throbber
IEEE JOURNAL ON SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 8, NO. 2, MARCH/APRIL 2002
`
`333
`
`Red, Green, and Blue LEDs for
`White Light Illumination
`
`Subramanian Muthu, Associate Member, IEEE, Frank J. P. Schuurmans, and Michael. D. Pashley
`
`Abstract—The rapid improvement of the white light efficacy
`achievable with light-emitting diodes (LEDs) opens up new oppor-
`tunities in the general illumination market. An LED light source
`made of red, green, and blue LEDs (RGB-LEDs) can provide the
`unique feature of color variability, allowing the user to select the
`desired color point of the lamp. The white light color accuracy re-
`quired in the general illumination market is a challenge for LEDs.
`The variation in lumen output and wavelength for nominally iden-
`tical LEDs and the change in these parameters with temperature
`and time result in an unacceptably high variability in the color
`point of white light from RGB-LEDs.
`In this paper, we show that these problems can be overcome with
`suitable feedback control schemes that can be implemented in a
`practical LED lamp. We present results of experiment and theo-
`retical modeling that shows the performance that can be achieved
`with a number of different control schemes.
`Index Terms—Color accuracy, feedback control, light-emitting
`diodes, white light illumination.
`
`I. INTRODUCTION
`
`T HE RAPID development of light-emitting diodes (LEDs)
`
`over the last few years has opened up new opportunities in
`the general illumination market [1]. The efficacy of white light
`from LEDs is now over 20 lm/W, which already exceeds that
`of incandescent lamps [2]. By 2005, it is forecast that LED ef-
`ficacy will reach 50 lm/W [3], which approaches that of com-
`pact fluorescent lamps. In addition, higher power packages are
`becoming available that enable compact lighting systems with
`LEDs. However, additional challenges remain. The general illu-
`mination market has strict requirements on the quality of white
`light—lamps of the same type must all appear to have the same
`color point. In this paper, we discuss these requirements, the is-
`sues with LEDs that make these requirements a challenge, and
`how to meet these requirements.
`There are several approaches using LEDs to achieve white
`light [4]. One approach is to use a blue or UV LED to excite one
`or more phosphors to give white light. In this paper, we focus on
`the use of red, green, and blue LEDs (RGB-LEDs) to produce
`white light. The advantages of RGB-LEDs are that they pro-
`vide a light source that can have a variable color point, and the-
`oretically can provide the highest efficiency LED-based white
`light. The ability to change the color point of the lamp provides
`a new feature to general illumination that has the potential to
`generate new applications and hence new market opportunities.
`
`Manuscript received December 11, 2001; revised January 23, 2002.
`S. Muthu and M. D. Pashley are with Philips Research, Briarcliff Manor, NY
`10510 USA (Subu.Muthu@philips.com; Michael.Pashley@philips.com).
`F. Schuurmans is with Philips Research, Eindhoven, The Netherlands
`(Frank.Schuurmans@philips.com).
`Publisher Item Identifier S 1077-260X(02)03763-2.
`
`Fig. 1. The 1964 CIE (u; v) coordinate system showing the coordinates of
`InGaN and AlInGaP LEDs. Also shown is the blackbody line over a range of
`color temperatures from 2 000 K to 10 000 K.
`
`A key challenge for RGB-LEDs is to maintain the desired white
`point within acceptable tolerances. This arises from the signif-
`icant spread in lumen output and wavelength of manufactured
`LEDs, and the changes in LED characteristics that occur with
`temperature and time. Maintaining the desired white point can
`only be achieved with feedback schemes to control the relative
`contributions of red, green, and blue to the white light.
`
`II. WHITE LIGHT REQUIREMENTS
`
`It is well known that red, green, and blue LEDs can be com-
`bined to produce white light. This can be represented on a chro-
`maticity diagram. The most common chromaticity diagram is
`the CIE 1931 coordinate system
`[5]. However, the just no-
`ticeable color difference is not a constant length over
`space.
`By applying a linear transformation a new coordinate space can
`be generated where the just noticeable color difference is ap-
`proximately uniform. A number of such transformations exist.
`For the purposes of this paper we use the CIE 1960 UCS system
`, as shown in Fig. 1. By combining three different color
`LEDs, it is possible to produce any color point (
`coordi-
`nate) that lies within the triangle formed by the
`coordi-
`nates of the three LEDs. In almost all white light illumination
`applications, the resultant color point must lie on, or very close
`to the locus of points that follows the line of a black-body radi-
`ator (shown in Fig. 1). An incandescent lamp has a black-body
`temperature of approximately 2700 K. Most fluorescent lamps
`are designed to have a color temperature of between 3000 K and
`5000 K, dependent on the application and preference of the user.
`Another key requirement of illumination relates to the spec-
`tral properties of the white light source. Our perceived color of
`objects depends upon the spectrum of incident light upon them.
`
`Authorized licensed use limited to: Fish & Richardson PC. Downloaded on August 04,2023 at 22:30:29 UTC from IEEE Xplore. Restrictions apply.
`
`1077-260X/02$17.00 © 2002 IEEE
`
`APPLE 1051
`Apple v. Masimo
`IPR2022-01299
`
`1
`
`

`

`334
`
`IEEE JOURNAL ON SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 8, NO. 2, MARCH/APRIL 2002
`
`TABLE I
`VALUES OF COLOR RENDERING INDEX
`(R ) REQUIRED FOR A NUMBER OF
`ILLUMINATION APPLICATIONS.
`
`TABLE II
`VALUES OF COLOR RENDERING INDEX (R ) THAT CAN BE ACHIEVED
`WITH THE COMBINATION OF TWO, THREE, AND FOUR
`DIFFERENT WAVELENGTH LEDS.
`
`Fig. 2. The calculated shift in the (u; v) color coordinates as a result of a
`change in the flux of the red, green, or blue LEDs in an RGB-LED.
`
`pends upon the application. To quantify the color error of a light
`source, we introduce the quantity
`where
`
`A red object illuminated with light that is drastically deficient in
`red will appear black. The lighting industry uses a standard color
`rendering index
`to determine the color rendition properties
`of a light source. It is based on the components of eight standard
`spectra in the white light source as compared to a black-body ra-
`diator with the same color temperature as the light source. Thus,
`an incandescent lamp has an
`value of 100. Typical fluores-
`cent lamps used in offices have an
`of 80. The required
`value depends upon the application. Typical examples are given
`in Table I.
`The illumination of goods in a retail store is typically the most
`demanding application for color rendering index. The precise
`requirements depend upon the goods being displayed. As the
`goods on display are changed, different color points may be de-
`sired. With conventional light sources, this means that the lamp
`has to be changed. RGB-LEDs will allow the desired color point
`to be achieved simply by adjusting the ratio of RGB illumina-
`tion. Typical indoor living space is illuminated with sources that
`have an
`of 80. The color temperature can vary from 2700 K
`with incandescent lamps, to the 4000 K typically used in offices
`with fluorescent lighting. RGB-LEDs will allow one lamp to
`provide a range of color temperatures. General outdoor illumi-
`nation such as street lighting puts the lowest demands on color
`rendering with
`of 40 or less being common.
`that can be achieved with LEDs depends on the white
`The
`spectrum. The white spectrum is made up of the individual LED
`spectra, and thus, depends on the wavelengths selected, and the
`number of different wavelength LEDs used to make white light.
`Table II shows the
`values that can be achieved with the
`mixing of two, three, and four different wavelength LEDs.
`RGB-LEDs can achieve the required
`values provided that
`the correct LED wavelengths are selected. Most applications can
`be addressed by the selection of three different wavelengths.
`A major requirement of many illumination applications is that
`the light source has the required color point (i.e.,
`coordi-
`nate), and that it stays at its color point over time. It is viewed
`as unacceptable if all fluorescent lamps lighting in an office
`area are not the same color. This raises the question: what is
`the required specification? There is no single answer—it de-
`
`being the color coordinates of the light source, and
`are the required color coordinates. This is simply the
`distance in
`color space of the lamp from the desired color
`point (see Fig. 1). As a point of reference, fluorescent tubes are
`usually specified to be within
`of their designed
`color point. Some discharge lamps have larger deviations of
`over
`, and are regarded as unacceptable by some
`customers. As we will show below, the demands on color
`reproducibility of the general illumination market provides a
`severe challenge for RGB-LEDs. Color point reproducibility is
`also a severe challenge for most approaches to phosphor-LEDs.
`No phosphor-LEDs on the market today meet the color point
`reproducibility requirements of the general illumination market.
`
`III. THE COLOR STABILITY OF RGB-LEDS
`
`Conventional light sources (fluorescent, incandescent, etc)
`can be manufactured very reproducibly such that the lumen
`output and color points are highly consistent (a few percent
`in flux and a
`of less than 0.003). As a result, the general
`illumination market has grown to expect this level of consis-
`tency. The manufacturing process for LEDs, on the other hand,
`does not provide this level of consistency. Nominally identical
`LEDs can vary in light output by over a factor of two, and the
`wavelength can vary by many nanometers. Lumen output and
`wavelength also change with temperature [6] and lumen output
`changes over time in a way that cannot be accurately predicted.
`These factors all influence the color point that is obtained by
`mixing the light from a combination of different wavelength
`LEDs. We now discuss the quantitative effect of these LED
`characteristics based on white light from RGB-LEDs.
`The largest impact on color point of RGB-LEDs comes from
`changes in light output of the individual LEDs. This can be as
`a result of aging, or from the initial spread in the performance
`of the LEDs used in the lamp. Fig. 2 shows a calculation of the
`color error that occurs if any one of the red, green, or blue com-
`ponents changes in intensity. At a color temperature of 3000 K, a
`change of less than 10% in intensity of either green or red moves
`the color point by
`, already outside the specifica-
`tion of a fluorescent lamp. This is a very small intensity change
`
`Authorized licensed use limited to: Fish & Richardson PC. Downloaded on August 04,2023 at 22:30:29 UTC from IEEE Xplore. Restrictions apply.
`
`2
`
`

`

`MUTHU et al.: RED, GREEN, AND BLUE LEDs FOR WHITE LIGHT ILLUMINATION
`
`335
`
`electrical, or optical sensors. The output of these sensors is fed
`to a feedback controller, which adjusts the current to the red,
`green, and blue LEDs to produce the desired white light output.
`In this section, we describe a number of different approaches
`to feedback control: temperature feed-forward compensation,
`flux feedback, combined temperature and flux control, and
`feedback of the color coordinates of the white light.
`
`A. Temperature Feed Forward Compensation
`The simplest measurement to implement is temperature. It is
`not practical to directly measure the junction temperature of the
`LED, and therefore, the temperature of the heatsink on which
`the LEDs are mounted is measured. Thus, only an indirect mea-
`sure of the junction temperature is made. As discussed above,
`the light flux and wavelength of an LED both vary with temper-
`ature. If the color point is correct at an initial set temperature,
`then the white color point can be maintained as the temperature
`changes provided that the temperature dependence of the flux
`and wavelength of each color LED is known. At each tempera-
`ture the required fluxes of the red, green, and blue LEDs must
`be calculated based on the calculated wavelengths for that tem-
`perature. The currents required to produce that flux must also
`be calculated for each color LED. A problem with this method
`of compensation is that the temperature dependence of the flux
`and wavelength are not precisely known. These LED param-
`eters have a significant distribution just as the efficiency and
`wavelength do (see Section III). This introduces significant er-
`rors in the resulting white color point. An additional problem
`with this simple compensation scheme isthat it does not correct
`for changes in LED flux with time. Given the variability in the
`aging characteristics of LEDs, adding a simple correction based
`on hours of operation would not adequately address the issue.
`
`B. Feedback Control of the LED Flux
`Photodiodes can be used to measure the LED flux of each
`color component directly. The feedback controller simply has to
`maintain the preset flux from each color component to roughly
`maintain the white point. This can be done with a set of three
`photodiodes, each photodiode placed to detect only a single
`color component. It is also possible to use pulsing techniques
`such that only a single photodiode is needed to monitor each of
`the three color components. Feedback control of the fluxes of
`each of the color components will correct for the LED aging and
`the variation of LED flux with temperature. This provides im-
`proved white light control compared to that obtained with tem-
`perature feed forward alone, and does correct for the aging of
`the LEDs. The disadvantage of this approach is that it does not
`correct for the shift in wavelength with temperature. Calculation
`shows that temperature changes of 20 C can result in a color
`point shift
`of more than 0.005.
`
`C. Combined Temperature and Flux Feedback
`An improved feedback control system can be achieved by
`combining both temperature feed forward and flux feedback.
`This has all the advantages of the flux feedback discussed above,
`and uses the temperature feed forward to allow corrections to be
`made for the shift in wavelength with temperature. This scheme
`
`Fig. 3. The calculated shift in (u; v) coordinates of an RGB-LED as the
`temperature is changed in increments of 20 C. The RGB-LED has a color
`temperature of 3 500 K for a junction temperature of 60 C.
`
`compared with the variability in nominally identical LEDs. Rel-
`ative changes over lifetime between the different LEDs can be
`far greater than 10%.
`Change in temperature of the LED pn junction leads to
`changes in light output, wavelength and spectral width. These
`all influence the resulting color point of the RGB-LED. This
`is illustrated in Fig. 3, which shows the calculated change in
`color point on the
`plane as the temperature changes
`in increments of 20 C. The system is set to be on the black
`body locus at a junction temperature of 60 C, with a color
`temperature of 3500 K. The calculation is based on typical
`temperature coefficients of the LEDs. A shift in temperature
`of only 10 C moves the color point by
`. The
`largest contribution to this shift is the reduction of light output
`of the red LED as the temperature increases. As a result, the
`color point moves toward the blue-green. The red LEDs (or
`any AlInGaP-based LED), typically reduces its light output by
`10–15% for every 10 C increase in temperature. If it were
`possible to reduce the temperature sensitivity of the red LEDs,
`the stability of white light from RGB-LEDs with temperature
`could be significantly improved.
`In addition to the effects already discussed, the peak wave-
`length of an LED also shifts with current. Thus, as the inten-
`sity of RGB-LEDs is adjusted by changing the amplitude of the
`drive current to each of the LEDs, the color point of the combi-
`nation will change. While this effect limits the accuracy of the
`color point, it is typically less critical than the effects shown in
`Figs. 2 and 3.
`Changes in light output and peak wavelength with temper-
`ature, and changes in light output over time mean that factory
`calibrations will not be sufficient to produce a stable white light
`RGB-LED product. The large variability in the performance pa-
`rameters of LEDs makes compensation schemes based on tem-
`perature measurement and time inadequate. The problem can
`be solved with appropriate feedback schemes used to control
`the color point. We now discuss how this can be done, and the
`performance those feedback schemes can achieve.
`
`IV. FEEDBACK SCHEMES
`
`There are several measurable quantities that can be used for
`compensation and feedback control schemes using thermal,
`
`Authorized licensed use limited to: Fish & Richardson PC. Downloaded on August 04,2023 at 22:30:29 UTC from IEEE Xplore. Restrictions apply.
`
`3
`
`

`

`336
`
`IEEE JOURNAL ON SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 8, NO. 2, MARCH/APRIL 2002
`
`Fig. 4. Block diagram of a control system with temperature feed forward and
`LED light output feedback.
`
`still relies on knowing the temperature dependence of wave-
`length on temperature, and thus suffers from the spread in LED
`characteristics. Fig. 4 shows a block diagram of such a con-
`trol system. The compensation system supplies reference red,
`green, and blue light outputs as a function of temperature to
`three independent single-input-single-output (SISO) feedback
`controllers, which regulate the RGB-LED light outputs to the
`reference values.
`
`D. Feedback of the Color Coordinates
`Direct control of the white light from RGB-LEDs can be
`achieved by measuring the color coordinates of the white light.
`The measurement requires sensors with spectral responses
`matching the CIE 1931 color matching functions. The feedback
`signal then gives the
`color coordinates. The sensors
`would consist of three photodiodes each covered with an
`appropriate optical filter. A properly designed controller then
`directly regulates the white light to the target color point. A high
`degree of color accuracy is possible with this scheme. However,
`there can be errors in sensing the tristimulus values due to
`inaccuracies in the color filters used. This tristimulus feedback
`control overcomes the variability in LED performance since it
`directly controls the white light, and not the components that go
`to make up the white light. Such feedback schemes, therefore,
`have the potential to be more accurate than the control methods
`described above.
`Either pulsewidth modulation (PWM) or amplitude modula-
`tion (AM) can be used to supply the LED forward current with
`the feedback schemes presented above. However, PWM and
`AM driving conditions affect the spectral response of the LEDs
`differently. A change in the amplitude of the drive current of an
`LED causes a shift in its wavelength, as described above. Con-
`trol methods that do not measure the color coordinates directly
`must take account of this if AM drive schemes are used. In the
`case of PWM driving of the LEDs, the current does not affect
`the wavelength of the LED as the dc forward current is always
`at the same value.
`
`V. AN EXPERIMENTAL CONTROL SYSTEM
`
`We have carried out experimental verification of the operation
`of a feedback control system for RGB-LEDs with temperature
`feed forward and flux feedback. We now describe the experi-
`mental setup and present the results obtained.
`Fig. 5 shows a schematic of an RGB-LED white light source
`with this type of feedback control. The white light source is con-
`structed from four red LEDs, eight green LEDs, and four blue
`LEDs. The LEDs are mounted on a heat sink using thermally
`
`Fig. 5. Schematic of an RGB-LED lamp with feedback control system.
`
`conducting epoxy. A single temperature sensor (LM35 from Na-
`tional Semiconductors) is used to measure the temperature of
`the heat sink. The heatsink has a heater on it so that the tem-
`perature can be varied. A single Si photodiode (VTB113 from
`EG&G) is used to measure the light output from the red, green,
`and blue LEDs. The LEDs and the photodiode are mounted in-
`side an integrating sphere to provide ideal mixing of the light
`from the different wavelength LEDs, to ensure that the photo-
`diode sees all the LEDs equally, and to shield the experiment
`from ambient light. The integrating sphere is connected to a
`spectral lamp measurement system (spectrometer) to measure
`the chromaticity coordinates of the mixed white light. This is
`used to measure the performance of the feedback system. In an
`actual illumination system, the integrating sphere would be re-
`placed by color mixing optics suited to the application.
`Three independent flyback converters operating at a con-
`stant switching frequency of 100-kHz drive the RGB-LED
`light source. We used a PWM driving scheme operating at
`a frequency of 120 Hz for these experiments. Each flyback
`converter contains a current loop to maintain a constant peak
`current for the PWM pulses. In order to minimize the rise time
`and the fall time for the PWM current pulses, a small value
`of output filter capacitance is used. In addition, an inductor in
`series with the LEDs is used to reduce the current ripple. The
`color control system (shown in Fig. 4) is implemented in a DSP
`TMS320F240, which supplies the PWM turn-on and turn-off
`signals for the power supply.
`The photodiode measures the flux of each of the three LED
`wavelengths according to the scheme shown in Fig. 6. In this ex-
`ample, it is assumed that the duty ratio for green is largest, and
`for blue is smallest. The rise and fall times for the current pulses
`are assumed to be negligible. In Fig. 6, the start of the PWM cur-
`rent pulse for red is aligned at the start of the overall PWM pe-
`riod, the pulse for green is centered in the period, and the end of
`the pulse for blue is aligned at the end of the period. Although
`many other configurations are possible, the pulse positioning
`shown in Fig. 6 provides a complete measurement in a single
`PWM period. The light measurements are taken in a predefined
`sequence of four points during the PWM cycle. The individual
`flux components of the red, green, and blue LEDs are obtained
`by differential measurements as follows: Each photodiode mea-
`surement provides the flux from one or more colors plus any
`ambient light. Subtracting the fluxes at two of the measurement
`
`Authorized licensed use limited to: Fish & Richardson PC. Downloaded on August 04,2023 at 22:30:29 UTC from IEEE Xplore. Restrictions apply.
`
`4
`
`

`

`MUTHU et al.: RED, GREEN, AND BLUE LEDs FOR WHITE LIGHT ILLUMINATION
`
`337
`
`tribution at random? A statistical model has been developed to
`study this issue.
`An LED light source is constructed from six red, six green,
`and six blue LEDs. Each LED is characterized by a number
`of parameters including flux (lumens per amp), wavelength,
`spectral width, forward voltage
`, and temperature coeffi-
`cients of flux and wavelength. The values of these parameters
`are assigned at random based on a Gaussian distribution that
`approximates typical distributions of each parameter achieved
`in production. The LED spectrum is modeled as a second-order
`Lorentzian. All these parameters are based on a junction tem-
`perature of 25 C. The LED junction temperature at a given
`heatsink temperature is calculated from the power dissipation
`(the product of current and
`), and the thermal conductivity
`from the chip to the heatsink. We assume ideal optical mixing
`such that the white light output is a combination of all 18 LEDs
`in the lamp. The required drive currents for the red, green and
`blue LEDs to generate white light can be calculated based on
`the nominal performance of the LEDs (i.e., the mean of the
`Gaussian distributions for each of the LED performance param-
`eters).
`Once the LED performance parameters are selected, the
`actual color point of the lamp can be calculated. This can be
`compared with the designed color point, and a color error
`calculated. The color error will be dependent on the
`actual performance parameters selected, and those over a large
`number of LED lamps will have a statistical distribution. We
`typically calculate the color error for 5 000–10 000 lamps
`to determine this distribution. From the distribution of color
`errors, the product yield for a maximum acceptable color error
`can be calculated. The model can also calculate the effect
`of compensation and feedback schemes on the white light
`performance. The steady state function of a given control
`system is also included in the simulation together with a model
`for the sensors and LED drivers. The effect of AM or PWM
`driving scheme can also be modeled.
`A number of different control schemes have been modeled,
`providing the product yield as a function of color accuracy. The
`modeling results for three different control schemes are shown
`in Fig. 8. The simplest control scheme involves only tempera-
`ture feed-forward compensation (see Section IV). The simula-
`tion results show that less than 20% of products will have a color
`error of less than 0.005. It is clear that this control scheme will
`not achieve the performance required for illumination applica-
`tions. If the control scheme is extended to include flux feed-
`back of the red, green, and blue components (see Section V), a
`much improved product yield is achieved. As shown in Fig. 8,
`over 80% of products will have a color error of less than .005,
`and 100% yield is achieved with a color error of 0.01. We also
`show the result of a more complex feedback scheme that uses
`a wavelength feed-forward compensation scheme in addition to
`flux feedback. Color filters together with photodiodes are used
`to sense the wavelength shifts from the nominal value. This ap-
`proach can further improve product yield, giving 98% yield for
`a color error of only 0.005.
`The results of our simulations show that it is possible to de-
`sign feedback control systems for RGB-LEDs that are capable
`of producing the required color accuracy for illumination ap-
`
`Fig. 6. Light measurement using a single photosensor with the elimination of
`ambient light.
`
`Fig. 7. The measured color error as a function of heat sink temperature of an
`RGB-LED lamp both open loop, and with a control system using temperature
`feed forward and flux feedback.
`
`points gives the LED fluxes with the ambient light component
`eliminated. The red, green, and blue fluxes are given by the dif-
`ference between measurements three and four, two and one, and
`three and two, respectively.
`The experimental setup as described was used to examine
`the performance of this type of feedback scheme. The system
`was initially calibrated at a fixed temperature by adjusting
`the relative drive currents of the red, green, and blue LEDs
`until the spectrometer showed that the desired color point had
`been achieved. The white point was then monitored with the
`spectrometer as the temperature of the heatsink was slowly
`increased. The experimentally measured color shift for an
`open loop system is shown in Fig. 7. The result shows a color
`shift
`of about 0.005 for a temperature change of 10 C,
`comparable to the predicted shift shown in Fig. 3. Fig. 7 also
`shows the performance of the feedback control system with
`variation in temperature. The color point only changes by
`with a temperature change of 50 C. The change
`in lumen output over the same temperature change was found
`to be less than 3%. These results show that this type of control
`system can be used to produce a stable white light source from
`RGB-LEDs.
`
`VI. STATISTICAL ANALYSIS OF PRODUCT YIELD
`
`The experimental results discussed above have demonstrated
`the ability of the feedback system to maintain a precalibrated
`white point. However, what happens if no calibration is per-
`formed, and the set of LEDs is picked out of the production dis-
`
`Authorized licensed use limited to: Fish & Richardson PC. Downloaded on August 04,2023 at 22:30:29 UTC from IEEE Xplore. Restrictions apply.
`
`5
`
`

`

`338
`
`IEEE JOURNAL ON SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 8, NO. 2, MARCH/APRIL 2002
`
`variable color sources, such that the user can select the desired
`color point as well as the desired intensity from a single lamp.
`The success of this type of light source in the general illumi-
`nation market will depend on efficacy and cost. The rapid im-
`provement in LED efficiencies indicate that within the next few
`years, LED white light sources will be available that can meet
`the efficacy of current compact fluorescent lamps. The chal-
`lenge ahead is to reduce the cost of the LED lamp, including
`the LED chips and feedback control system.
`
`[2]
`
`REFERENCES
`[1] M. G. Craford, “LED’s challenge the incandescents,” IEEE Circuits and
`Devices Mag., vol. 8, pp. 24–29, Sept. 1992.
`, “Visible light emitting diode technology: High performance, more
`colors, and moving into incandescent lamp applications,” in Quantum
`Electronics and Laser Science Conf., 1996, pp. 28–28.
`[3] R. Haitz, “Another semiconductor revolution: This time it’s lighting,”
`in Proc. Ninth International Symposium on the Science & Technology of
`Light Sources, 2001, pp. 319–328.
`[4] C. Holen and G. Harbers, “LCD backlighting with high luminescent col-
`ored light emitting diodes,” in Proc. Ninth International Symposium on
`the Science & Technology of Light Sources, 2001, pp. 373–374.
`[5] G. Wyszecki and W. S. Stiles, Color Science. New York: Wiley, 1982.
`[6] A. Bergh, G. Craford, A. Duggal, and R. Haitz, “The promise and chal-
`lenge of solid-state lighting,” Physics Today, pp. 42–47, Dec. 2001.
`
`Subramanian Muthu (A’95) received a B.E. degree in electrical engineering
`from Bharathiyar University, India, the M.Tech. degree from the Indian Insti-
`tute of Technology, and the Ph.D. degree from the University of Victoria, B.C.,
`Canada, in 1985, 1992, and 1998, respectively.
`From 1992 to 1994, he was with Indian Telephone Industries. Since 1998, he
`is a senior member of the research staff at Philips Research, Briarcliff Manor,
`NY. His main research interests include digital control of power converters and
`systems, inverters, active filters, white light control of light-emitting diodes
`(LEDs), LED-based light generation, photovoltaic, and fuel cell power systems.
`
`Frank J. P. Schuurmans received the M.Sc. degree in physics from the Uni-
`versity of Utrecht, Utrecht, The Netherlands, and the Ph.D. degree in physics
`from the University of Amsterdam, Amsterdam, The Netherlands.
`In 2000, he joined Philips Research, Briarcliff Manor, NY, where he worked
`on LED illumination. In 2001, he joined Philips Research in Eindhoven, The
`Netherlands, as the project leader of the Extreme Ultra Violet Lithography Pro-
`gram of Philips Research.
`
`Michael D. Pashley received the B.Sc. degree in physics from the University
`of Bristol, Bristol, U.K., and the Ph.D. degree in physics from the University of
`Cambridge, Cambridge, U.K.
`From 1982 to 1985, he was a research fellow at the University of Cambridge.
`In 1985, he joined Philips Research, Briarcliff Manor, NY. While at Philips,
`he has worked in the areas of surface physics, semiconductor lasers, and LED
`illumination. He is now a research department head.
`
`Fig. 8. The calculated product yield as a function of maximum color error for
`three different feedback control systems.
`
`plications despite the large variability in LED characteristics.
`In the results presented in Fig. 8 we have assumed that each of
`the control measurements (temperature, flux, etc) are without
`errors. In practice, there will be some errors in the feedback sig-
`nals themselves arising from the characteristics and variability
`of the feedback sensors. These inaccuracies can also be mod-
`eled, and their effect on product yield determined. We find that
`it is important to keep such measurement errors to only a few
`percent. The performance of feedback control schemes can be
`improved with the addition of some limited factory calibrations.
`This can take the form of a measurement on the finished lamp,
`or by preselecting a smaller range of performance characteris-
`tics for the LEDs used to construct the lamp.
`
`VII. SUMMARY
`
`We have shown both experimentally and theoretically that
`practical white light sources can be produced from a combina-
`tion of red, green, and blue LEDs. The requirements of the illu-
`mination market for color accuracy are very stringent. Typically,
`the white point must be accurate to better than
`.
`Due to the variability in LED performance parameters, and the
`dependence of flux and wavelength on temperature, it is not
`possible to achieve the required color accuracy without an elec-
`tronic control system. A feedback control system using tempera-
`ture feed-forward compensation and flux feedback achieves the
`required level of color control and a relatively high product yield
`of over 80% for typical variation in LED characteristics. Further
`improvements can be made to the feedback scheme to give very
`high product yields of over 95%. Such control systems wi

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket