`
`Physical Layer Protocol
`
`26 December 2018
`
`
`
`
`
`
`ATSC Standard:
`Physical Layer Protocol
`(A/322)
`
`Doc. A/322:2018
`26 December 2018
`
`Advanced Television Systems Committee
`1776 K Street, N.W.
`Washington, D.C. 20006
`202-872-9160
`
`
`
`i
`
`1
`
`LGE 1023
`
`
`
`ATSC A/322:2018
`
`Physical Layer Protocol
`
`26 December 2018
`
`The Advanced Television Systems Committee, Inc., is an international, non-profit organization
`developing voluntary standards and recommended practices for digital television. ATSC member
`organizations represent the broadcast, broadcast equipment, motion picture, consumer electronics,
`computer, cable, satellite, and semiconductor industries. ATSC also develops digital television
`implementation strategies and supports educational activities on ATSC standards. ATSC was
`formed in 1983 by the member organizations of the Joint Committee on Inter-society Coordination
`(JCIC): the Electronic Industries Association (EIA), the Institute of Electrical and Electronic
`Engineers (IEEE), the National Association of Broadcasters (NAB), the National Cable
`Telecommunications Association (NCTA), and the Society of Motion Picture and Television
`Engineers (SMPTE). For more information visit www.atsc.org.
`
`Note: The user's attention is called to the possibility that compliance with this standard may
`require use of an invention covered by patent rights. By publication of this standard, no position
`is taken with respect to the validity of this claim or of any patent rights in connection therewith.
`One or more patent holders have, however, filed a statement regarding the terms on which such
`patent holder(s) may be willing to grant a license under these rights to individuals or entities
`desiring to obtain such a license. Details may be obtained from the ATSC Secretary and the patent
`holder.
`
`Implementers with feedback, comments, or potential bug reports relating to this document may
`contact ATSC at https://www.atsc.org/feedback/.
`
`Not all optional settings that are combinations with non-optional settings have been tested at the
`time of release of this document.
`
`Disclaimer
`
`Revision History
`
`Version
`
`A/322:2016 approved
`
`Revision 1 approved as A/322:2017
`
` Amendment No. 1 to A/322:2017 approved as a roll-up
`
`Revision 2 approved as A/322:2018
`
`Date
`
`7 September 2016
`
`9 February 2017
`
`6 June 2017
`
`26 December 2018
`
`
`
`
`
`ii
`
`2
`
`
`
`ATSC A/322:2018
`
`Physical Layer Protocol
`
`26 December 2018
`
`Table of Contents
`
`1. SCOPE ..................................................................................................................................................... 1
`1.1
`1
`1.2
`1
`
`Introduction and Background
`
`Organization
`
`2. REFERENCES ......................................................................................................................................... 2
`2.1
`2
`2.2
`2
`
`Informative References
`
`Normative References
`
`Compliance Notation
`
`Treatment of Syntactic Elements
`3.2.1
`
`Reserved Elements
`
`3. DEFINITION OF TERMS .......................................................................................................................... 2
`3.1
`2
`3.2
`3
`3
`3
`5
`
`3.3
`3.4
`
`Acronyms, Abbreviations and Mathematical Operators
`
`Terms
`
`4. SYSTEM OVERVIEW ............................................................................................................................... 6
`4.1
`6
`4.2
`7
`4.3
`10
`
`System Architecture
`
`Central Concepts
`
`Features
`
`5.
`
`Encapsulation and Compression
`5.1.1
`
`Number of PLPs
`
`INPUT FORMATTING ............................................................................................................................ 10
`5.1
`11
`11
`11
`12
`13
`16
`
`5.2
`
`Baseband Formatting
`5.2.1
`5.2.2
`5.2.3
`
`Mapping ALP Packets to Baseband Packets
`Baseband Packet Header
`Scrambling of Baseband Packets
`
`6.2
`
`6.3
`
`6.4
`
`Forward Error Correction (FEC)
`6.1.1
`6.1.2
`6.1.3
`
`FEC Frame Structure
`Outer Encoding
`Inner Encoding
`
`Bit Interleavers
`6.2.1
`6.2.2
`6.2.3
`
`Parity Interleaver
`Group-Wise Interleaver
`Block Interleavers
`
`Constellation Mapping
`6.3.1
`6.3.2
`6.3.3
`6.3.4
`
`Constellation Overview
`Modulation and Coding Combinations
`Demultiplexing Operation
`Bit to IQ Mapping
`
`Layered Division Multiplexing (LDM)
`6.4.1
`6.4.2
`6.4.3
`6.4.4
`
`LDM Encoding
`Injection Level Controller
`Power Normalizer
`LDM Example
`
`6. BIT INTERLEAVED CODING AND MODULATION (BICM) .................................................................. 17
`6.1
`17
`17
`19
`21
`24
`24
`24
`25
`29
`30
`30
`31
`32
`34
`34
`36
`36
`37
`38
`38
`
`6.5
`
`Protection for L1 Signaling
`6.5.1
`
`Overview
`
`
`
`iii
`
`3
`
`
`
`ATSC A/322:2018
`
`Physical Layer Protocol
`
`26 December 2018
`
`6.5.2
`6.5.3
`
`Common Blocks for L1-Basic and L1-Detail
`L1-Detail Specific Block Details
`
`39
`50
`
`Time Interleaving
`7.1.1
`7.1.2
`7.1.3
`7.1.4
`7.1.5
`
`Time Interleaver Modes
`Time Interleaver Size
`Extended Interleaving
`Convolutional Time Interleaver (CTI) Mode
`Hybrid Time Interleaver (HTI) Mode
`
`7. FRAMING AND INTERLEAVING ........................................................................................................... 55
`7.1
`55
`55
`56
`56
`57
`58
`67
`67
`67
`69
`69
`70
`72
`81
`90
`
`7.2
`
`Framing
`7.2.1
`7.2.2
`7.2.3
`7.2.4
`7.2.5
`7.2.6
`7.2.7
`
`Overview
`Frame Structure
`Number of Carriers
`Frame Symbol Types
`Preamble
`Cell Multiplexing
`PLP Multiplexing Approaches within a Subframe
`
`7.3
`
`Frequency Interleaving
`
`Pilot Insertion
`8.1.1
`8.1.2
`8.1.3
`8.1.4
`8.1.5
`8.1.6
`8.1.7
`
`Introduction
`Reference Sequence
`Scattered Pilot Insertion
`Continual Pilot Insertion
`Edge Pilot Insertion
`Preamble Pilot Insertion
`Subframe Boundary Pilot Insertion
`
`MISO
`8.2.1
`
`Transmit Diversity Code Filter Sets
`
`Inverse Fast Fourier Transform (IFFT)
`
`Peak to Average Power Ratio Reduction Techniques
`8.4.1
`8.4.2
`
`Tone Reservation
`Active Constellation Extension (ACE)
`
`Guard Interval
`8.5.1
`
`Guard Interval Extension for Time-aligned Frames
`
`8.2
`
`8.3
`8.4
`
`8.5
`
`8. WAVEFORM GENERATION .................................................................................................................. 94
`8.1
`95
`95
`95
`96
`97
`99
`99
`101
`101
`101
`102
`105
`105
`106
`106
`106
`108
`
`8.6
`
`Bootstrap
`
`Bootstrap
`9.1.1
`9.1.2
`9.1.3
`9.1.4
`
`Versioning
`Bootstrap Symbol 1
`Bootstrap Symbol 2
`Bootstrap Symbol 3
`
`9. L1 SIGNALING ..................................................................................................................................... 108
`9.1
`108
`108
`108
`109
`109
`109
`110
`112
`113
`
`9.2
`
`Syntax for L1-Basic Data
`9.2.1
`9.2.2
`9.2.3
`
`L1-Basic System and Frame Parameters
`L1-Basic Parameters for L1-Detail
`L1-Basic Parameters for First Subframe
`
`
`
`iv
`
`4
`
`
`
`ATSC A/322:2018
`
`Physical Layer Protocol
`
`26 December 2018
`
`9.3
`
`9.2.4
`
`L1-Basic Miscellaneous Parameters
`
`Syntax and Semantics for L1-Detail Data
`9.3.1
`9.3.2
`9.3.3
`9.3.4
`9.3.5
`9.3.6
`9.3.7
`9.3.8
`9.3.9
`
`L1-Detail Miscellaneous Parameters
`L1-Detail Channel Bonding Parameters (Frame)
`L1-Detail Subframe Parameters
`L1-Detail PLP Parameters
`L1-Detail LDM Parameters
`L1-Detail Channel Bonding Parameters (PLP)
`L1-Detail MIMO Parameters (PLP)
`L1-Detail Cell Multiplexing Parameters
`L1-Detail Time Interleaver (TI) Parameters
`
`114
`115
`117
`118
`119
`122
`124
`125
`126
`126
`127
`
`ANNEX A : LDPC CODES .......................................................................................................................... 130
`A.1
`130
`A.2
`142
`
`LDPC Code Matrices (Ninner = 16200)
`
`LDPC Code Matrices (Ninner = 64800)
`
`ANNEX B : BIT INTERLEAVER SEQUENCES .......................................................................................... 147
`B.1
`147
`B.2
`160
`
`Permutation sequences of group-wise interleaving for Ninner = 64800 (Ngroup = 180)
`
`Permutation sequences of group-wise interleaving for Ninner = 16200 (Ngroup = 45)
`
`ANNEX C : CONSTELLATION DEFINITIONS AND FIGURES .................................................................. 164
`C.1
`164
`C.2
`171
`C.3
`175
`
`Constellation Figures
`
`Constellation Labeling
`
`Constellation Definitions
`
`ANNEX D : CONTINUAL PILOT (CP) PATTERNS ..................................................................................... 178
`D.1
`178
`
`Reference and Additional CP Indices
`
`ANNEX E : SCATTERED PILOT (SP) PATTERNS .................................................................................... 182
`E.1
`182
`
`SISO Scattered Pilot Patterns
`
`ANNEX F : NUMBER OF ACTIVE DATA CELLS IN SUBFRAME BOUNDARY SYMBOL ....................... 187
`F.1
`187
`F.2
`192
`
`Calculation of Subframe Boundary Symbol Null Cells (Informative)
`
`Subframe Boundary Symbol Active Data Cell Tables
`
`ANNEX G : TONE RESERVATION CARRIER INDICES ............................................................................ 193
`G.1
`193
`
`Tone Reservation Carrier Indices
`
`ANNEX H : PREAMBLE PARAMETERS FOR BOOTSTRAP .................................................................... 196
`H.1
`196
`
`Preamble Structure Parameter Values
`
`ANNEX I : TOTAL SYMBOL POWER ......................................................................................................... 200
`I.1
`200
`I.2
`201
`
`Data and Subframe Boundary Symbol Frequency Domain Power
`
`Preamble Symbol Frequency Domain Power
`
`ANNEX J : MISO ......................................................................................................................................... 207
`J.1
`207
`
`MISO Frequency Domain Coefficients
`
`ANNEX K : CHANNEL BONDING .............................................................................................................. 212
`K.1
`212
`K.2
`213
`K.3
`214
`
`Introduction
`
`Plain Channel Bonding
`
`Channel Bonding with SNR Averaging
`
`ANNEX L : MIMO ........................................................................................................................................ 216
`L.1
`216
`L.2
`217
`
`FEC Coding
`
`Overview
`
`
`
`v
`
`5
`
`
`
`ATSC A/322:2018
`
`Physical Layer Protocol
`
`26 December 2018
`
`L.3
`L.4
`
`L.5
`
`Bit Interleaving
`
`MIMO Mapping
`L.4.1
`L.4.2
`L.4.3
`
`Demultiplexer
`Constellations
`Constellation Superposition for LDM
`
`Precoding
`L.5.1
`L.5.2
`L.5.3
`
`Stream Combining
`I/Q Polarization Interleaving
`Phase Hopping
`
`Time Interleaver
`
`Framer
`
`Frequency Interleaving
`
`L.6
`L.7
`L.8
`L.9
`
`Pilot Antenna Encoding
`Pilot Schemes
`
`Pilot Patterns
`L.9.1
`L.9.2
`L.10 MISO
`L.11
`PAPR Reduction
`L.12 Channel Bonding
`L.13
`
`L1 signalling for MIMO
`
`217
`217
`217
`217
`218
`218
`219
`220
`220
`220
`221
`221
`221
`221
`224
`233
`233
`233
`233
`
`PAPR Reduction Algorithms
`
`TR Algorithm
`
`ANNEX M : PEAK TO AVERAGE POWER RATIO REDUCTION ALGORITHMS (INFORMATIVE) ......... 235
`M.1
`235
`M.2
`235
`M.3
`237
`ACE Algorithms
`M.3.1
`237
`M.3.2
`239
`M.3.3
`241
`
`1-D ACE algorithm
`2-D ACE Algorithm
`2-D ACE Constellation Diagrams
`
`Overview
`
`Code Generation
`N.2.1
`N.2.2
`N.2.3
`N.2.4
`
`Multiple Shift Registers
`Clock Rate
`Preloaded Values
`Synchronization with Preamble Symbol
`
`ANNEX N : TRANSMITTER IDENTIFICATION (TXID) ............................................................................... 245
`N.1
`245
`N.2
`245
`246
`247
`247
`247
`248
`248
`248
`249
`
`N.3
`
`Code Transmission
`N.3.1
`N.3.2
`
`BPSK Modulation
`TxID Injection Level
`
`N.4
`
`Signaling Fields
`
`
`
`
`
`
`
`vi
`
`6
`
`
`
`ATSC A/322:2018
`
`Physical Layer Protocol
`
`26 December 2018
`
`Index of Figures
`
`Figure 4.1 Block diagram of the system architecture for one RF channel. .................................... 7
`Figure 4.2 Block diagram (simplified) of a single PLP system architecture. ................................ 8
`Figure 4.3 Block diagram (simplified) of a multiple PLP system architecture. ............................ 8
`Figure 4.4 Block diagram (simplified) of the LDM system architecture. ...................................... 9
`Figure 4.5 Block diagram (simplified) of a channel bonded system. .......................................... 10
`Figure 5.1 Block diagram of input formatting. ............................................................................ 11
`Figure 5.2 Block diagram of baseband formatting. ..................................................................... 12
`Figure 5.3 Baseband Packet structure showing Header, Payload and mapping example of
`ALP packets to a Baseband Packet. .................................................................................. 12
`Figure 5.4 Baseband Packet Header structure details. ................................................................. 13
`Figure 5.5 Structure of Extension Field for the Mixed Extension Mode. .................................... 15
`Figure 5.6 Shift register of the PRBS encoder for baseband scrambling. ................................... 17
`Figure 6.1 Block diagram of BICM. ............................................................................................ 17
`Figure 6.2 Structure of FEC Frame when BCH or CRC is used as Outer Code. ......................... 18
`Figure 6.3 Structure of FEC Frame when no Outer Code is used. .............................................. 18
`Figure 6.4 Shift register for CRC-32. .......................................................................................... 20
`Figure 6.5 Bit interleaver structure. ............................................................................................. 24
`Figure 6.6 Parity interleaved LDPC codeword bit groups. .......................................................... 25
`Figure 6.7 Write/Read operation of Type A block interleaving. ................................................. 28
`Figure 6.8 Write operation of Part 1 Type B block interleaving for 256QAM. .......................... 29
`Figure 6.9 Read operation of Part 1 Type B block interleaving for 256QAM. ........................... 29
`Figure 6.10 Mapper structure. ...................................................................................................... 30
`Figure 6.11 De-multiplexing of bits into sub-streams. ................................................................ 32
`Figure 6.12 Example 16-NUC for code rate 6/15. ....................................................................... 33
`Figure 6.13 Example 1024-NUC for code rate 6/15. ................................................................... 34
`Figure 6.14 Block diagram of LDM encoding. ............................................................................ 35
`Figure 6.15 Constellation superposition for two-layer LDM. ..................................................... 35
`Figure 6.16 Examples of (a, left) Core Layer and (b, right) Enhanced Layer constellations. ..... 38
`Figure 6.17 Example combined constellation after normalization. ............................................. 38
`Figure 6.18 Block diagram of L1-Basic protection. .................................................................... 39
`Figure 6.19 Block diagram of the L1-Detail protection. .............................................................. 39
`Figure 6.20 Format of data after LDPC encoding of L1-Basic/-Detail signaling. ....................... 42
`Figure 6.21 Parity interleaved LDPC codeword bit groups. ........................................................ 44
`
`Figure 6.22 Parity Repetition (𝑵𝑵𝑵𝑵𝒆𝒆𝒑𝒑𝒆𝒆𝒑𝒑𝒑𝒑≤𝑵𝑵𝑵𝑵𝑵𝑵𝒑𝒑𝑵𝑵_𝒑𝒑𝒑𝒑𝑵𝑵𝒑𝒑𝒑𝒑𝒑𝒑). ................................................... 46
`Figure 6.23 Parity Repetition (𝑵𝑵𝑵𝑵𝒆𝒆𝒑𝒑𝒆𝒆𝒑𝒑𝒑𝒑 >𝑵𝑵𝑵𝑵𝑵𝑵𝒑𝒑𝑵𝑵_𝒑𝒑𝒑𝒑𝑵𝑵𝒑𝒑𝒑𝒑𝒑𝒑). ................................................... 46
`
`Figure 6.24 Example 1 of parity puncturing after repetition. ...................................................... 48
`Figure 6.25 Example 2 of parity puncturing after repetition. ...................................................... 48
`Figure 6.26 Example of removal of zero-padding bits. ............................................................... 48
`Figure 6.27 Block interleaving scheme. ....................................................................................... 49
`Figure 6.28 Example of bit demultiplexing rule for 16-NUC. ..................................................... 49
`Figure 6.29 Segmentation of L1-Detail signaling. ....................................................................... 51
`Figure 6.30 Additional parity for L1-Detail signaling. ................................................................ 52
`Figure 6.31 Repeated LDPC codeword. ...................................................................................... 52
`Figure 6.32 Additional parity generation for L1-Detail signaling (NAP ≤Npunc). ......................... 54
`Figure 6.33 Additional parity generation for L1-Detail signaling (NAP >Npunc). ......................... 54
`
`
`
`vii
`
`7
`
`
`
`ATSC A/322:2018
`
`Physical Layer Protocol
`
`26 December 2018
`
`Figure 7.1 Block diagram of framing and interleaving. ............................................................... 55
`Figure 7.2 Block diagram for time interleaving for CTI Mode. .................................................. 57
`Figure 7.3 Block diagram of the Convolutional Time Interleaver. .............................................. 57
`Figure 7.4 Block diagram for time interleaving for HTI mode. .................................................. 59
`Figure 7.5 Block diagram of the Cell Interleaver: (a) Linear writing operation,
`(b) Pseudo-random reading operation. .............................................................................. 60
`Figure 7.6 Example of joint operation of TBI and CDL in the HTI. ........................................... 62
`Figure 7.7 Block diagram of Twisted Block Interleaver: (a) linear writing operation, (b)
`diagonal-wise reading operation. ...................................................................................... 64
`Figure 7.8 Block diagram of Convolutional Delay Line used in the HTI. .................................. 65
`Figure 7.9 Example of HTI for L1D_plp_HTI_inter_subframe = 0 and 1, and for
`L1D_plp_HTI_num_ti_blocks = 0 and 1. ................................................................... 66
`Figure 7.10 Frame structure. ........................................................................................................ 68
`Figure 7.11 Mapping of L1-Basic and L1-Detail into Preamble symbol(s). ............................... 71
`Figure 7.12 Data cell addressing when a Preamble symbol is associated with a subframe. ........ 73
`Figure 7.13 Data cell addressing when a Preamble symbol is not associated with a subframe. . 74
`Figure 7.14 Data carrier indices for null and active data carriers. ............................................... 79
`Figure 7.15 Data cell indices used for illustrative multiplexing examples. ................................. 82
`Figure 7.16 Example of cell multiplexing for a single PLP per subframe. .................................. 82
`Figure 7.17 Example of time division multiplexing of PLPs. ..................................................... 83
`Figure 7.18 LDM Example #1 (1 Core PLP, 1 Enhanced PLP). ................................................. 84
`Figure 7.19 LDM Example #2 (2 Core PLPs, 1 Enhanced PLP). ................................................ 85
`Figure 7.20 LDM Example #3 (2 Core PLPs, 2 Enhanced PLPs). .............................................. 85
`Figure 7.21 LDM Example #4 (1 Core PLP, 3 Enhanced PLPs). ................................................ 86
`Figure 7.22 LDM Example #5 (3 Core PLPs, 1 Enhanced PLP). ................................................ 87
`Figure 7.23 Example Insertion of Enhanced Layer dummy modulation values when the
`HTI mode is used with Layered-Division Multiplexing. .................................................. 87
`Figure 7.24 Example of frequency division multiplexing of PLPs. ............................................. 89
`Figure 7.25 Example of time and frequency division multiplexing of PLPs. .............................. 89
`Figure 7.26 Frequency interleaving overview. ............................................................................ 90
`Figure 7.27 FI address generation scheme for the 8K FFT size. ................................................. 91
`Figure 7.28 FI address generation scheme for the 16K FFT size. ............................................... 91
`Figure 7.29 FI address generation scheme for the 32K FFT size. ............................................... 92
`Figure 8.1 Block diagram of waveform generation. .................................................................... 94
`Figure 8.2 Reference sequence generator. ................................................................................... 96
`Figure 8.3 Block diagram showing example MISO transmission. ............................................ 102
`Figure 8.4 Illustration of the assignment of extra samples to the guard interval of each
`non-Preamble OFDM symbol in a frame........................................................................ 107
`Figure 8.5 Illustration of remaining leftover extra samples being assigned to a cyclic
`postfix of the final OFDM symbol of the final subframe of the frame. .......................... 108
`Figure 9.1 Illustration of the time information position and the time information being
`transmitted in the Preamble. ........................................................................................... 118
`Figure 9.2 L1D_plp_CTI_fec_block_start graphical description ....................................... 128
`Figure C.2.1 Constellation of QPSK. ........................................................................................ 172
`Figure C.2.2 Constellations of 16QAM. .................................................................................... 172
`Figure C.2.3 Constellations of 64QAM. .................................................................................... 173
`
`
`
`viii
`
`8
`
`
`
`ATSC A/322:2018
`
`Physical Layer Protocol
`
`26 December 2018
`
`Figure C.2.4 Constellations of 256QAM. .................................................................................. 173
`Figure C.2.5 Constellations of 1024QAM. ................................................................................ 174
`Figure C.2.6 Constellations of 4096QAM. ................................................................................ 174
`Figure E.1.1 Scattered pilot pattern SP3_2 (SISO, DX = 3, DY = 2). ......................................... 182
`Figure E.1.2 Scattered pilot pattern SP3_4 (SISO, DX = 3, DY = 4). ........................................ 182
`Figure E.1.3 Scattered pilot pattern SP4_2 (SISO, DX = 4, DY = 2). ......................................... 182
`Figure E.1.4 Scattered pilot pattern SP4_4 (SISO, DX = 4, DY = 4). ........................................ 183
`Figure E.1.5 Scattered pilot pattern SP6_2 (SISO, DX = 6, DY = 2). ........................................ 183
`Figure E.1.6 Scattered pilot pattern SP6_4 (SISO, DX = 6, DY = 4). ......................................... 183
`Figure E.1.7 Scattered pilot pattern SP8_2 (SISO, DX = 8, DY = 2). ........................................ 183
`Figure E.1.8 Scattered pilot pattern SP8_4 (SISO, DX = 8, DY = 4). ........................................ 184
`Figure E.1.9 Scattered pilot pattern SP12_2 (SISO, DX = 12, DY = 2). .................................... 184
`Figure E.1.10 Scattered pilot pattern SP12_4 (SISO, DX = 12, DY = 4). ................................... 184
`Figure E.1.11 Scattered pilot pattern SP16_2 (SISO, DX = 16, DY = 2). .................................. 184
`Figure E.1.12 Scattered pilot pattern SP16_4 (SISO, DX = 16, DY = 4). .................................. 185
`Figure E.1.13 Scattered pilot pattern SP24_2 (SISO, DX = 24, DY = 2). ................................... 185
`Figure E.1.14 Scattered pilot pattern SP24_4 (SISO, DX = 24, DY = 4). .................................. 185
`Figure E.1.15 Scattered pilot pattern SP32_2 (SISO, DX = 32, DY = 2). ................................... 185
`Figure E.1.16 Scattered pilot pattern SP32_4 (SISO, DX = 32, DY = 4). .................................. 186
`Figure K.1.1 Simple block diagram of channel bonding. .......................................................... 212
`Figure K.1.2 Transmitter side processing for channel bonding. ................................................ 213
`Figure K.3.1 Cell exchange block. ............................................................................................ 214
`Figure L.1.1 MIMO block diagram. .......................................................................................... 216
`Figure L.1.2 MIMO MAP block diagram.................................................................................. 217
`Figure L.5.1 Generic MIMO Precoding block diagram. ........................................................... 218
`Figure L.5.2 Detailed MIMO precoding block diagram. ........................................................... 219
`Figure L.9.1 MIMO pilot scheme MP3_2 for Walsh-Hadamard pilot encoding. ..................... 226
`Figure L.9.2 MIMO pilot scheme MP3_4 for Walsh-Hadamard pilot encoding. ..................... 226
`Figure L.9.3 MIMO pilot scheme MP4_2 for Walsh-Hadamard pilot encoding. ..................... 226
`Figure L.9.4 MIMO pilot scheme MP4_4 for Walsh-Hadamard pilot encoding. ..................... 227
`Figure L.9.5 MIMO pilot scheme MP6_2 for Walsh-Hadamard pilot encoding. ..................... 227
`Figure L.9.6 MIMO pilot scheme MP6_4 for Walsh-Hadamard pilot encoding. ..................... 227
`Figure L.9.7 MIMO pilot scheme MP8_2 for Walsh-Hadamard pilot encoding. ..................... 227
`Figure L.9.8 MIMO pilot scheme MP8_4 for Walsh-Hadamard pilot encoding. ..................... 228
`Figure L.9.9 MIMO pilot scheme MP12_2 for Walsh-Hadamard pilot encoding. ................... 228
`Figure L.9.10 MIMO pilot scheme MP12_4 for Walsh-Hadamard pilot encoding. ................. 228
`Figure L.9.11 MIMO pilot scheme MP16_2 for Walsh-Hadamard pilot encoding. ................. 228
`Figure L.9.12 MIMO pilot scheme MP16_4 for Walsh-Hadamard pilot encoding. ................. 229
`Figure L.9.13 MIMO pilot scheme MP3_2 for null pilot encoding. ......................................... 229
`Figure L.9.14 MIMO pilot scheme MP3_4 for null pilot encoding. ......................................... 229
`Figure L.9.15 MIMO pilot scheme MP4_2 for null pilot encoding. ......................................... 230
`Figure L.9.16 MIMO pilot scheme MP4_4 for null pilot encoding. ......................................... 230
`Figure L.9.17 MIMO pilot scheme MP6_2 for null pilot encoding. ......................................... 230
`Figure L.9.18 MIMO pilot scheme MP6_4 for null pilot encoding. ......................................... 230
`Figure L.9.19 MIMO pilot scheme MP8_2 for null pilot encoding. ......................................... 231
`Figure L.9.20 MIMO pilot scheme MP8_4 for null pilot encoding. ......................................... 231
`
`
`
`ix
`
`9
`
`
`
`ATSC A/322:2018
`
`Physical Layer Protocol
`
`26 December 2018
`
`Figure L.9.21 MIMO pilot scheme MP12_2 for null pilot encoding. ....................................... 231
`Figure L.9.22 MIMO pilot scheme MP12_4 for null pilot encoding. ....................................... 231
`Figure L.9.23 MIMO pilot scheme MP16_2 for null pilot encoding. ....................................... 232
`Figure L.9.24 MIMO pilot scheme MP16_4 for null pilot encoding. ....................................... 232
`Figure L.9.25 MIMO pilot scheme MP24_2 for null pilot encoding. ....................................... 232
`Figure L.9.26 MIMO pilot scheme MP24_4 for null pilot encoding. ....................................... 232
`Figure L.9.27 MIMO pilot scheme MP32_2 for null pilot encoding. ....................................... 233
`Figure L.9.28 MIMO pilot scheme MP32_4 for null pilot encoding. ....................................... 233
`Figure M.3.1 Implementation example of the ACE algorithm for 1-D constellations. ............. 238
`Figure M.3.2 Implementation example of the ACE algorithm for 2-D constellations. ............. 240
`Figure M.3.3 Constellation diagram for 16QAM when using the defined ACE algorithm. ..... 242
`Figure M.3.4 Constellation diagram for 64QAM when using the defined ACE algorithm. ..... 243
`Figure M.3.5 Constellation diagram for 256QAM when using the defined ACE algorithm. ... 244
`Figure N.1.1 TxID generation and injection into ATSC 3.0 host signals. ................................. 245
`Figure N.2.1 TxID signal injection into the first Preamble symbol period (8K FFT). .............. 246
`Figure N.2.2 TxID signal injection into the first Preamble symbol period (16K FFT). ............ 246
`Figure N.2.3 TxID signal injection into the first Preamble symbol period (32K FFT). ............ 246
`Figure N.2.4 TxID code generator based on Gold sequence. .................................................... 246
`
`
`
`x
`
`10
`
`
`
`ATSC A/322:2018
`
`Physical Layer Protocol
`
`26 December 2018
`
`Index of Tables
`
`Table 5.1 OFI Description ............................................................................................................ 14
`Table 5.2 EXT_TYPE Field Description for Extension Mode ................................................... 16
`Table 6.1 Length of Kpayload (bits) for Ninner = 64800 ................................................................... 19
`Table 6.2 Length of Kpayload (bits) for Ninner = 16200 ................................................................... 19
`Table 6.3 BCH Polynomials......................................................................................................... 20
`Table 6.4 Structure of LDPC Encoding Used for Each of the Code Rates and Lengths ............. 21
`Table 6.5 Coding Parameters for Type A: Ninner = 64800 ............................................................ 23
`Table 6.6 Coding Parameters for Type A: Ninner = 16200 ............................................................ 23
`Table 6.7 Coding Parameters for Type B ..................................................................................... 23
`Table 6.8 Block Interleaver Type for Codes of Length Ninner= 64800 Bits ................................. 26
`Table 6.9 Block Interleaver Type for Codes of Length Ninner= 16200 Bits ................................. 26
`Table 6.10 Type A Block Interleaver Configurations .................................................................. 26
`Table 6.11 Parameters for Type B Block Interleaver ................................................................... 28
`Table 6.12 Mandatory Modulation and Coding Combinations Ninner = 64800 Bits ..................... 31
`Table 6.13 Mandatory Modulation and Coding Combinations Ninner = 16200 Bits ..................... 31
`Table 6.14 Parameters for Bit-Mapping into Constellations ........................................................ 31
`Table 6.15 Power Distributions Between Layers for Various Injection Levels ........................... 36
`Table 6.16 Scaling and Normalizing Factors According to Enhanced Layer Injection Level ..... 37
`Table 6.17 Configurations for L1-Basic and L1-Detail Signaling ............................................... 40
`Table 6.18 Parameters for BCH Encoding of L1 Information ..................................................... 41
`Table 6.19 Parameters for Zero Padding ...................................................................................... 41
`Table 6.20 Shortening Pattern of Information Bit Group to be Padded ....................................... 43
`Table 6.21 Group-wise Interleaving Pattern for all L1-Basic Modes, L1-Detail Modes 1 and 2 45
`Table 6.22 Group-wise Interleaving Pattern for L1-Detail Modes 3, 4, 5, 6 and 7 ..................... 45
`Table 6.23 Parameters for Repetition ........................................................................................... 46
`Table 6.24 Parameters for Puncturing .......................................................................................... 47
`Table 6.25 Kseg for L1-Detail Signaling ....................................................................................... 50
`Table 7.1 Number of Carriers NoC and Occupied Bandwidth .................................................... 69
`Table 7.2 Number of Available Data Cells per Preamble Symbol .............................................. 75
`Table 7.3 Number of Available Data Cells per Data Symbol ...................................................... 76
`Table 7.4 Number of Av