
`Threshold Voltage and BodyEffect
`6.4.2 The Subthreshold Current
`
`147
`147
`148
`148
`149
`
`6.5 Short-Channel MOSFETS ........ccccreeeveesneeeee eeeives 151
`
`Hot Carriers
`
`Lightly Doped Drain (LDD)
`6.5.1 MOSFETScaling
`6.5.2 Short-Channel Effects
`
`Negative Bias Temperature Instability (NBT1)
`Oxide Breakdown
`
`Drain-Induced Barrier Lowering
`Gate-Induced Drain Leakage
`Gate Tunnel Current
`
`6.5.3 SPICE Models for Our Short-Channel CMOS
`Process
`
`BSIM4 ModelListing (NMOS)
`BSIM4 ModelListing (PMOS)
`Simulation Results
`
`151
`
`151
`152
`153
`
`153
`154
`
`154
`154
`154
`
`154
`
`154
`156
`157
`
`IPR2023-00697
`IPR2023-00697
`Theta EX2019
`Theta EX2019
`
`

`

`xil
`
`Contents
`
`161
`Chapter 7 CMOSFabrication by Jeff Jessing
`7.1 CMOS Unit Processes oc ancreaseedsdeedidsrataccdpeaWubsiaas 161
`
`7.1.1 Wafer Manufacture
`
`Metallurgical Grade Silicon (MGS)
`Electronic Grade Silicon (EGS)
`Czochralski (CZ) Growth and Wafer Formation
`7.1.2 Thermal Oxidation
`
`7.1.3 Doping Processes
`lon Implantation
`Solid State Diffusion
`
`7.1.4 Photolithography
`Resolution
`
`Depth of Focus
`Aligning Masks
`7.1.5 Thin Film Removal
`
`161
`
`162
`162
`162
`163
`
`165
`165
`166
`
`167
`168
`
`168
`170
`170
`
`170
`Thin Film Etching
`171
`WetEtching
`171
`Dry Etching
`173
`Chemical Mechanical Polishing
`173
`7.1.6 Thin Film Deposition
`175
`Physical Vapor Deposition (PVD)
`176
`Chemical Vapor Depositon (CVD)
`7.2 CMOSProcessIntegration ..........-..ccceecu cece sees eee ees 177
`FEOL
`177
`
`BEOL
`
`CMOSProcess Description
`7.2.1 Frontend-of-the-Line Integration
`Shallow Trench Isolation Module
`
`Twin Tub Module
`
`Gate Module
`
`Source/Drain Module
`
`7.2.2 Backend-of-the-Line Integration
`Self-Aligned Silicide (Salicide) Module
`Pre-Metal Dielectric
`
`Contact Module
`
`Metallization 1
`
`Intra-Metal Dielectric 1 Deposition
`
`177
`
`178
`180
`181
`
`187
`
`190
`
`193
`
`199
`199
`200
`
`202
`
`203
`
`205
`
`IPR2023-00697
`IPR2023-00697
`Theta EX2019
`Theta EX2019
`
`

`

`Contents
`
`xiii
`
`Via 1 Module
`
`Metallization 2
`
`Additional Metal/Dieletric Layers
`Final Passivation
`
`7.3 Backend ProcesseS ...........ccccc cece eee eeeneenneeee
`
`Wafer Probe
`
`Die Separation
`Packaging
`Final Test and Burn-In
`
`TASUIMONY ‘sa ceascccisiea ter dasa ecardah otbinias deen emai ead ihe
`Chapter8 Electrical Noise: An Overview
`Ba Sines Gscésnic teed cheud cape eadeeres sch och ketenes
`8.1.1 Power and Energy
`Comments
`
`8.1.2 Power Spectral Density
`Spectrum Analyzers
`BOCCHIE: ERE (eas ce coc hunter latech acon a parudatsdalibletds flatbed ok
`
`8.2.1 Calculating and Modeling Circuit Noise
`Input-Referred Noise|
`Noise Equivalent Bandwidth
`Input-Referred Noise in Cascaded Amplifiers
`Calculating Vorciserus from a Spectrum: A Summary
`8.2.2 Thermal Noise
`
`8.2.3 Signal-to-Noise Ratio
`Input-Referred Noise||
`Noise Figure
`An Important Limitation of the Noise Figure
`Optimum Source Resistance
`Simulating Noiseless Resistors
`Noise Temperature
`Averaging White Noise
`8.2.4 Shot Noise
`
`8.2.5 Flicker Noise
`
`8.2.6 Other Noise Sources
`
`Random Telegraph Signal Noise
`Excess Noise (Flicker Noise)
`Avalanche Noise
`
`205
`
`207
`
`208
`
`208
`
`209
`
`209
`
`211
`
`211
`
`211
`
`211
`
`213
`
`213
`
`213
`
`215
`
`215
`
`216
`
`219
`
`219
`220
`220
`223
`224
`225
`
`230
`231
`233
`233
`236
`236
`239
`240
`242
`
`244
`
`252
`
`252
`253
`253
`
`IPR2023-00697
`IPR2023-00697
`Theta EX2019
`Theta EX2019
`
`

`

`KiV
`
`Contents
`
`BEF EASCUSSION€
`
`dick ch bck peta ds Sa ea edb ylnteldalile
`
`8.3.1 Correlation
`
`Correlation of Input-Referred Noise Sources
`Complex Input Impedance
`8.3.2 Noise and Feedback
`
`Op-Amp Noise Modeling
`8.3.3 Some Final Notes Concerning Notation
`Chapter 9 Models for Analog Design
`9.1 Long-Channel MOSFETs ......... 0.0.0.0. e000:
`9.1.1 The Square-Law Equations
`PMOS Square-Law Equations
`Qualitative Discussion
`
`Threshold Voltage and Body Effect
`Qualitative Discussion
`
`The Triode Region
`The Cutoff and Subthreshold Regions
`9.1.2 Small Signal Models
`Transconductance
`
`AC Analysis
`Transient Analysis
`Body Effect Transconductance,g,,,
`Output Resistance
`MOSFETTransition Frequency,f,
`General Device Sizes for Analog Design
`Subthreshold g,, and V,,,,
`9.1.3 Temperature Effects
`Threshold Variation and Temperature
`Mobility Variation with Temperature
`Drain Current Change with Temperature
`9.2 Short-Channel MOSFETs
`..................0.
`9.2.1 General Design (A Starting Point)
`Output Resistance
`Forward Transconductance
`
`Transition Frequency
`9.2.2 Specific Design (A Discussion)
`9.3 MOSFET Noise Modeling ..........00.....000-
`Drain Current Noise Model
`
`254
`
`256
`
`256
`
`259
`
`259
`
`262
`
`269
`
`WIT ANTS RIM 269
`
`271
`
`272
`
`272
`
`276
`
`276
`
`278
`
`278
`
`279
`
`280
`
`285
`
`286
`
`287
`
`288
`
`290
`
`291
`
`292
`
`293
`
`293
`
`295
`
`295
`
`sie bescula vested 4 ba 297
`
`297
`
`298
`
`298
`
`299
`
`300
`
`cate Emana sue ae 302
`
`302
`
`IPR2023-00697
`IPR2023-00697
`Theta EX2019
`Theta EX2019
`
`

`

`Contents
`
`311
`Chapter 10 Models for Digital Design
`311
`Miller Capacitance
`AO Te Digits| MOSFET MOMS) oa si) 06 aie ert ehaeoeiewena wetdle's 312
`Effective Switching Resistance
`312
`Short-Channe| MOSFETEffective Switching
`314
`Resistance
`
`10.1.1 Capacitive Effects
`10.1.2 Process Characteristic Time Constant
`
`315
`316
`
`317
`10.1.3 Delay and Transition Times
`320
`10.1.4 General Digital Design
`10.2 The MOSFETPass Gate 2.2.02... 0 cc ccc cece eee nee eens 321
`
`The PMOS Pass Gate
`
`322
`
`323
`10.2.1 Delay through a Pass Gate
`324
`The Transmission Gate (The TG)
`325
`10.2.2 Delay through Series-Connected PGs
`10.3 A Final Comment Concerning Measurements ......0.+.0006: 326
`Chapter 11 The Inverter
`331
`11s RE GHEKECIEHISUIGS:
`c aichanietaetQentsissuadarsaaisaiebeerss 331
`
`333
`Noise Margins
`334
`Inverter Switching Point
`334
`Ideal Inverter VTC and Noise Margins
`11.2 Switching Characteristics ............0-2-0--0eceeeeeeeenenes 337
`The Ring Oscillator
`339
`Dynamic PowerDissipation
`339
`VES LAVOUE Of Hie MVERGR vy. a hie dowel veerinveicbieisressseen 341
`Latch-Up
`341
`11.4 Sizing for Large Capacitive Loads ................2-2...202. 344
`Buffer Topology
`344
`Distributed Drivers
`347
`
`348
`Driving Long Lines
`11.5 Other Inverter Configurations ........ 0.2... .c cece eee e eee ee ee 349
`NMOS-Only Output Drivers
`350
`Inverters with Tri-State Outputs
`351
`Additional Examples
`351
`Chapter 12 Static Logic Gates
`353
`12.1 DC Characteristics of the NAND and NOR Gates ........... 353
`
`12.1.1 DC Characteristics of the NAND Gate
`
`353
`
`IPR2023-00697
`IPR2023-00697
`Theta EX2019
`Theta EX2019
`
`

`

`XVI
`
`Contents
`
`12.1.2 DC Characteristics of the NOR Gate
`A Practical Note Concerning V., and Pass Gates
`12.2 Layout of the NAND and NOR Gates ..................
`12.3 Switching CharacteristicS 2.0.00... ccc eee eee ener eee
`Parallel Connection of MOSFETs
`
`Series Connection of MOSFETs
`
`12.3.1 NAND Gate
`
`Quick Estimate of Delays
`12.3.2 Numberof Inputs
`12.4 Complex CMOSLogic Gates ............--..2-020.005:
`Cascode Voltage Switch Logic
`Differential Split-Level Logic
`Tri-State Outputs
`Additional Examples
`Chapter 13 Clocked Circuits
`TS ASTHE CMOS TG) wate tena cpu aanead a adawiew aeaninoas
`
`Series Connection of TGs
`
`13.2 Applications of the Transmission Gate .................
`Path Selector
`
`Static Circuits
`
`13.3 Latches and Flip-Flops ........-...0-2:e0 cee eneeeeceee
`Basic Latches
`
`An Arbiter
`
`Flip-Flops and Flow-through Latches
`An Edge-Triggered D-FF
`Flip-Flop Timing
`TA ESROITIBIS cee aiytud angled Bbaaattn cele as AIG6 25 Rae's ia ane
`Chapter 14 Dynamic Logic Gates
`14.1 Fundamentals of Dynamic Logic ....................0..
`14.1.1 Charge Leakage
`14.1.2 Simulating Dynamic Circuits
`14.1.3 Nonoverlapping Clock Generation
`14.1.4 CMOSTGin Dynamic Circuits
`TA:2) GIOGKEC CMDS. LOGIC: wciisin\nccincls's de deca pee ei acineaxe
`Clocked CMOS Latch
`
`An Important Note
`PE Logic
`
`356
`357
`358
`358
`358
`
`359
`
`360
`
`362
`363
`364
`369
`370
`370
`370
`375
`375
`
`377
`
`378
`378
`
`379
`
`380
`380
`
`383
`
`383
`386
`388
`389
`397
`397
`398
`401
`401
`402
`403
`403
`
`403
`404
`
`IPR2023-00697
`IPR2023-00697
`Theta EX2019
`Theta EX2019
`
`

`

`Contents
`
`XVI
`
`Domino Logic
`NP Logic (Zipper Logic)
`Pipelining
`Chapter 15 VLSI Layout Examples
`15.4 Chip Layout occu c ee nena oe ren cP eae nen eee ae
`Regularity
`Standard Cell Examples
`Power and Ground Considerations
`
`An Adder Example
`A 4-to-1 MUX/DEMUX
`
`15.2 Layout Steps by Dean Moriarty ............0.0025-0200-5--
`Planning and Stick Diagrams
`Device Placement
`
`Polish
`
`Standard Cells Versus Full-Custom Layout
`Chapter 16 Memory Circuits
`TE TMAMAY ATCHHECIINSS 4 5c cisdaisrtiaienasaciedicieiianadaaes
`16.1.1 Sensing Basics
`NMOSSense Amplifier (NSA)
`The Open Array Architecture
`PMOSSense Amplifier (PSA)
`Refresh Operation
`16.1.2 The Folded Array
`Layout of the DRAM Memory Bit (Mbit)
`16.1.3 Chip Organization
`18:2 Peripheral Cait: saci larsic ee ats Karstsvelavrstorcl acme Tels ds Bale dete
`16.2.1 Sense Amplifier Design
`Kickback Noise and Clock Feedthrough
`Memory
`Current Draw
`
`Contention Current (Switching Current)
`Removing Sense Amplifier Memory
`Creating an Imbalance and Reducing Kickback Noise
`Increasing the Input Range
`Simulation Examples
`16.2.2 Row/Column Decoders
`
`Global and Local Decoders
`
`405
`407
`407
`411
`412
`412
`413
`417
`
`419
`422
`
`422
`422
`424
`
`427
`
`427
`433
`434
`435
`435
`436
`440
`44)
`441
`443
`447
`448
`448
`449
`450
`450
`
`450
`451
`451
`454
`454
`457
`
`458
`
`IPR2023-00697
`IPR2023-00697
`Theta EX2019
`Theta EX2019
`
`

`

`XViii
`
`Reducing Decoder Layout Area
`16.2.3 Row Drivers
`
`Contents
`
`460
`461
`
`c tes caeasceaneeneee ster eee We co he ae eaee eas A463
`16.8 Memory Caller
`16.3.1 The SRAM Cell
`463
`
`464
`16.3.2 Read-Only Memory (ROM)
`466
`16.3.3 Floating Gate Memory
`467
`The Threshold Voltage
`468
`Erasable Programmable Read-Only Memory
`468
`Two Important Notes
`469
`Flash Memory
`483
`Chapter 17 Sensing Using AZ Modulation
`LET Qualitative DISGUBSION |. 2)55.5:456- 2 ieee ach adAli@eoeaaieeaces 484
`
`17.1.1 Examples of DSM
`The Counter
`
`Cup Size
`Another Example
`17.1.2 Using DSM for Sensing in Flash Memory
`The Basic Idea
`
`484
`485
`
`486
`486
`487
`487
`
`492
`The Feedback Signal
`496
`Incomplete Settling
`17.2 Sensing Resistive Memory ........-....-...-2200eee eee eeees 497
`The Bit Line Voltage
`497
`Adding an Offset to the Comparator
`498
`Schematic and Design Values
`499
`A Couple of Comments
`502
`17.3 Sensing in CMOS Imagers
`.......---2. cece cece e peer en eenee 504
`Resetting the Pixel
`504
`The Intensity Level
`504
`Sampling the Reference and Intensity Signals
`505
`Noise Issues
`506
`
`508
`Subtracting V,. from V,
`517
`Sensing Circuit Mismatches
`523
`Chapter 18 Special Purpose CMOSCircuits
`(E54! THE SER OTETAQGGE, tb ae dedi aw ck agalatate ty dnlaclaleietls Sl chdals 523
`18.1.1 Design of the Schmitt Trigger
`524
`Switching Characteristics
`526
`18.1.2 Applications of the Schmitt Trigger
`527
`
`IPR2023-00697
`IPR2023-00697
`Theta EX2019
`Theta EX2019
`
`

`

`Contents
`
`EX
`
`18.2 Multivibrator Circuits .....0... 0. cc cece eee ee een eee ees
`
`18.2.1 The Monostable Multivibrator
`
`18.2.2 The Astable Multivibrator
`
`TES INPUT BORER Sens iciis tasdacis baci aia bicep eeaaia es
`18.3.1 Basic Circuits
`
`Skewin Logic Gates
`18.3.2 Differential Circuits
`
`Transient Response
`18.3.3 DC Reference
`
`18.3.4 Reducing Buffer Input Resistance
`18.4 Charge Pumps(Voltage Generators)
`............0.00.000.
`Negative Voltages
`Using MOSFETsfor the Capacitors
`18.4.1 Increasing the Output Voltage
`18.4.2 Generating Higher Voltages: The Dickson Charge
`Pump
`Clock Driver with a Pumped Output Voltage
`NMOS Clock Driver
`
`18.4.3 Example
`Chapter 19 Digital Phase-Locked Loops
`19.1 The Phase Detector ............... 0202s eee eee eee eee ees
`
`19.1.1 The XOR Phase Detector
`
`19.1.2 The Phase Frequency Detector
`19.2 The Voltage-Controlled Oscillator .......................--
`19.2.1 The Current-Starved VCO
`
`Linearizing the VCO’s Gain
`19.2.2 Source-Coupled VCOs
`19:3: The Loop Fillet 200) anced ten cece Cem nncdviawen sae tects nae
`19.3.1 XOR DPLL
`
`Active-P! Loop Filter
`19.3.2 PFD DPLL
`
`Tri-State Output
`Implementing the PFD in CMOS
`PFD with a Charge Pump Output
`Practical Implementation of the Charge Pump
`Discussion
`
`529
`
`529
`
`530
`
`531
`§31
`
`533
`534
`
`535
`538
`
`541
`542
`543
`544
`544
`544
`
`546
`546
`
`547
`551
`553
`
`553
`
`557
`561
`561
`
`564
`565
`567
`568
`
`573
`575
`
`575
`576
`578
`579
`581
`
`19:4 System CONCEMS ge0ccsecddeectrdeeceeavaenurdeeneereceens 582
`
`IPR2023-00697
`IPR2023-00697
`Theta EX2019
`Theta EX2019
`
`

`

`XX
`
`19.4.1 Clock Recovery from NRZ Data
`The Hogge Phase Detector
`Jitter
`
`Contents
`
`584
`
`588
`
`591
`
`PSPS LOE 592
`
`595
`
`596
`
`hetaemed asaa ne 596
`
`596
`
`602
`
`613
`
`iinigigemeiane 613
`
`.............cecc see e eens
`
`19.5 Delay-Locked Loops
`Delay Elements
`Practical VCO and VCDL Design
`19.6 Some Examples
`......c.ccccesiesenaneeen ses
`19.6.1 A 2 GHz DLL
`
`19.6.2 A 1 Gbit/s Clock-Recovery Circuit
`Chapter 20 Current Mirrors
`20.1 The Basic Current Mirror ................-..-
`
`20.1.1 Long-Channel Design
`20,1,2 Matching Currentsin the Mirror
`Threshold Voltage Mismatch
`Transconductance Parameter Mismatch
`
`Drain-to-Source Voltage and Lambda
`Layout Techniques to Improve Matching
`Layout of the Mirror with Different Widths
`20.1.3 Biasing the Current Mirror
`Using a MOSFET-Only ReferenceCircuit
`Supply IndependentBiasing
`20.1.4 Short-Channel Design
`An Important Note
`20.1.5 Temperature Behavior
`Resistor-MOSFET ReferenceCircuit
`
`MOSFET-Only Reference Circuit
`Temperature Behavior of the Beta-Multiplier
`Voltage Reference Using the Beta-Multiplier
`20.1.6 Biasing in the Subthreshold Region
`20.2 Cascoding the Current Mirror .............--.-
`20.2.1 The Simple Cascode
`DC Operation
`Cascode Output Resistance
`20.2.2 Low-Voltage (Wide-Swing) Cascode
`An Important Practical Note
`Layout Concerns
`20.2.3 Wide-Swing, Short-Channel Design
`
`614
`
`616
`
`616
`
`616
`
`617
`
`617
`
`620
`
`621
`
`622
`
`624
`
`627
`
`630
`
`631
`
`631
`
`633
`
`634
`
`634
`
`635
`
`jai vin aadstpikis 636
`
`636
`
`637
`
`637
`
`639
`
`641
`
`642
`
`642
`
`IPR2023-00697
`IPR2023-00697
`Theta EX2019
`Theta EX2019
`
`

`

`Contents
`
`XXI
`
`645
`20.2.4 Regulated Drain Current Mirror
`20.3 Biasing Circuits
`................ eee ssedatavoaeireaveduers 647
`20.3.1 Long-Channel Biasing Circuits
`647
`Basic CascodeBiasing
`648
`The Folded-Cascode Structure
`648
`
`20.3.2 Short-Channel Biasing Circuits
`Floating Current Sources
`20.3.3 A Final Comment
`Chapter 21 Amplifiers
`21.1 Gate-Drain Connected Loads
`
`..............2...2-.-5-5- ever
`
`21.1.1 Common-Source (CS) Amplifiers
`Miller's Theorem
`
`Frequency Response
`The Right-Hand Plane Zero
`A Common-Source Current Amplifier
`Common-Source Amplifier with Source Degeneration
`Noise Performance of the CS Amplifier with
`Gate-Drain Load
`
`650
`651
`651
`657
`lGor
`
`657
`660
`
`661
`662
`666
`667
`669
`
`670
`21.1.2 The Source Follower (Common-Drain Amplifier)
`671
`21.1.3 Common Gate Amplifier
`212 Current Seurte Lads... screw aereew ete eve yea Sed TE EPS 671
`
`21.2.1 Common-Source Amplifier
`Class A Operation
`Small-Signal Gain
`OpenCircuit Gain
`High-lmpedance and Low-Impedance Nodes
`Frequency Response
`Pole Splitting
`Pole Splitting Summary
`Canceling the RHP Zero
`Noise Performance of the CS Amplifier with Current
`Source Load
`
`21.2.2 The Cascode Amplifier
`Frequency Response
`Class A Operation
`Noise Performance of the Cascode Amplifier
`Operation as a Transimpedance Amplifier
`
`671
`672
`673
`673
`673
`674
`676
`679
`685
`686
`
`686
`687
`688
`688
`688
`
`IPR2023-00697
`IPR2023-00697
`Theta EX2019
`Theta EX2019
`
`

`

`XXIi
`
`Contents
`
`689
`21.2.3 The Common-Gate Amplifier
`690
`21.2.4 The Source Follower (Common-Drain Amplifier)
`691
`Body Effect and Gain
`692
`Level Shifting
`693
`Input Capacitance
`694
`Noise Performance of the SF Amplifier
`694
`Frequency Behavior
`696
`SF as an Output Buffer
`697
`A Class AB Output Buffer Using SFs
`21.3 The Push-Pull Amplifier
`.........0. 06.0 c ccc cece eee eee e eens 698
`21.3.1 DC Operation and Biasing
`699
`Power Conversion Efficiency
`699
`21.3.2 Small-Signal Analysis
`702
`21.3.3 Distortion
`704
`
`705
`Modeling Distortion with SPICE
`7114
`Chapter 22 Differential Amplifiers
`22.1 The Source-Coupled Pair
`..-......2... 2.20.0 ccc cece eee eens 714
`22.1.1 DC Operation
`711
`Maximum and Minimum Differential Input Voltage
`712
`Maximum and Minimum Common-ModeInput
`713
`Voltage
`Current Mirror Load
`
`715
`
`Biasing from the Current Mirror Load
`Minimum Power Supply Voltage
`22.1.2 AC Operation
`AC Gain with a Current Mirror Load
`
`22.1.3 Common-Mode Rejection Ratio
`Input-Referred Offset from Finite CARR
`22.1.4 Matching Considerations
`Input-Referred Offset with a Current Mirror Load
`22.1.5 Noise Performance
`
`22.1.6 Slew-Rate Limitations
`
`717
`717
`718
`719
`
`721
`723
`724
`725
`726
`
`727
`
`22.2 The Source Cross-Coupled Pair ......cccccceecceernnweweuen 727
`Operation of the Diff-Amp
`728
`Input Signal Range
`729
`22.2.1 Current Source Load
`731
`
`Input Signal Range
`
`732
`
`IPR2023-00697
`IPR2023-00697
`Theta EX2019
`Theta EX2019
`
`

`

`Contents
`
`XXiil
`
`22.3 Cascode Loads (The Telescopic Diff-Amp) ................. 733
`22.4 Wide-SwingDifferential Amplifiers .................0.0.00005 736
`22.4.1 Current Differential Amplifier
`737
`22.4.2 Constant Transconductance Diff-Amp
`738
`Discussion
`740
`
`Chapter 23 Voltage References
`23.1 MOSFET-Resistor Voltage References .........--..-....
`23.1.1 The Resistor-MOSFETDivider
`
`23.1.2 The MOSFET-Only Voltage Divider
`23.1.3 Self-Biased Voltage References
`Forcing the Same Current through Each Side of the
`Reference
`
`An Alternate Topology
`23.2 Parasitic Diode-Based References
`
`................0.0005
`
`Diode Behavior
`
`The Bandgap Energyof Silicon
`Lower Voltage Reference Design
`23.2.1 Long-Channel BGR Design
`Diode-Referenced Self-Biasing (CTAT)
`Thermal Voltage-Referenced Self-Biasing (PTAT)
`Bandgap Reference Design
`Alternative BGR Topologies
`23.2.2 Short-Channel BGR Design
`The Added Amplifier
`Lower Voltage Operation
`Chapter 24 Operational Amplifiers |
`24.1 The Two-Stage Op-Amp ..........2.:00eseceeeeebeeeeeee
`Low-Frequency, Open Loop Gain, Ago.
`Input Common-Mode Range
`PowerDissipation
`Output Swing and Current Source/Sinking Capability
`Offsets
`
`Compensating the Op-Amp
`Gain and Phase Margins
`Removing the Zero
`Compensation for High-Speed Operation
`Slew-Rate Limitations
`
`745
`746
`746
`
`749
`750
`751
`
`756
`757
`
`758
`
`759
`760
`761
`761
`762
`765
`766
`768
`770
`770
`773
`774
`774
`774
`775
`TLS
`775
`
`776
`781
`782
`783
`787
`
`IPR2023-00697
`IPR2023-00697
`Theta EX2019
`Theta EX2019
`
`

`

`XXIV
`
`Contents
`
`789
`Common-Mode Rejection Ratio (CMRR)
`790
`Power Supply Rejection Ratio (PSRR)
`791
`Increasing the Input Common-Made Voltage Range
`792
`Estimating Bandwidth in Op-AmpsCircuits
`24.2 An Op-Amp with Output Buffer
`.-............00cc sees eee ees 793
`Compensating the Op-Amp
`794
`24.3 The Operational Transconductance Amplifier (OTA) ........ 796
`Unity-Gain Frequency,f,,
`197
`Increasing the OTA Output Resistance
`798
`An Important Note
`799
`OTA with an Output Buffer (An Op-Amp)
`800
`The Folded-Cascode OTA and Op-Amp
`803
`24S Kea THENNENCEMISAU cos. ease cory ir ves vi eyed ewe Sy USRRe EVE 808
`
`809
`Bandwidth of the Added GE Amplifiers
`811
`Compensating the Added GE Amplifiers
`24.5 Some Examples and Discussions
`............-+.e0se00e0ee: 812
`A Voltage Regulator
`812
`Bad Output Stage Design
`817
`Three-Stage Op-Amp Design
`820
`Chapter 25 Dynamic Analog Circuits
`B29
`25.4 The MOSFET Sweet n<i5 sc ccgdeidctcer thin arts ciatioee ia 829
`
`ChargeInjection
`Capacitive Feedthrough
`Reduction of ChargeInjection and Clock Feedthrough
`kT/C Noise
`
`830
`831
`832
`833
`
`834
`25.1.1 Sample-and-Hold Circuits
`25.2 Fully-Differential Circuits 00.0.0... 00.0 cece eee eee eee ees 836
`Gain
`836
`
`Common-Mode Feedback
`
`Coupled Noise Rejection
`Other Benefits of Fully-Differential Op-Amps
`25.2.1 A Fully-Differential Sample-and-Hold
`Connecting the Inputs to the Bottom (Poly1) Plate
`Bottom Plate Sampling
`SPICE Simulation
`
`837
`
`838
`838
`838
`840
`B41
`841
`
`25.3 Switched-Capacitor Circuits 2.00.0... cece cece ees 843
`25.3.1 Switched-Capacitor Integrator
`845
`
`IPR2023-00697
`IPR2023-00697
`Theta EX2019
`Theta EX2019
`
`

`

`Contents
`
`Parasitic Insensitive
`
`XKV
`
`846
`
`Other Integrator Configurations
`Exact Frequency Responseof a Switched-Capacitor
`Integrator
`851
`Capacitor Layout
`852
`Op-AmpSettling Time
`DO COWCRNTSS
`Lc Chesca Si heed e Sache ieee eb eooadetatavendese 853
`
`846
`849
`
`853
`Reducing Offset Voltage of an Op-Amp
`854
`Dynamic Comparator
`856
`Dynamic Current Mirrors
`858
`Dynamic Amplifiers
`863
`Chapter 26 Operational Amplifiers II
`26.1 Biasing for Power and Speed ....... cc cr eee e reer eee pueeene 863
`26.1.1 Device Characteristics
`864
`
`26.1.2 Biasing Circuit
`Layout of Differential Op-Amps
`Self-Biased Reference
`
`865
`865
`866
`
`26:2 BAsic GONnGeAts: kta i inlaw en andraan canis hensanianayas

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket