throbber
ATSC A/322:2018
`
`Physical Layer Protocol
`
`26 December 2018
`
`
`
`
`
`
`ATSC Standard:
`Physical Layer Protocol
`(A/322)
`
`Doc. A/322:2018
`26 December 2018
`
`Advanced Television Systems Committee
`1776 K Street, N.W.
`Washington, D.C. 20006
`202-872-9160
`
`
`
`i
`
`1
`
`LGE 1023
`
`

`

`ATSC A/322:2018
`
`Physical Layer Protocol
`
`26 December 2018
`
`The Advanced Television Systems Committee, Inc., is an international, non-profit organization
`developing voluntary standards and recommended practices for digital television. ATSC member
`organizations represent the broadcast, broadcast equipment, motion picture, consumer electronics,
`computer, cable, satellite, and semiconductor industries. ATSC also develops digital television
`implementation strategies and supports educational activities on ATSC standards. ATSC was
`formed in 1983 by the member organizations of the Joint Committee on Inter-society Coordination
`(JCIC): the Electronic Industries Association (EIA), the Institute of Electrical and Electronic
`Engineers (IEEE), the National Association of Broadcasters (NAB), the National Cable
`Telecommunications Association (NCTA), and the Society of Motion Picture and Television
`Engineers (SMPTE). For more information visit www.atsc.org.
`
`Note: The user's attention is called to the possibility that compliance with this standard may
`require use of an invention covered by patent rights. By publication of this standard, no position
`is taken with respect to the validity of this claim or of any patent rights in connection therewith.
`One or more patent holders have, however, filed a statement regarding the terms on which such
`patent holder(s) may be willing to grant a license under these rights to individuals or entities
`desiring to obtain such a license. Details may be obtained from the ATSC Secretary and the patent
`holder.
`
`Implementers with feedback, comments, or potential bug reports relating to this document may
`contact ATSC at https://www.atsc.org/feedback/.
`
`Not all optional settings that are combinations with non-optional settings have been tested at the
`time of release of this document.
`
`Disclaimer
`
`Revision History
`
`Version
`
`A/322:2016 approved
`
`Revision 1 approved as A/322:2017
`
` Amendment No. 1 to A/322:2017 approved as a roll-up
`
`Revision 2 approved as A/322:2018
`
`Date
`
`7 September 2016
`
`9 February 2017
`
`6 June 2017
`
`26 December 2018
`
`
`
`
`
`ii
`
`2
`
`

`

`ATSC A/322:2018
`
`Physical Layer Protocol
`
`26 December 2018
`
`Table of Contents
`
`1. SCOPE ..................................................................................................................................................... 1
`1.1
`1
`1.2
`1
`
`Introduction and Background
`
`Organization
`
`2. REFERENCES ......................................................................................................................................... 2
`2.1
`2
`2.2
`2
`
`Informative References
`
`Normative References
`
`Compliance Notation
`
`Treatment of Syntactic Elements
`3.2.1
`
`Reserved Elements
`
`3. DEFINITION OF TERMS .......................................................................................................................... 2
`3.1
`2
`3.2
`3
`3
`3
`5
`
`3.3
`3.4
`
`Acronyms, Abbreviations and Mathematical Operators
`
`Terms
`
`4. SYSTEM OVERVIEW ............................................................................................................................... 6
`4.1
`6
`4.2
`7
`4.3
`10
`
`System Architecture
`
`Central Concepts
`
`Features
`
`5.
`
`Encapsulation and Compression
`5.1.1
`
`Number of PLPs
`
`INPUT FORMATTING ............................................................................................................................ 10
`5.1
`11
`11
`11
`12
`13
`16
`
`5.2
`
`Baseband Formatting
`5.2.1
`5.2.2
`5.2.3
`
`Mapping ALP Packets to Baseband Packets
`Baseband Packet Header
`Scrambling of Baseband Packets
`
`6.2
`
`6.3
`
`6.4
`
`Forward Error Correction (FEC)
`6.1.1
`6.1.2
`6.1.3
`
`FEC Frame Structure
`Outer Encoding
`Inner Encoding
`
`Bit Interleavers
`6.2.1
`6.2.2
`6.2.3
`
`Parity Interleaver
`Group-Wise Interleaver
`Block Interleavers
`
`Constellation Mapping
`6.3.1
`6.3.2
`6.3.3
`6.3.4
`
`Constellation Overview
`Modulation and Coding Combinations
`Demultiplexing Operation
`Bit to IQ Mapping
`
`Layered Division Multiplexing (LDM)
`6.4.1
`6.4.2
`6.4.3
`6.4.4
`
`LDM Encoding
`Injection Level Controller
`Power Normalizer
`LDM Example
`
`6. BIT INTERLEAVED CODING AND MODULATION (BICM) .................................................................. 17
`6.1
`17
`17
`19
`21
`24
`24
`24
`25
`29
`30
`30
`31
`32
`34
`34
`36
`36
`37
`38
`38
`
`6.5
`
`Protection for L1 Signaling
`6.5.1
`
`Overview
`
`
`
`iii
`
`3
`
`

`

`ATSC A/322:2018
`
`Physical Layer Protocol
`
`26 December 2018
`
`6.5.2
`6.5.3
`
`Common Blocks for L1-Basic and L1-Detail
`L1-Detail Specific Block Details
`
`39
`50
`
`Time Interleaving
`7.1.1
`7.1.2
`7.1.3
`7.1.4
`7.1.5
`
`Time Interleaver Modes
`Time Interleaver Size
`Extended Interleaving
`Convolutional Time Interleaver (CTI) Mode
`Hybrid Time Interleaver (HTI) Mode
`
`7. FRAMING AND INTERLEAVING ........................................................................................................... 55
`7.1
`55
`55
`56
`56
`57
`58
`67
`67
`67
`69
`69
`70
`72
`81
`90
`
`7.2
`
`Framing
`7.2.1
`7.2.2
`7.2.3
`7.2.4
`7.2.5
`7.2.6
`7.2.7
`
`Overview
`Frame Structure
`Number of Carriers
`Frame Symbol Types
`Preamble
`Cell Multiplexing
`PLP Multiplexing Approaches within a Subframe
`
`7.3
`
`Frequency Interleaving
`
`Pilot Insertion
`8.1.1
`8.1.2
`8.1.3
`8.1.4
`8.1.5
`8.1.6
`8.1.7
`
`Introduction
`Reference Sequence
`Scattered Pilot Insertion
`Continual Pilot Insertion
`Edge Pilot Insertion
`Preamble Pilot Insertion
`Subframe Boundary Pilot Insertion
`
`MISO
`8.2.1
`
`Transmit Diversity Code Filter Sets
`
`Inverse Fast Fourier Transform (IFFT)
`
`Peak to Average Power Ratio Reduction Techniques
`8.4.1
`8.4.2
`
`Tone Reservation
`Active Constellation Extension (ACE)
`
`Guard Interval
`8.5.1
`
`Guard Interval Extension for Time-aligned Frames
`
`8.2
`
`8.3
`8.4
`
`8.5
`
`8. WAVEFORM GENERATION .................................................................................................................. 94
`8.1
`95
`95
`95
`96
`97
`99
`99
`101
`101
`101
`102
`105
`105
`106
`106
`106
`108
`
`8.6
`
`Bootstrap
`
`Bootstrap
`9.1.1
`9.1.2
`9.1.3
`9.1.4
`
`Versioning
`Bootstrap Symbol 1
`Bootstrap Symbol 2
`Bootstrap Symbol 3
`
`9. L1 SIGNALING ..................................................................................................................................... 108
`9.1
`108
`108
`108
`109
`109
`109
`110
`112
`113
`
`9.2
`
`Syntax for L1-Basic Data
`9.2.1
`9.2.2
`9.2.3
`
`L1-Basic System and Frame Parameters
`L1-Basic Parameters for L1-Detail
`L1-Basic Parameters for First Subframe
`
`
`
`iv
`
`4
`
`

`

`ATSC A/322:2018
`
`Physical Layer Protocol
`
`26 December 2018
`
`9.3
`
`9.2.4
`
`L1-Basic Miscellaneous Parameters
`
`Syntax and Semantics for L1-Detail Data
`9.3.1
`9.3.2
`9.3.3
`9.3.4
`9.3.5
`9.3.6
`9.3.7
`9.3.8
`9.3.9
`
`L1-Detail Miscellaneous Parameters
`L1-Detail Channel Bonding Parameters (Frame)
`L1-Detail Subframe Parameters
`L1-Detail PLP Parameters
`L1-Detail LDM Parameters
`L1-Detail Channel Bonding Parameters (PLP)
`L1-Detail MIMO Parameters (PLP)
`L1-Detail Cell Multiplexing Parameters
`L1-Detail Time Interleaver (TI) Parameters
`
`114
`115
`117
`118
`119
`122
`124
`125
`126
`126
`127
`
`ANNEX A : LDPC CODES .......................................................................................................................... 130
`A.1
`130
`A.2
`142
`
`LDPC Code Matrices (Ninner = 16200)
`
`LDPC Code Matrices (Ninner = 64800)
`
`ANNEX B : BIT INTERLEAVER SEQUENCES .......................................................................................... 147
`B.1
`147
`B.2
`160
`
`Permutation sequences of group-wise interleaving for Ninner = 64800 (Ngroup = 180)
`
`Permutation sequences of group-wise interleaving for Ninner = 16200 (Ngroup = 45)
`
`ANNEX C : CONSTELLATION DEFINITIONS AND FIGURES .................................................................. 164
`C.1
`164
`C.2
`171
`C.3
`175
`
`Constellation Figures
`
`Constellation Labeling
`
`Constellation Definitions
`
`ANNEX D : CONTINUAL PILOT (CP) PATTERNS ..................................................................................... 178
`D.1
`178
`
`Reference and Additional CP Indices
`
`ANNEX E : SCATTERED PILOT (SP) PATTERNS .................................................................................... 182
`E.1
`182
`
`SISO Scattered Pilot Patterns
`
`ANNEX F : NUMBER OF ACTIVE DATA CELLS IN SUBFRAME BOUNDARY SYMBOL ....................... 187
`F.1
`187
`F.2
`192
`
`Calculation of Subframe Boundary Symbol Null Cells (Informative)
`
`Subframe Boundary Symbol Active Data Cell Tables
`
`ANNEX G : TONE RESERVATION CARRIER INDICES ............................................................................ 193
`G.1
`193
`
`Tone Reservation Carrier Indices
`
`ANNEX H : PREAMBLE PARAMETERS FOR BOOTSTRAP .................................................................... 196
`H.1
`196
`
`Preamble Structure Parameter Values
`
`ANNEX I : TOTAL SYMBOL POWER ......................................................................................................... 200
`I.1
`200
`I.2
`201
`
`Data and Subframe Boundary Symbol Frequency Domain Power
`
`Preamble Symbol Frequency Domain Power
`
`ANNEX J : MISO ......................................................................................................................................... 207
`J.1
`207
`
`MISO Frequency Domain Coefficients
`
`ANNEX K : CHANNEL BONDING .............................................................................................................. 212
`K.1
`212
`K.2
`213
`K.3
`214
`
`Introduction
`
`Plain Channel Bonding
`
`Channel Bonding with SNR Averaging
`
`ANNEX L : MIMO ........................................................................................................................................ 216
`L.1
`216
`L.2
`217
`
`FEC Coding
`
`Overview
`
`
`
`v
`
`5
`
`

`

`ATSC A/322:2018
`
`Physical Layer Protocol
`
`26 December 2018
`
`L.3
`L.4
`
`L.5
`
`Bit Interleaving
`
`MIMO Mapping
`L.4.1
`L.4.2
`L.4.3
`
`Demultiplexer
`Constellations
`Constellation Superposition for LDM
`
`Precoding
`L.5.1
`L.5.2
`L.5.3
`
`Stream Combining
`I/Q Polarization Interleaving
`Phase Hopping
`
`Time Interleaver
`
`Framer
`
`Frequency Interleaving
`
`L.6
`L.7
`L.8
`L.9
`
`Pilot Antenna Encoding
`Pilot Schemes
`
`Pilot Patterns
`L.9.1
`L.9.2
`L.10 MISO
`L.11
`PAPR Reduction
`L.12 Channel Bonding
`L.13
`
`L1 signalling for MIMO
`
`217
`217
`217
`217
`218
`218
`219
`220
`220
`220
`221
`221
`221
`221
`224
`233
`233
`233
`233
`
`PAPR Reduction Algorithms
`
`TR Algorithm
`
`ANNEX M : PEAK TO AVERAGE POWER RATIO REDUCTION ALGORITHMS (INFORMATIVE) ......... 235
`M.1
`235
`M.2
`235
`M.3
`237
`ACE Algorithms
`M.3.1
`237
`M.3.2
`239
`M.3.3
`241
`
`1-D ACE algorithm
`2-D ACE Algorithm
`2-D ACE Constellation Diagrams
`
`Overview
`
`Code Generation
`N.2.1
`N.2.2
`N.2.3
`N.2.4
`
`Multiple Shift Registers
`Clock Rate
`Preloaded Values
`Synchronization with Preamble Symbol
`
`ANNEX N : TRANSMITTER IDENTIFICATION (TXID) ............................................................................... 245
`N.1
`245
`N.2
`245
`246
`247
`247
`247
`248
`248
`248
`249
`
`N.3
`
`Code Transmission
`N.3.1
`N.3.2
`
`BPSK Modulation
`TxID Injection Level
`
`N.4
`
`Signaling Fields
`
`
`
`
`
`
`
`vi
`
`6
`
`

`

`ATSC A/322:2018
`
`Physical Layer Protocol
`
`26 December 2018
`
`Index of Figures
`
`Figure 4.1 Block diagram of the system architecture for one RF channel. .................................... 7
`Figure 4.2 Block diagram (simplified) of a single PLP system architecture. ................................ 8
`Figure 4.3 Block diagram (simplified) of a multiple PLP system architecture. ............................ 8
`Figure 4.4 Block diagram (simplified) of the LDM system architecture. ...................................... 9
`Figure 4.5 Block diagram (simplified) of a channel bonded system. .......................................... 10
`Figure 5.1 Block diagram of input formatting. ............................................................................ 11
`Figure 5.2 Block diagram of baseband formatting. ..................................................................... 12
`Figure 5.3 Baseband Packet structure showing Header, Payload and mapping example of
`ALP packets to a Baseband Packet. .................................................................................. 12
`Figure 5.4 Baseband Packet Header structure details. ................................................................. 13
`Figure 5.5 Structure of Extension Field for the Mixed Extension Mode. .................................... 15
`Figure 5.6 Shift register of the PRBS encoder for baseband scrambling. ................................... 17
`Figure 6.1 Block diagram of BICM. ............................................................................................ 17
`Figure 6.2 Structure of FEC Frame when BCH or CRC is used as Outer Code. ......................... 18
`Figure 6.3 Structure of FEC Frame when no Outer Code is used. .............................................. 18
`Figure 6.4 Shift register for CRC-32. .......................................................................................... 20
`Figure 6.5 Bit interleaver structure. ............................................................................................. 24
`Figure 6.6 Parity interleaved LDPC codeword bit groups. .......................................................... 25
`Figure 6.7 Write/Read operation of Type A block interleaving. ................................................. 28
`Figure 6.8 Write operation of Part 1 Type B block interleaving for 256QAM. .......................... 29
`Figure 6.9 Read operation of Part 1 Type B block interleaving for 256QAM. ........................... 29
`Figure 6.10 Mapper structure. ...................................................................................................... 30
`Figure 6.11 De-multiplexing of bits into sub-streams. ................................................................ 32
`Figure 6.12 Example 16-NUC for code rate 6/15. ....................................................................... 33
`Figure 6.13 Example 1024-NUC for code rate 6/15. ................................................................... 34
`Figure 6.14 Block diagram of LDM encoding. ............................................................................ 35
`Figure 6.15 Constellation superposition for two-layer LDM. ..................................................... 35
`Figure 6.16 Examples of (a, left) Core Layer and (b, right) Enhanced Layer constellations. ..... 38
`Figure 6.17 Example combined constellation after normalization. ............................................. 38
`Figure 6.18 Block diagram of L1-Basic protection. .................................................................... 39
`Figure 6.19 Block diagram of the L1-Detail protection. .............................................................. 39
`Figure 6.20 Format of data after LDPC encoding of L1-Basic/-Detail signaling. ....................... 42
`Figure 6.21 Parity interleaved LDPC codeword bit groups. ........................................................ 44
`
`Figure 6.22 Parity Repetition (𝑵𝑵𝑵𝑵𝒆𝒆𝒑𝒑𝒆𝒆𝒑𝒑𝒑𝒑≤𝑵𝑵𝑵𝑵𝑵𝑵𝒑𝒑𝑵𝑵_𝒑𝒑𝒑𝒑𝑵𝑵𝒑𝒑𝒑𝒑𝒑𝒑). ................................................... 46
`Figure 6.23 Parity Repetition (𝑵𝑵𝑵𝑵𝒆𝒆𝒑𝒑𝒆𝒆𝒑𝒑𝒑𝒑 >𝑵𝑵𝑵𝑵𝑵𝑵𝒑𝒑𝑵𝑵_𝒑𝒑𝒑𝒑𝑵𝑵𝒑𝒑𝒑𝒑𝒑𝒑). ................................................... 46
`
`Figure 6.24 Example 1 of parity puncturing after repetition. ...................................................... 48
`Figure 6.25 Example 2 of parity puncturing after repetition. ...................................................... 48
`Figure 6.26 Example of removal of zero-padding bits. ............................................................... 48
`Figure 6.27 Block interleaving scheme. ....................................................................................... 49
`Figure 6.28 Example of bit demultiplexing rule for 16-NUC. ..................................................... 49
`Figure 6.29 Segmentation of L1-Detail signaling. ....................................................................... 51
`Figure 6.30 Additional parity for L1-Detail signaling. ................................................................ 52
`Figure 6.31 Repeated LDPC codeword. ...................................................................................... 52
`Figure 6.32 Additional parity generation for L1-Detail signaling (NAP ≤Npunc). ......................... 54
`Figure 6.33 Additional parity generation for L1-Detail signaling (NAP >Npunc). ......................... 54
`
`
`
`vii
`
`7
`
`

`

`ATSC A/322:2018
`
`Physical Layer Protocol
`
`26 December 2018
`
`Figure 7.1 Block diagram of framing and interleaving. ............................................................... 55
`Figure 7.2 Block diagram for time interleaving for CTI Mode. .................................................. 57
`Figure 7.3 Block diagram of the Convolutional Time Interleaver. .............................................. 57
`Figure 7.4 Block diagram for time interleaving for HTI mode. .................................................. 59
`Figure 7.5 Block diagram of the Cell Interleaver: (a) Linear writing operation,
`(b) Pseudo-random reading operation. .............................................................................. 60
`Figure 7.6 Example of joint operation of TBI and CDL in the HTI. ........................................... 62
`Figure 7.7 Block diagram of Twisted Block Interleaver: (a) linear writing operation, (b)
`diagonal-wise reading operation. ...................................................................................... 64
`Figure 7.8 Block diagram of Convolutional Delay Line used in the HTI. .................................. 65
`Figure 7.9 Example of HTI for L1D_plp_HTI_inter_subframe = 0 and 1, and for
`L1D_plp_HTI_num_ti_blocks = 0 and 1. ................................................................... 66
`Figure 7.10 Frame structure. ........................................................................................................ 68
`Figure 7.11 Mapping of L1-Basic and L1-Detail into Preamble symbol(s). ............................... 71
`Figure 7.12 Data cell addressing when a Preamble symbol is associated with a subframe. ........ 73
`Figure 7.13 Data cell addressing when a Preamble symbol is not associated with a subframe. . 74
`Figure 7.14 Data carrier indices for null and active data carriers. ............................................... 79
`Figure 7.15 Data cell indices used for illustrative multiplexing examples. ................................. 82
`Figure 7.16 Example of cell multiplexing for a single PLP per subframe. .................................. 82
`Figure 7.17 Example of time division multiplexing of PLPs. ..................................................... 83
`Figure 7.18 LDM Example #1 (1 Core PLP, 1 Enhanced PLP). ................................................. 84
`Figure 7.19 LDM Example #2 (2 Core PLPs, 1 Enhanced PLP). ................................................ 85
`Figure 7.20 LDM Example #3 (2 Core PLPs, 2 Enhanced PLPs). .............................................. 85
`Figure 7.21 LDM Example #4 (1 Core PLP, 3 Enhanced PLPs). ................................................ 86
`Figure 7.22 LDM Example #5 (3 Core PLPs, 1 Enhanced PLP). ................................................ 87
`Figure 7.23 Example Insertion of Enhanced Layer dummy modulation values when the
`HTI mode is used with Layered-Division Multiplexing. .................................................. 87
`Figure 7.24 Example of frequency division multiplexing of PLPs. ............................................. 89
`Figure 7.25 Example of time and frequency division multiplexing of PLPs. .............................. 89
`Figure 7.26 Frequency interleaving overview. ............................................................................ 90
`Figure 7.27 FI address generation scheme for the 8K FFT size. ................................................. 91
`Figure 7.28 FI address generation scheme for the 16K FFT size. ............................................... 91
`Figure 7.29 FI address generation scheme for the 32K FFT size. ............................................... 92
`Figure 8.1 Block diagram of waveform generation. .................................................................... 94
`Figure 8.2 Reference sequence generator. ................................................................................... 96
`Figure 8.3 Block diagram showing example MISO transmission. ............................................ 102
`Figure 8.4 Illustration of the assignment of extra samples to the guard interval of each
`non-Preamble OFDM symbol in a frame........................................................................ 107
`Figure 8.5 Illustration of remaining leftover extra samples being assigned to a cyclic
`postfix of the final OFDM symbol of the final subframe of the frame. .......................... 108
`Figure 9.1 Illustration of the time information position and the time information being
`transmitted in the Preamble. ........................................................................................... 118
`Figure 9.2 L1D_plp_CTI_fec_block_start graphical description ....................................... 128
`Figure C.2.1 Constellation of QPSK. ........................................................................................ 172
`Figure C.2.2 Constellations of 16QAM. .................................................................................... 172
`Figure C.2.3 Constellations of 64QAM. .................................................................................... 173
`
`
`
`viii
`
`8
`
`

`

`ATSC A/322:2018
`
`Physical Layer Protocol
`
`26 December 2018
`
`Figure C.2.4 Constellations of 256QAM. .................................................................................. 173
`Figure C.2.5 Constellations of 1024QAM. ................................................................................ 174
`Figure C.2.6 Constellations of 4096QAM. ................................................................................ 174
`Figure E.1.1 Scattered pilot pattern SP3_2 (SISO, DX = 3, DY = 2). ......................................... 182
`Figure E.1.2 Scattered pilot pattern SP3_4 (SISO, DX = 3, DY = 4). ........................................ 182
`Figure E.1.3 Scattered pilot pattern SP4_2 (SISO, DX = 4, DY = 2). ......................................... 182
`Figure E.1.4 Scattered pilot pattern SP4_4 (SISO, DX = 4, DY = 4). ........................................ 183
`Figure E.1.5 Scattered pilot pattern SP6_2 (SISO, DX = 6, DY = 2). ........................................ 183
`Figure E.1.6 Scattered pilot pattern SP6_4 (SISO, DX = 6, DY = 4). ......................................... 183
`Figure E.1.7 Scattered pilot pattern SP8_2 (SISO, DX = 8, DY = 2). ........................................ 183
`Figure E.1.8 Scattered pilot pattern SP8_4 (SISO, DX = 8, DY = 4). ........................................ 184
`Figure E.1.9 Scattered pilot pattern SP12_2 (SISO, DX = 12, DY = 2). .................................... 184
`Figure E.1.10 Scattered pilot pattern SP12_4 (SISO, DX = 12, DY = 4). ................................... 184
`Figure E.1.11 Scattered pilot pattern SP16_2 (SISO, DX = 16, DY = 2). .................................. 184
`Figure E.1.12 Scattered pilot pattern SP16_4 (SISO, DX = 16, DY = 4). .................................. 185
`Figure E.1.13 Scattered pilot pattern SP24_2 (SISO, DX = 24, DY = 2). ................................... 185
`Figure E.1.14 Scattered pilot pattern SP24_4 (SISO, DX = 24, DY = 4). .................................. 185
`Figure E.1.15 Scattered pilot pattern SP32_2 (SISO, DX = 32, DY = 2). ................................... 185
`Figure E.1.16 Scattered pilot pattern SP32_4 (SISO, DX = 32, DY = 4). .................................. 186
`Figure K.1.1 Simple block diagram of channel bonding. .......................................................... 212
`Figure K.1.2 Transmitter side processing for channel bonding. ................................................ 213
`Figure K.3.1 Cell exchange block. ............................................................................................ 214
`Figure L.1.1 MIMO block diagram. .......................................................................................... 216
`Figure L.1.2 MIMO MAP block diagram.................................................................................. 217
`Figure L.5.1 Generic MIMO Precoding block diagram. ........................................................... 218
`Figure L.5.2 Detailed MIMO precoding block diagram. ........................................................... 219
`Figure L.9.1 MIMO pilot scheme MP3_2 for Walsh-Hadamard pilot encoding. ..................... 226
`Figure L.9.2 MIMO pilot scheme MP3_4 for Walsh-Hadamard pilot encoding. ..................... 226
`Figure L.9.3 MIMO pilot scheme MP4_2 for Walsh-Hadamard pilot encoding. ..................... 226
`Figure L.9.4 MIMO pilot scheme MP4_4 for Walsh-Hadamard pilot encoding. ..................... 227
`Figure L.9.5 MIMO pilot scheme MP6_2 for Walsh-Hadamard pilot encoding. ..................... 227
`Figure L.9.6 MIMO pilot scheme MP6_4 for Walsh-Hadamard pilot encoding. ..................... 227
`Figure L.9.7 MIMO pilot scheme MP8_2 for Walsh-Hadamard pilot encoding. ..................... 227
`Figure L.9.8 MIMO pilot scheme MP8_4 for Walsh-Hadamard pilot encoding. ..................... 228
`Figure L.9.9 MIMO pilot scheme MP12_2 for Walsh-Hadamard pilot encoding. ................... 228
`Figure L.9.10 MIMO pilot scheme MP12_4 for Walsh-Hadamard pilot encoding. ................. 228
`Figure L.9.11 MIMO pilot scheme MP16_2 for Walsh-Hadamard pilot encoding. ................. 228
`Figure L.9.12 MIMO pilot scheme MP16_4 for Walsh-Hadamard pilot encoding. ................. 229
`Figure L.9.13 MIMO pilot scheme MP3_2 for null pilot encoding. ......................................... 229
`Figure L.9.14 MIMO pilot scheme MP3_4 for null pilot encoding. ......................................... 229
`Figure L.9.15 MIMO pilot scheme MP4_2 for null pilot encoding. ......................................... 230
`Figure L.9.16 MIMO pilot scheme MP4_4 for null pilot encoding. ......................................... 230
`Figure L.9.17 MIMO pilot scheme MP6_2 for null pilot encoding. ......................................... 230
`Figure L.9.18 MIMO pilot scheme MP6_4 for null pilot encoding. ......................................... 230
`Figure L.9.19 MIMO pilot scheme MP8_2 for null pilot encoding. ......................................... 231
`Figure L.9.20 MIMO pilot scheme MP8_4 for null pilot encoding. ......................................... 231
`
`
`
`ix
`
`9
`
`

`

`ATSC A/322:2018
`
`Physical Layer Protocol
`
`26 December 2018
`
`Figure L.9.21 MIMO pilot scheme MP12_2 for null pilot encoding. ....................................... 231
`Figure L.9.22 MIMO pilot scheme MP12_4 for null pilot encoding. ....................................... 231
`Figure L.9.23 MIMO pilot scheme MP16_2 for null pilot encoding. ....................................... 232
`Figure L.9.24 MIMO pilot scheme MP16_4 for null pilot encoding. ....................................... 232
`Figure L.9.25 MIMO pilot scheme MP24_2 for null pilot encoding. ....................................... 232
`Figure L.9.26 MIMO pilot scheme MP24_4 for null pilot encoding. ....................................... 232
`Figure L.9.27 MIMO pilot scheme MP32_2 for null pilot encoding. ....................................... 233
`Figure L.9.28 MIMO pilot scheme MP32_4 for null pilot encoding. ....................................... 233
`Figure M.3.1 Implementation example of the ACE algorithm for 1-D constellations. ............. 238
`Figure M.3.2 Implementation example of the ACE algorithm for 2-D constellations. ............. 240
`Figure M.3.3 Constellation diagram for 16QAM when using the defined ACE algorithm. ..... 242
`Figure M.3.4 Constellation diagram for 64QAM when using the defined ACE algorithm. ..... 243
`Figure M.3.5 Constellation diagram for 256QAM when using the defined ACE algorithm. ... 244
`Figure N.1.1 TxID generation and injection into ATSC 3.0 host signals. ................................. 245
`Figure N.2.1 TxID signal injection into the first Preamble symbol period (8K FFT). .............. 246
`Figure N.2.2 TxID signal injection into the first Preamble symbol period (16K FFT). ............ 246
`Figure N.2.3 TxID signal injection into the first Preamble symbol period (32K FFT). ............ 246
`Figure N.2.4 TxID code generator based on Gold sequence. .................................................... 246
`
`
`
`x
`
`10
`
`

`

`ATSC A/322:2018
`
`Physical Layer Protocol
`
`26 December 2018
`
`Index of Tables
`
`Table 5.1 OFI Description ............................................................................................................ 14
`Table 5.2 EXT_TYPE Field Description for Extension Mode ................................................... 16
`Table 6.1 Length of Kpayload (bits) for Ninner = 64800 ................................................................... 19
`Table 6.2 Length of Kpayload (bits) for Ninner = 16200 ................................................................... 19
`Table 6.3 BCH Polynomials......................................................................................................... 20
`Table 6.4 Structure of LDPC Encoding Used for Each of the Code Rates and Lengths ............. 21
`Table 6.5 Coding Parameters for Type A: Ninner = 64800 ............................................................ 23
`Table 6.6 Coding Parameters for Type A: Ninner = 16200 ............................................................ 23
`Table 6.7 Coding Parameters for Type B ..................................................................................... 23
`Table 6.8 Block Interleaver Type for Codes of Length Ninner= 64800 Bits ................................. 26
`Table 6.9 Block Interleaver Type for Codes of Length Ninner= 16200 Bits ................................. 26
`Table 6.10 Type A Block Interleaver Configurations .................................................................. 26
`Table 6.11 Parameters for Type B Block Interleaver ................................................................... 28
`Table 6.12 Mandatory Modulation and Coding Combinations Ninner = 64800 Bits ..................... 31
`Table 6.13 Mandatory Modulation and Coding Combinations Ninner = 16200 Bits ..................... 31
`Table 6.14 Parameters for Bit-Mapping into Constellations ........................................................ 31
`Table 6.15 Power Distributions Between Layers for Various Injection Levels ........................... 36
`Table 6.16 Scaling and Normalizing Factors According to Enhanced Layer Injection Level ..... 37
`Table 6.17 Configurations for L1-Basic and L1-Detail Signaling ............................................... 40
`Table 6.18 Parameters for BCH Encoding of L1 Information ..................................................... 41
`Table 6.19 Parameters for Zero Padding ...................................................................................... 41
`Table 6.20 Shortening Pattern of Information Bit Group to be Padded ....................................... 43
`Table 6.21 Group-wise Interleaving Pattern for all L1-Basic Modes, L1-Detail Modes 1 and 2 45
`Table 6.22 Group-wise Interleaving Pattern for L1-Detail Modes 3, 4, 5, 6 and 7 ..................... 45
`Table 6.23 Parameters for Repetition ........................................................................................... 46
`Table 6.24 Parameters for Puncturing .......................................................................................... 47
`Table 6.25 Kseg for L1-Detail Signaling ....................................................................................... 50
`Table 7.1 Number of Carriers NoC and Occupied Bandwidth .................................................... 69
`Table 7.2 Number of Available Data Cells per Preamble Symbol .............................................. 75
`Table 7.3 Number of Available Data Cells per Data Symbol ...................................................... 76
`Table 7.4 Number of Av

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket