throbber
PROCEEDINGS OF SPIE
`
`SPIEDigitalLibrary.org/conference-proceedings-of-spie
`
`(cid:54)(cid:76)(cid:80)(cid:83)(cid:79)(cid:72)(cid:3)(cid:20)(cid:27)(cid:19)(cid:82)(cid:3)(cid:73)(cid:76)(cid:72)(cid:79)(cid:71)(cid:16)(cid:82)(cid:73)(cid:16)(cid:89)(cid:76)(cid:72)(cid:90)(cid:3)(cid:41)(cid:16)(cid:87)(cid:75)(cid:72)(cid:87)(cid:68)(cid:3)(cid:68)(cid:79)(cid:79)(cid:16)
`(cid:86)(cid:78)(cid:92)(cid:3)(cid:70)(cid:68)(cid:80)(cid:72)(cid:85)(cid:68)
`
`(cid:61)(cid:72)(cid:79)(cid:77)(cid:78)(cid:82)(cid:3)(cid:36)(cid:81)(cid:71)(cid:85)(cid:72)(cid:76)(cid:70)
`
`(cid:61)(cid:72)(cid:79)(cid:77)(cid:78)(cid:82)(cid:3)(cid:36)(cid:81)(cid:71)(cid:85)(cid:72)(cid:76)(cid:70)(cid:15)(cid:3)(cid:5)(cid:54)(cid:76)(cid:80)(cid:83)(cid:79)(cid:72)(cid:3)(cid:20)(cid:27)(cid:19)(cid:82)(cid:3)(cid:73)(cid:76)(cid:72)(cid:79)(cid:71)(cid:16)(cid:82)(cid:73)(cid:16)(cid:89)(cid:76)(cid:72)(cid:90)(cid:3)(cid:41)(cid:16)(cid:87)(cid:75)(cid:72)(cid:87)(cid:68)(cid:3)(cid:68)(cid:79)(cid:79)(cid:16)(cid:86)(cid:78)(cid:92)(cid:3)(cid:70)(cid:68)(cid:80)(cid:72)(cid:85)(cid:68)(cid:15)(cid:5)(cid:3)(cid:51)(cid:85)(cid:82)(cid:70)(cid:17)(cid:3)(cid:54)(cid:51)(cid:44)(cid:40)
`(cid:20)(cid:24)(cid:19)(cid:19)(cid:15)(cid:3)(cid:44)(cid:81)(cid:81)(cid:82)(cid:89)(cid:68)(cid:87)(cid:76)(cid:89)(cid:72)(cid:3)(cid:50)(cid:83)(cid:87)(cid:76)(cid:70)(cid:86)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:51)(cid:75)(cid:68)(cid:86)(cid:72)(cid:3)(cid:38)(cid:82)(cid:81)(cid:77)(cid:88)(cid:74)(cid:68)(cid:87)(cid:72)(cid:3)(cid:50)(cid:83)(cid:87)(cid:76)(cid:70)(cid:86)(cid:15)(cid:3)(cid:3)(cid:11)(cid:20)(cid:3)(cid:50)(cid:70)(cid:87)(cid:82)(cid:69)(cid:72)(cid:85)(cid:3)(cid:20)(cid:28)(cid:28)(cid:20)(cid:12)(cid:30)(cid:3)(cid:71)(cid:82)(cid:76)(cid:29)
`(cid:20)(cid:19)(cid:17)(cid:20)(cid:20)(cid:20)(cid:26)(cid:18)(cid:20)(cid:21)(cid:17)(cid:23)(cid:25)(cid:27)(cid:23)(cid:21)
`(cid:40)(cid:89)(cid:72)(cid:81)(cid:87)(cid:29)(cid:3)(cid:40)(cid:38)(cid:50)(cid:23)(cid:3)(cid:11)(cid:55)(cid:75)(cid:72)(cid:3)(cid:43)(cid:68)(cid:74)(cid:88)(cid:72)(cid:3)(cid:10)(cid:28)(cid:20)(cid:12)(cid:15)(cid:3)(cid:20)(cid:28)(cid:28)(cid:20)(cid:15)(cid:3)(cid:55)(cid:75)(cid:72)(cid:3)(cid:43)(cid:68)(cid:74)(cid:88)(cid:72)(cid:15)(cid:3)(cid:49)(cid:72)(cid:87)(cid:75)(cid:72)(cid:85)(cid:79)(cid:68)(cid:81)(cid:71)(cid:86)
`
`(cid:39)(cid:82)(cid:90)(cid:81)(cid:79)(cid:82)(cid:68)(cid:71)(cid:72)(cid:71)(cid:3)(cid:41)(cid:85)(cid:82)(cid:80)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:86)(cid:29)(cid:18)(cid:18)(cid:90)(cid:90)(cid:90)(cid:17)(cid:86)(cid:83)(cid:76)(cid:72)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:79)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:70)(cid:82)(cid:81)(cid:73)(cid:72)(cid:85)(cid:72)(cid:81)(cid:70)(cid:72)(cid:16)(cid:83)(cid:85)(cid:82)(cid:70)(cid:72)(cid:72)(cid:71)(cid:76)(cid:81)(cid:74)(cid:86)(cid:16)(cid:82)(cid:73)(cid:16)(cid:86)(cid:83)(cid:76)(cid:72)(cid:3)(cid:82)(cid:81)(cid:3)(cid:21)(cid:27)(cid:3)(cid:39)(cid:72)(cid:70)(cid:3)(cid:21)(cid:19)(cid:21)(cid:21)(cid:3)(cid:3)(cid:55)(cid:72)(cid:85)(cid:80)(cid:86)(cid:3)(cid:82)(cid:73)(cid:3)(cid:56)(cid:86)(cid:72)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:86)(cid:29)(cid:18)(cid:18)(cid:90)(cid:90)(cid:90)(cid:17)(cid:86)(cid:83)(cid:76)(cid:72)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:79)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:87)(cid:72)(cid:85)(cid:80)(cid:86)(cid:16)(cid:82)(cid:73)(cid:16)(cid:88)(cid:86)(cid:72)
`
`APPLE 1016
`
`1
`
`

`

`A simple 180° field of view F-theta all-sky camera
`
`Zeljko Andreic¢
`
`IME dept.
`Institute "Ruder Boskovicé",
`Bijeniéka 54, 41000 Zagreb, Yugoslavia
`
`ABSTRACT
`
`in
`used
`All-sky cameras with field of view (FOV) of 180° are
`simplest
`several astronomical and terrestrial applications.
`In it’s
`form,
`such a camera consists of a simple photographic camera which
`photographs
`the image of the sky reflected in a
`spherical mirror.
`This design is attractive due to it’s comparatively low cost as’
`the
`spherical mirror has very relaxed tolerances on surface
`shape
`and
`accuracy. However,
`the image such a camera produces
`suffers
`from
`angular distortion near
`the
`edge of
`the
`image.
`If
`instead a
`spherical mirror
`an
`aspherical one is used,
`it
`is possible
`to
`eliminate
`angular distortion and_
`to obtain constant
`angular
`magnification over
`the whole
`180° FOV.
`The derivation of
`the
`differential equation of
`the required aspherical surface is outlined
`and
`the
`results
`of
`numerical
`integration of
`the
`equation are
`described.
`
`1. ALL-SKY CAMERA
`
`applications
`The name "all-sky camera" origins in astronomical
`of special cameras capable of photographing the whole visible sky at
`once.
`Such
`cameras have field of view (FOV) of
`180
`and
`produce
`circular
`ima es
`on
`the film or plate. They are,
`used
`for meteor
`photography ’~, atmospheric phenomena photography
`and probably for
`several other specialized applications. Specialized 180°
`FOV lenses,
`the
`so
`called fish-eye lenses, are obtainable.
`They
`are usually
`expensive, big and vulnerable due to very large, exposed, front
`lens
`surface. Because of that, old and simple versions of
`such
`cameras
`are still attractive, at
`least for amateurs.
`In its simplest
`form,
`such
`simple
`camera
`is
`composed
`of
`an, grdinary small
`format
`photographic camera and a spherical mirror
`’
`Camera looks into the
`image
`of
`the sky produced by the mirror at greatly reduced
`angular
`scale,
`thus making it possible to photograph the whole visible sky
`with ordinary camera optics. The camera is held above the mirror
`by
`
`
`a tripod or similar construction. Such a simple_camera system can
`cover
`very
`large
`FOV,
`even greater than
`180°,
`if
`needed.
`The
`spherical mirror
`need
`not be very accurate
`one,
`and
`even_-
`such
`imperfect mirrors as christmas-tree decorations and car
`hubs were
`successfully used™~’
`A concave mirror can also be used, but
`in this
`case the image of the sky is in front of
`the mirror,
`thus
`requiring
`
`0-8194-0609-0/91 /$4.00
`
`SPIE Vol. 1500 Innovative Optics and Phase Conjugate Optics (1991) / 293
`
`DownloadedFrom: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 28 Dec 2022
`(cid:39)(cid:82)(cid:90)(cid:81)(cid:79)(cid:82)(cid:68)(cid:71)(cid:72)(cid:71)(cid:3)(cid:41)(cid:85)(cid:82)(cid:80)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:86)(cid:29)(cid:18)(cid:18)(cid:90)(cid:90)(cid:90)(cid:17)(cid:86)(cid:83)(cid:76)(cid:72)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:79)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:70)(cid:82)(cid:81)(cid:73)(cid:72)(cid:85)(cid:72)(cid:81)(cid:70)(cid:72)(cid:16)(cid:83)(cid:85)(cid:82)(cid:70)(cid:72)(cid:72)(cid:71)(cid:76)(cid:81)(cid:74)(cid:86)(cid:16)(cid:82)(cid:73)(cid:16)(cid:86)(cid:83)(cid:76)(cid:72)(cid:3)(cid:82)(cid:81)(cid:3)(cid:21)(cid:27)(cid:3)(cid:39)(cid:72)(cid:70)(cid:3)(cid:21)(cid:19)(cid:21)(cid:21)
`Termsof Use:https://www.spiedigitallibrary.org/terms-of-use
`(cid:55)(cid:72)(cid:85)(cid:80)(cid:86)(cid:3)(cid:82)(cid:73)(cid:3)(cid:56)(cid:86)(cid:72)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:86)(cid:29)(cid:18)(cid:18)(cid:90)(cid:90)(cid:90)(cid:17)(cid:86)(cid:83)(cid:76)(cid:72)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:79)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:87)(cid:72)(cid:85)(cid:80)(cid:86)(cid:16)(cid:82)(cid:73)(cid:16)(cid:88)(cid:86)(cid:72)
`
`2
`
`

`

`larger separation between the mirror and the camera.
`their
`forms
`In usual case of objects at infinity,
`the mirror
`in its focal plane, and the camera looks at this image. This
`image
`that
`the camera must be focused to that,
`relatively close,
`means
`image. And,
`as the image surface is curved,
`the camera
`lens must
`have adequate depth of
`the focus for the whole image,
`from center to
`the
`edge. This implies that
`larger separations between
`camera
`and
`mirror are more favorable. Closing the lens can improve the depth of
`level
`the
`focus,
`but this is not a popular measure in
`low light
`applications, as is case in astronomy. And last, but not least,
`the
`of
`the
`angular
`size of
`the camera image (the camera is in
`front
`mirror!)
`is
`reduced as the camera is moved farther away
`from the
`mirror.
`Images produced by such a camera always show a silhouette of
`the
`camera and camera support
`in the image, but, as the
`silhouette
`not
`a
`eccupies
`relatively small area of
`the image,
`it is usually
`problem in most applications.
`Design of such a camera is well described in ref. 4, and I will
`quote only a few simple formulas, derived from paraaxial
`equations.
`If we have a camera with given lens and image size, we can
`compute
`angular size of
`the largest circular image that fits into this image
`size.
`In our case it is wise to keep the image about 20% smaller,
`to
`compensate for focusing the lens. There is no need to calculate’
`the
`of
`the
`effect
`of
`focusing exactly, as in the final stage the size
`image is adjusted by changing the separation between the camera
`and
`the mirror a little. The linear image sizes used for calculations in
`this article are shown on the Fig.
`1.
`The angular FOV of the camera alone (COV)
`known formula
`
`is given by the well-
`
`COV = 2 * arctan(r/f)
`
`(1)
`
`the image circle, as defined on
`is useful semi-diameter of
`r
`where
`As
`the
`the Fig. 1., and f
`is the focal
`length of
`the camera lens.
`image
`of
`the sky, which covers the whole 180° must fit
`inside
`the
`camera
`FOV, we
`calculate
`the necessary angular magnification
`(actually reduction) which convex mirror must produce:
`
`M’ = COV/180
`
`(2)
`
`the relation between
`image formulas,
`using paraaxial
`by
`‘Now,
`(d)
`and
`the
`radius
`separation of
`the
`camera and the mirror
`curvature of
`the convex mirror (R)
`is found to be
`
`the
`of
`
`R= 2¥*d/(M-1)
`
`with
`
`M=1/M’
`
`(3)
`
`(4)
`
`The sketch of such a camera is shown on the Fig. 2.
`
`294 / SPIE Vol. 1500 Innovative Optics and Phase Conjugate Optics (1991)
`
`Downloaded From:https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 28 Dec 2022
`(cid:39)(cid:82)(cid:90)(cid:81)(cid:79)(cid:82)(cid:68)(cid:71)(cid:72)(cid:71)(cid:3)(cid:41)(cid:85)(cid:82)(cid:80)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:86)(cid:29)(cid:18)(cid:18)(cid:90)(cid:90)(cid:90)(cid:17)(cid:86)(cid:83)(cid:76)(cid:72)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:79)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:70)(cid:82)(cid:81)(cid:73)(cid:72)(cid:85)(cid:72)(cid:81)(cid:70)(cid:72)(cid:16)(cid:83)(cid:85)(cid:82)(cid:70)(cid:72)(cid:72)(cid:71)(cid:76)(cid:81)(cid:74)(cid:86)(cid:16)(cid:82)(cid:73)(cid:16)(cid:86)(cid:83)(cid:76)(cid:72)(cid:3)(cid:82)(cid:81)(cid:3)(cid:21)(cid:27)(cid:3)(cid:39)(cid:72)(cid:70)(cid:3)(cid:21)(cid:19)(cid:21)(cid:21)
`Termsof Use: https://Awww.spiedigitallibrary.org/terms-of-use
`(cid:55)(cid:72)(cid:85)(cid:80)(cid:86)(cid:3)(cid:82)(cid:73)(cid:3)(cid:56)(cid:86)(cid:72)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:86)(cid:29)(cid:18)(cid:18)(cid:90)(cid:90)(cid:90)(cid:17)(cid:86)(cid:83)(cid:76)(cid:72)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:79)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:87)(cid:72)(cid:85)(cid:80)(cid:86)(cid:16)(cid:82)(cid:73)(cid:16)(cid:88)(cid:86)(cid:72)
`
`3
`
`

`

`55 to 82mm
`
`camera lens
`
`
`
`
`
`
`
` E
`
`GY
` x* Doel:JLOOD Vs
`
`
`
`ru22mm
`
`mirror
`
`by
`produced
`image
`1:
`Figure
`is
`camera
`all-sky
`the
`available
`the
`inscribed
`in
`image area. Examples are given
`for the two most commonly used
`film formats,
`the
`24x36
`mm
`(Leica) and the 55x55-55x82 mm
`(6x9) film formats.
`
`Figure 2: geometry of a simple
`all-sky camera. Note that
`the
`ray paths are
`reversed,
`thus
`simplifying analysis
`of
`the
`system.
`The
`camera
`lens
`is
`placed at T.
`
`In paraaxial approximation such a camera has constant
`magnification M, so that
`
`angular
`
`B=M*a,
`
`(5)
`
`this simple relation is not valid for larger angles, and
`In reality,
`suffers from angular distortion in outer parts
`of
`the
`the
`camera
`is illustrated on the Fig. 3. Camera for which
`eq.
`5.
`image,
`as
`holds for all
`image angles,
`is sometimes called "F-theta" camera.
`
`2. F-THETA ALL SKY CAMERA WITH ASPHERICAL MIRROR
`
`reduction
`produces
`that spherical mirror
`seen
`have
`We
`in
`angular magnification when image angles approach 90. By
`using
`an
`aspherical mirror
`it
`is possible to
`keep
`angular magnification
`constant,
`even for very large image angles, well over 90°.
`I will
`outline
`the derivation of
`the equation of
`the
`required aspherical
`surface. The geometry of
`the problem is shown on the Fig. 4.
`
`DownloadedFrom: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 28 Dec 2022
`(cid:39)(cid:82)(cid:90)(cid:81)(cid:79)(cid:82)(cid:68)(cid:71)(cid:72)(cid:71)(cid:3)(cid:41)(cid:85)(cid:82)(cid:80)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:86)(cid:29)(cid:18)(cid:18)(cid:90)(cid:90)(cid:90)(cid:17)(cid:86)(cid:83)(cid:76)(cid:72)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:79)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:70)(cid:82)(cid:81)(cid:73)(cid:72)(cid:85)(cid:72)(cid:81)(cid:70)(cid:72)(cid:16)(cid:83)(cid:85)(cid:82)(cid:70)(cid:72)(cid:72)(cid:71)(cid:76)(cid:81)(cid:74)(cid:86)(cid:16)(cid:82)(cid:73)(cid:16)(cid:86)(cid:83)(cid:76)(cid:72)(cid:3)(cid:82)(cid:81)(cid:3)(cid:21)(cid:27)(cid:3)(cid:39)(cid:72)(cid:70)(cid:3)(cid:21)(cid:19)(cid:21)(cid:21)
`Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
`(cid:55)(cid:72)(cid:85)(cid:80)(cid:86)(cid:3)(cid:82)(cid:73)(cid:3)(cid:56)(cid:86)(cid:72)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:86)(cid:29)(cid:18)(cid:18)(cid:90)(cid:90)(cid:90)(cid:17)(cid:86)(cid:83)(cid:76)(cid:72)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:79)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:87)(cid:72)(cid:85)(cid:80)(cid:86)(cid:16)(cid:82)(cid:73)(cid:16)(cid:88)(cid:86)(cid:72)
`
`SPIE Val. 1500 Innovative Optics and Phase Conjugate Optics (1991) / 295
`
`4
`
`

`

`160.00
`
`120.00
`
`0.00
`
`2.00
`
`4.00
`
`6
`5.00
`
`8.00
`
`10.00
`
`12.00
`
`14.00
`
`Camera Field Angle (deg)
`(deg) 0.00
`ObjectFieldAngle
`
`
`angular
`The
`3:
`Figure
`distortion (solid line) of the
`simple all-sky camera using
`a
`convex
`spherical mirror with
`radius of curvature R=0,286 m.
`The 35 mm camera with a 50
`mm
`lens
`is placed 1m above’
`the
`mirror.
`The
`paraaxial
`equation §&. with M=8 is’
`drawn
`doted.
`
`of
`geometry
`4:
`Figure
`aspherical mirror
`used in an
`all-sky camera. For
`ease
`in
`analysis
`the
`ray paths
`are
`reversed,
`and we
`trace
`rays
`from the camera lens, situated
`at point T,
`to the mirror and,
`after the reflection,
`into the
`infinity.
`
`at
`light ray goes from the point T situated on the y-axis
`The
`at
`height d above the mirror vertex , and travels toward the mirror
`angle
`a
`to the y-axis.
`It is reflected from the mirror
`at
`point
`are
`A(x,y)
`toward
`the sky, at angle BB to the y axis. Both
`angles
`defined
`to be positive as indicated on the picture.
`The
`mirror |
`surface
`is defined by the equation of the generating curve
`y=f(x),
`and
`the actual mirror surface will be generated by the rotation of
`the
`this
`curve around the y-axis. The ray path is reversed to make
`derivation of
`the generating curve easier.
`From the triangle ABT is easily found that
`
`B=2 6-0
`
`and from the triangle ACT
`
`§=ato
`
`(6)
`
`(7)
`
`to the curve y=f(x) at point A can be
`the normal
`The slope of
`by using analytical geometry to be
`
`found
`
`tan(o)=-1/(d(f(x))/dx)a
`
`(8)
`
`296 / SPIE Vol. 1500 Innovative Optics and Phase Conjugate Optics (1997)
`
`Downloaded From:https:/Awww.spiedigitallibrary.org/conference-proceedings-of-spie on 28 Dec 2022
`(cid:39)(cid:82)(cid:90)(cid:81)(cid:79)(cid:82)(cid:68)(cid:71)(cid:72)(cid:71)(cid:3)(cid:41)(cid:85)(cid:82)(cid:80)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:86)(cid:29)(cid:18)(cid:18)(cid:90)(cid:90)(cid:90)(cid:17)(cid:86)(cid:83)(cid:76)(cid:72)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:79)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:70)(cid:82)(cid:81)(cid:73)(cid:72)(cid:85)(cid:72)(cid:81)(cid:70)(cid:72)(cid:16)(cid:83)(cid:85)(cid:82)(cid:70)(cid:72)(cid:72)(cid:71)(cid:76)(cid:81)(cid:74)(cid:86)(cid:16)(cid:82)(cid:73)(cid:16)(cid:86)(cid:83)(cid:76)(cid:72)(cid:3)(cid:82)(cid:81)(cid:3)(cid:21)(cid:27)(cid:3)(cid:39)(cid:72)(cid:70)(cid:3)(cid:21)(cid:19)(cid:21)(cid:21)
`Termsof Use: https://www.spiedigitallibrary.org/terms-of-use
`(cid:55)(cid:72)(cid:85)(cid:80)(cid:86)(cid:3)(cid:82)(cid:73)(cid:3)(cid:56)(cid:86)(cid:72)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:86)(cid:29)(cid:18)(cid:18)(cid:90)(cid:90)(cid:90)(cid:17)(cid:86)(cid:83)(cid:76)(cid:72)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:79)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:87)(cid:72)(cid:85)(cid:80)(cid:86)(cid:16)(cid:82)(cid:73)(cid:16)(cid:88)(cid:86)(cid:72)
`
`5
`
`

`

`From the triangle COD, ¢=90°-o and
`
`tan(¢ )=1/tan(o)=-(d(f(x))/dx)
`
`(9)
`
`is
`it
`the point A, we note that
`find the coordinates (x,y) of
`To
`common to the ray and to the mirror surface. By combining
`equations
`of
`the ray and of
`the surface we find that
`
`f (x )=-x/tan(a)+d
`
`(10)
`
`then
`to have a constant angular magnification,
`If we want
`angles q@ right to the edge of the camera FOV it must be
`
`for
`
`all
`
`B=M*a
`
`By combining eq. 6, 7,
`
`9 and 11 it is found that
`
`d( f(x) )/dx=-tan(a*(M-1)/2)
`
`(11)
`
`(12)
`
`eliminated by using eq.
`be
`can
`@
`equation for the function f(x):
`
`10 to obtain the differential
`
`d(f(x))/dx=-tan(N*atan(x/(d-f(x))))
`
`(13)
`
`N = (M-1)/2
`
`to the boundary condition y=0 for x=0O (see Fig. 4.). It
`subject
`also obvious that the curve f(x) is symmetrical with respect
`to
`y-axis.
`inverse
`and
`very small angles we can approximate tangent
`For
`tangent functions with the angels themselves. Also,
`in such a case y
`is much smaller than d, so it can be neglected in the denominator at
`the right side of eq. 13. The result of
`these approximations is’
`the
`equation
`
`is
`the
`
`fo(x)=-Nx7/2
`
`(14)
`
`If we calculate the radius of
`which is a parabola.
`this parabola at its vertex we get
`
`the curvature
`
`of
`
`Ro=2*d/(M-1)
`
`(15)
`
`have
`
`found
`
`from’
`
`simple
`
`paraaxial
`
`exactly what we
`is
`which
`considerations (see eq. 3).
`center
`It should be said here that the distance from the image
`to the image point at an angle
`from the axis is actually f*tan(a)
`and
`not
`f¥*q,
`so the distances measured on the film will
`not
`be
`strictly proportional
`to the field angle
`in object space. However,
`if we
`use
`normal, or even better, a telephoto camera
`lens,
`the
`difference is small. For
`instance,
`for 35 mm camera with a normal 50
`mm lens the error at
`the edge of
`the field is about
`1%, and for’
`the
`135 mm telephoto it is under 0.2%. And, as the lens itself can
`have
`residual distortion of
`the same order of magnitude,
`there
`no
`
`Downloaded From:https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 28 Dec 2022
`(cid:39)(cid:82)(cid:90)(cid:81)(cid:79)(cid:82)(cid:68)(cid:71)(cid:72)(cid:71)(cid:3)(cid:41)(cid:85)(cid:82)(cid:80)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:86)(cid:29)(cid:18)(cid:18)(cid:90)(cid:90)(cid:90)(cid:17)(cid:86)(cid:83)(cid:76)(cid:72)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:79)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:70)(cid:82)(cid:81)(cid:73)(cid:72)(cid:85)(cid:72)(cid:81)(cid:70)(cid:72)(cid:16)(cid:83)(cid:85)(cid:82)(cid:70)(cid:72)(cid:72)(cid:71)(cid:76)(cid:81)(cid:74)(cid:86)(cid:16)(cid:82)(cid:73)(cid:16)(cid:86)(cid:83)(cid:76)(cid:72)(cid:3)(cid:82)(cid:81)(cid:3)(cid:21)(cid:27)(cid:3)(cid:39)(cid:72)(cid:70)(cid:3)(cid:21)(cid:19)(cid:21)(cid:21)
`Termsof Use: https://www.spiedigitallibrary.org/terms-of-use
`(cid:55)(cid:72)(cid:85)(cid:80)(cid:86)(cid:3)(cid:82)(cid:73)(cid:3)(cid:56)(cid:86)(cid:72)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:86)(cid:29)(cid:18)(cid:18)(cid:90)(cid:90)(cid:90)(cid:17)(cid:86)(cid:83)(cid:76)(cid:72)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:79)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:87)(cid:72)(cid:85)(cid:80)(cid:86)(cid:16)(cid:82)(cid:73)(cid:16)(cid:88)(cid:86)(cid:72)
`
`SPIE Vol. 1500 Innovative Optics and Phase Conjugate Optics (1991) / 297
`
`is
`
`6
`
`

`

`the
`insisting on strict linear proportionality between’
`in
`point
`object field angle and the distance of object
`image from the
`center
`of the image.
`done
`The
`raytracing of mirrors discussed in this article was.
`with a simple, custom written computer program which was able to use
`tabulated curve coordinates obtained from numerical
`integration of
`eq.
`13. This has resulted in slight waviness of
`some of
`the
`curves
`on
`raytrace graphs. This is caused by
`numerical
`inaccuracies
`in
`calculated slopes of mirror surface elements and not by the mirror
`surface itself.
`
`3. NUMERICAL INTEGRATION OF THE SURFACE EQUATION
`
`several
`integrated for
`numerically
`13. was
`equation
`The
`used
`film
`magnifications, M, chosen to describe the most commonly
`sizes and lens focal
`lengths. The magnifications and lens parameters
`are listed in Table 1.
`
`lengths and magnifications (M) used in numerical
`lens focal
`Table 1:
`integrations
`of eq. 13. Field semi-angles are calculated from the
`eq. 1. with r defined on the Fig.
`1.
`
`lens F.L.
`
`FOV (semi-angle)
`
`M
`
`24x36 mm film size (r=10 mm)
`
`35 mm
`50 mm
`100 mm
`135 mm
`
`80 mm
`180 mm
`
`160
`3
`11
`5.75
`4.2
`
`6x9 film size (r=22 mm)
`160
`7
`
`6
`8
`16
`ee
`
`6
`13
`
`normalized
`The distance between the camera and the mirror was
`to d=1,
`and
`the
`numerical
`integration was
`performed only
`for
`positive
`x,
`as
`the mirror
`surface
`is
`axially symmetric.
`The
`necessary size of
`the mirror (maximal x)
`for field semi-angle of 90
`was determined by raytracing. The results are tabulated in the Table
`2. at
`the end of this paper.
`5,
`the Fig.
`The mirror
`shape
`for the case M=8 is shown on
`compared to the sphere with radius of curvature calculated from eq.
`3,
`and shapes and sizes for various magnifications are compared
`on
`the Fig. 6. The effect of changing the distance d between the camera
`and the mirror is illustrated on the Fig. 7. As it can be seen,
`the
`
`298 / SPIE Vol. 1500 Innovative Optics and Phase Conjugate Optics (1991)
`
`Downloaded From:https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 28 Dec 2022
`(cid:39)(cid:82)(cid:90)(cid:81)(cid:79)(cid:82)(cid:68)(cid:71)(cid:72)(cid:71)(cid:3)(cid:41)(cid:85)(cid:82)(cid:80)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:86)(cid:29)(cid:18)(cid:18)(cid:90)(cid:90)(cid:90)(cid:17)(cid:86)(cid:83)(cid:76)(cid:72)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:79)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:70)(cid:82)(cid:81)(cid:73)(cid:72)(cid:85)(cid:72)(cid:81)(cid:70)(cid:72)(cid:16)(cid:83)(cid:85)(cid:82)(cid:70)(cid:72)(cid:72)(cid:71)(cid:76)(cid:81)(cid:74)(cid:86)(cid:16)(cid:82)(cid:73)(cid:16)(cid:86)(cid:83)(cid:76)(cid:72)(cid:3)(cid:82)(cid:81)(cid:3)(cid:21)(cid:27)(cid:3)(cid:39)(cid:72)(cid:70)(cid:3)(cid:21)(cid:19)(cid:21)(cid:21)
`Termsof Use: https://Awww.spiedigitallibrary.org/terms-of-use
`(cid:55)(cid:72)(cid:85)(cid:80)(cid:86)(cid:3)(cid:82)(cid:73)(cid:3)(cid:56)(cid:86)(cid:72)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:86)(cid:29)(cid:18)(cid:18)(cid:90)(cid:90)(cid:90)(cid:17)(cid:86)(cid:83)(cid:76)(cid:72)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:79)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:87)(cid:72)(cid:85)(cid:80)(cid:86)(cid:16)(cid:82)(cid:73)(cid:16)(cid:88)(cid:86)(cid:72)
`
`7
`
`

`

`main and_theeffect of changing the distance between the camera
`
`
`
`
`mirror
`is
`change in the image size and magnification M,
`but
`the
`linearity of
`the combination is not
`impaired much. This means’
`that
`the distance between the camera and the mirror is not critical,
`and
`that, what
`is more important,
`the mirror will work well with all
`lenses
`of reasonably similar FOV and thus of similar focal
`lengths
`(recall that M is determined by the FOV of
`the camera lens).
`
` 0.05
`
`0.00
`
`-0.05
`
`oO
`= -0.10
`3
`
`q -9.15
`2
`© -0.20
`g
`"0.25
`as
`
`-0.30
`
`-0.35
`0.00
`
`0.30
`;
`0.20
`0.10
`X (relative units)
`
`0.40
`
`<2
`
`16
`
`13
`
`lo
`
`sf
`
`e
`
`0.00
`
`-0.10
`
`@
`°c
`oJ
`
`q —9.20
`=
`3S
`e
`~~-0.30
`>
`
`-0.40 4
`0.00
`
`0.30
`.
`0.20
`0.10
`X (relative units)
`
`0.40
`
`of
`
`of
`Figure 6: shapes and sizes
`the
`The shape
`5:
`Figure
`aspherical mirrors for various
`M=8
`aspherical mirror
`for
`
`
`(solid line) compared to_the M and FOV of 180°. Mirrors for
`spherical mirror
`(doted line)
`all magnifications,
`indicated
`which
`produces
`the
`same
`under the corresponding curve,
`paraaxial
`angular
`are
`truncated at
`the points
`magnification.
`which correspond to the’
`semi-
`-field of view of 90°.
`
`to
`approximate parabolic equation is actually very close
`The
`the
`surface shape as is illustrated on the Fig.
`8.
`for
`real
`the
`magnification M=8, and parabolic mirror can be used for field angles
`up
`to around
`60
`if we can accept
`a
`small
`level
`of
`angular
`distortion. The results of raytracing the parabolic mirror from Fig.
`8. are shown on the Fig. 9.
`
`Downloaded From:https:/Awww.spiedigitallibrary.org/conference-proceedings-of-spie on 28 Dec 2022
`(cid:39)(cid:82)(cid:90)(cid:81)(cid:79)(cid:82)(cid:68)(cid:71)(cid:72)(cid:71)(cid:3)(cid:41)(cid:85)(cid:82)(cid:80)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:86)(cid:29)(cid:18)(cid:18)(cid:90)(cid:90)(cid:90)(cid:17)(cid:86)(cid:83)(cid:76)(cid:72)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:79)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:70)(cid:82)(cid:81)(cid:73)(cid:72)(cid:85)(cid:72)(cid:81)(cid:70)(cid:72)(cid:16)(cid:83)(cid:85)(cid:82)(cid:70)(cid:72)(cid:72)(cid:71)(cid:76)(cid:81)(cid:74)(cid:86)(cid:16)(cid:82)(cid:73)(cid:16)(cid:86)(cid:83)(cid:76)(cid:72)(cid:3)(cid:82)(cid:81)(cid:3)(cid:21)(cid:27)(cid:3)(cid:39)(cid:72)(cid:70)(cid:3)(cid:21)(cid:19)(cid:21)(cid:21)
`Termsof Use: https://www.spiedigitallibrary.org/terms-of-use
`(cid:55)(cid:72)(cid:85)(cid:80)(cid:86)(cid:3)(cid:82)(cid:73)(cid:3)(cid:56)(cid:86)(cid:72)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:86)(cid:29)(cid:18)(cid:18)(cid:90)(cid:90)(cid:90)(cid:17)(cid:86)(cid:83)(cid:76)(cid:72)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:79)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:87)(cid:72)(cid:85)(cid:80)(cid:86)(cid:16)(cid:82)(cid:73)(cid:16)(cid:88)(cid:86)(cid:72)
`
`SPIE Vol. 1500 Innovative Optics and Phase Conjugate Optics (1991) / 299
`
`8
`
`

`

`oO
`
`100.00
`
`—
`2° 80.00
`ZS

`& 60.00
`c
`<—f
`
`2 40.00
`@.
`40:
`iL
`Fer
`Oo
`vo 20.00
`Oo
`
`0.05.00
`
`12.00
`8.00
`4.00
`Camera Field Angle (deg)
`
`16.00
`
`0.05
`
`0.00
`
`—~
`2 -0.05
`=
`q —0.10
`oe
`0
`2
`o -0.15
`——
`
`a -0,20
`
`70.2800
`
`0.30
`.
`0.20
`0.10
`X (relative units)
`
`0.40
`
`changing
`7: effect of
`Figure
`the
`separation between
`the
`camera
`and
`the
`aspherical
`mirror.
`The
`mirror
`is
`calculated for M = 8 and d=1.
`
`shape
`the parabolic’
`Figure 8:
`(solid line ) as approximation
`to the calculated aspherical
`shape (dashed) for M=8.
`
`4. CONCLUSION
`
`camera
`angle
`that it is possible to make a very wide
`see
`We
`field
`constant angular magnification right to the edge of the
`with
`field
`view by using an aspherical convex mirror. The ultimate
`of
`the
`by
`angle
`can be much greater than 180°, as it is limited only
`to
`angular
`size of
`the mirror image itself, which is roughly equal
`the circular
`field of view of the camera alone.
`By
`using
`large
`angular magnification of the mirror-camera system,
`this image can be
`quite
`small
`and total FOV of more than 340°
`can
`be obtained.
`An
`example of such a mirror is shown on the Fig. 10. The price paid for
`this is large distance between the camera and the mirror as large
`M
`implies
`use of
`long focal
`length camera lenses,
`to keep camera
`FOV
`small.
`
`300 / SPIE Vol. 1500 Innovative Optics and Phase Conjugate Optics (1 991)
`
`DownloadedFrom: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 28 Dec 2022
`(cid:39)(cid:82)(cid:90)(cid:81)(cid:79)(cid:82)(cid:68)(cid:71)(cid:72)(cid:71)(cid:3)(cid:41)(cid:85)(cid:82)(cid:80)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:86)(cid:29)(cid:18)(cid:18)(cid:90)(cid:90)(cid:90)(cid:17)(cid:86)(cid:83)(cid:76)(cid:72)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:79)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:70)(cid:82)(cid:81)(cid:73)(cid:72)(cid:85)(cid:72)(cid:81)(cid:70)(cid:72)(cid:16)(cid:83)(cid:85)(cid:82)(cid:70)(cid:72)(cid:72)(cid:71)(cid:76)(cid:81)(cid:74)(cid:86)(cid:16)(cid:82)(cid:73)(cid:16)(cid:86)(cid:83)(cid:76)(cid:72)(cid:3)(cid:82)(cid:81)(cid:3)(cid:21)(cid:27)(cid:3)(cid:39)(cid:72)(cid:70)(cid:3)(cid:21)(cid:19)(cid:21)(cid:21)
`Termsof Use:https://www.spiedigitallibrary.org/terms-of-use
`(cid:55)(cid:72)(cid:85)(cid:80)(cid:86)(cid:3)(cid:82)(cid:73)(cid:3)(cid:56)(cid:86)(cid:72)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:86)(cid:29)(cid:18)(cid:18)(cid:90)(cid:90)(cid:90)(cid:17)(cid:86)(cid:83)(cid:76)(cid:72)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:79)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:87)(cid:72)(cid:85)(cid:80)(cid:86)(cid:16)(cid:82)(cid:73)(cid:16)(cid:88)(cid:86)(cid:72)
`
`9
`
`

`

`0.04 3° 80.00
`
`ti
`8
`oO 20.00
`O
`
`2o
`
`0.00
`0.00
`
`12.00
`8.00
`_
`4.00
`Camera Field Angle (deg)
`
`16.00
`
`100.00
`
`ee
`
`i»
`ey 90.00
`a=
`0
`
`40.00
`
`ae
`
`me
`£~0.04
`=
`=
`q —0.08
`2
`Oo
`@ -0.12
`——
`> org
`
`-0.20
`0.00
`
`0.15
`0.10
`0.05
`X (relative units)
`
`0.20
`
`of
`results
`9Q:
`Figure
`parabolical
`the
`raytracing
`from fig 8.
`mirror
`(solid)
`the
`exact
`compared
`to
`solution of eq. 13.
`(dashed).
`
`Figure 10: example of extremely
`wide
`field mirror with M=50
`and FOV
`of
`340°.
`The
`camera
`is placed at y=1.
`
`be
`itself will
`in mind that camera
`should be kept
`it
`Also,
`imaged in the center of the image’ together with its support
`system,
`so the center of
`the field will be screened by the camera. And last,
`but
`not
`least,
`no
`attempt was made
`to analyze other
`image
`aberrations, as no adequate raytracing program was obtainable to me.
`At
`the moment
`I can not tell if such large angular fields will
`be
`needed, but
`the possibility is here. On
`the
`other’
`side,
`ever
`possibility to have a simple 180°
`FOV system is quite appealing
`for
`astronomical
`and meteorological applications.
`If
`the
`aspherical
`mirror is made in series it can be very cheap, as it can be produced
`in many simple ways,
`for instance as a polished sheet metal pressing
`(stainless
`steel or aluminum) or aluminized plastic. Such a mirror
`will
`be
`light
`and
`transportable
`and
`could
`be
`brought
`almost
`everywhere where the normal camera itself can be brought.
`to amateur
`In my opinion such a mirror will be of
`interest
`fields
`of
`astronomers, who make important contributions in those
`and where
`astronomy where a simple instrumentation is sufficient,
`many observers
`are
`required,
`as is the
`case
`in
`the mentioned
`photographic meteor patrols etc. Also, all who love nature
`could
`carry such
`a mirror with them to
`photograph
`rare
`atmospheric
`phenomena,
`if they got a chance to do so. And they are going
`almost
`everywhere and at anytime.
`
`DownloadedFrom: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 28 Dec 2022
`(cid:39)(cid:82)(cid:90)(cid:81)(cid:79)(cid:82)(cid:68)(cid:71)(cid:72)(cid:71)(cid:3)(cid:41)(cid:85)(cid:82)(cid:80)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:86)(cid:29)(cid:18)(cid:18)(cid:90)(cid:90)(cid:90)(cid:17)(cid:86)(cid:83)(cid:76)(cid:72)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:79)(cid:76)(cid:69)(cid:85)(cid:68)(cid:85)(cid:92)(cid:17)(cid:82)(cid:85)(cid:74)(cid:18)(cid:70)(cid:82)(cid:81)(cid:73)(cid:72)(cid:85)(cid:72)(cid:81)(cid:70)(cid:72)(cid:16)(cid:83)(cid:85)(cid:82)(cid:70)(cid:72)(cid:72)(cid:71)(cid:76)(cid:81)(cid:74)(cid:86)(cid:16)(cid:82)(cid:73)(cid:16)(cid:86)(cid:83)(cid:76)(cid:72)(cid:3)(cid:82)(cid:81)(cid:3)(cid:21)(cid:27)(cid:3)(cid:39)(cid:72)(cid:70)(cid:3)(cid:21)(cid:19)(cid:21)(cid:21)
`Termsof Use:https://www.spiedigitallibrary.org/terms-of-use
`(cid:55)(cid:72)(cid:85)(cid:80)(cid:86)(cid:3)(cid:82)(cid:73)(cid:3)(cid:56)(cid:86)(cid:72)(cid:29)(cid:3)(cid:75)(cid:87)(cid:87)(cid:83)(cid:86)(cid:29)(cid:18)(cid:18)(cid:90)(cid:90)(cid:90)(cid:17)(cid:86)(cid:83)(cid:76)(cid:72)(cid:71)(cid:76)(cid:74)(cid:76)(cid:87)(cid:68)(cid:79)(cid:79)(cid:76)(cid:69)(cid:85)(cid:68)(cid:

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket