throbber
Microwave Engineering
`
`APPLE ET AL. EXHIBIT 1017
`
`1
`
`

`

`Microwave Engineering
`
`Second Edition
`
`David M. Pozar
`Univerdy OF Massachusetts at h h e r s t
`
`@
`
`JOHN W a E Y & SONS, INC.
`New York
`Chichester Weinhei~n
`Brisbane a Singapore Toronto
`
`2
`
`

`

`E K E C Z ~ V E t!lXTL?R CIrml> K~hbtY
`FDlTC)R141. 4SSlSTANT SWitr~rlc Dl% yer
`hlRRKETI.VT; RrAY ,\GEZ Hsrpzr hlrlrlq
`SkKlOR PRODL 1C"I'IC)Y bl.\N.46k.K Llrclt], f i u o n o c u ~
`SEMUR PliOt>L Y7TII),Y ED11 C)K M L ~ ~ ~ u c
`Cglcllrr
`COVER DESIGXPR h s i d k l - y
`ILLCTSTR:\TIQY STCIDIC).? Wcllinginn k bL.;lnlagr tin
`II t c s ~ R . \ f C1N C'UCIRDIS 4 I'UR Gene :llliljt1
`~VUF.4C'I'CIRLVCi M.4h.JGER Mulc~llqu~ c d l d l t j
`
`{he impohnce uf pmwn.i~le fiqt h, )rre~q tvfittcn. i~ 1s a
`R~crct~gnlzI~~g
`pe.\icy nf h h n WI\C> k Scns. Inc. ~n h m Wtkh ol c d m * u'dw puBh~\\td
`in dlc llnirtd Rate., prinrd t n acid-FEE p;dI.w*+ md we es? our h w
`rffr~ns to Ihat md.
`
`The paprr rrri this hilok r t d s n~anutac~urd b! 3 mrll whou: filrrs~ mmagmt'nt p r a m \ include
`
`qwlu~nsd ytrld hanmc~l~n~ 41t ria t~mbcrla~lds 5uht;rlned -jreIJ h;irvrs~ng prutcrple< emure \hat
`the numhrr 111 [rceh cut each !'rdT d u ~ s lint exceed the ,Inlt~uni of IWW g r ~ w t k
`
`r l f m y FIT d
`Rrpn~ducrlvn ur ~~,urr.*lul~c~u
`thlr voA bcqoad that pcermirtcd b j SFC~IOI~S
`107 untl 108 ~rf rhe 1976 Unitcd Snleh
`Act u i t h o ~ t thc prmlssaon or the cop?ijght
`oa'ncr i.; unldwful. R e q u e u ~ ror pcrm~w.in~l
`or i'nnhrr mfurrn~~~rm h w l J h t ndclrc,tc.il lu
`rhr Ptrrn~~?,siuflk kpnr?rncr~i. Julm l\'~lrk & Srmg, 1 " ~ .
`
`Cthrm. (f Cflnge~s Lbbf@~r$ or F~Mrc-a~in?d
`))ttfd,
`Prw;tr. Uavtd M
`Microwave t.ng1rlwrine / D;l\iJ hl k m r -. ed,
`p. m ,
`ISBN 0-471- I7Wh-5 ( C I L H ~ : nlb ppperi
`1. M~~rt)wrtvrs. ?. hhsronare deu'im,
`I- Tkfc.
`77i;7876.P6Y
`I B W
`671 31 1'3-dc20
`
`j , Mcr~a~vfi mui15,
`
`97-2W8
`=F
`
`3
`
`

`

`Contents
`
`1 - ELECTROMAGNETIC THEORY
`
`1
`
`2 . A Short History nf Microwave
`
`1
`
`I. 1
`
`I
`
`.
`
`Inrroduction tn Mjcrowave Engineerjng
`Rpplicalions of Microwave hglneerinp
`3
`EZdgirteerirrg
`1.2 Maxwell's Equations
`5
`1.3
`Fields in Media and Bnufldw Conditions
`Fields ar a D i e l e c ~ c
`11
`Fields at a Gencraf Mntcrial Intcrfnce
`Fields at the interface with a Perfecl Conductor (Electric
`lnre+ice
`14
`' h e Magnetic UtalI Boundary condition
`15
`14
`Wall 1
`I
`Tke Radiaciut~ C~aditi~a 15
` The Wave Equation and Basic Plane Wave Solutions
`16
`I'he Helrnhnl~z Equation
`Plane Waves in a Lossless
`16
`Plane Waves in a Genera Lossy Medium
`16
`Medium
`a
`Plane Waves in 3 Good Conductor
`I 4
`t .5 GeneraI Plane Wave Solutions
`21
`Circularly Polarized Plane Waves
`23
`1.6 Energy and Pu~:s:cr 26
`29
`Pnwer Abwrbed by a Grlod Conductor
`1.7 Plane W a v e Reflectinn from a Media Interface
`31
`Lossless Medium
`General Mrdium
`36
`34
`PerfectConductor
`Conductor
`[mpcdance Concept
`36
`1.8 Oblique Incidcnce at a Dielectric lnlerface
`39
`Perpendicular Polari~alion
`PardlIel Polarization
`40
`43
`Total Reflection a d Surface Waves
`1.9 Some UseIul Theorems
`45
`4.5
`The Reciprocrry Theorem
`The Uniqueness Theorem
`49
`
`9
`
`18
`
`30
`32
`
`Gmd
`TheSur-facr
`
`4 1
`
`Image 7heoq
`
`47
`
`4
`
`

`

`2
`
`TRANSMISSION LINE THEORY
`
`56
`
`2. I
`
`j B
`
`r
`
`Pt~in~crfM~w~:D~.eih-~!!s
`
`76
`
`r
`
`T l ~ c Slomd
`
`8 3
`
`The Multiple Rzflec~ion Lriewpoinr
`
`35
`
`Thc Lumpcd-Ekmznl Circuit Mullel for a Trmsmisisirm Lint.
`56
`Wave Propaeation on R Tmmissi~li\ Line
`58
`7hc Loss1c.s~ 1.inc
`2.2 Fir Id Analysis (IT Tr;insmission I-incs
`5'3
`'l'he Tslegrapher E i p a t i t r n h ncnved
`Trat~s~nisr;irrn Line Panrne~ers
`~ I I r
`from Field Analysis af a Curtvial Line
`Proparalion Con&@,
`h:+
`Itnptldnncc, a1111 Power Flow tbr the Lo~desa Ctyaxial Line
`64
`2.3 The Tenninared Lossless Linu
`65
`SpzcialCa~esoILos~lt~aTrminaltrdI-incs b8
`7-1
`i ~ ? f L i tVL~pfl3
`2.4 Tile S ~ ~ i j t l i C'liarr
`73
`Thc Camhincd Inlpedmce-Adrllimc'c Smirh C ' h a
`78
`Line
`2.5 The QWXL~T-WAY~ Trn~ftrrner
`
`83
`T h c 1mprd;mce Viewpoint
`2.6 Gerwrator and 1.md 1Misrnaiches
`87
`Grneralrw Mntuhcd lo 1,oadcd
`Imad Matchcd to Line
`88
`fi9
`C u n j ~ g a e M;it~-hing X9
`Line
`2.7 Lossy Transmission tincs
`91)
`ThrLi~n-LussI-ins
`E)I)
`Terminalcd 1,ussy Line
`94
`Anenuntion
`
`The Distortiotilesi; Line
`92
`The
`ThePenlrrharionMethildfnrClalcularing
`43
`0
`The W11eeitr tncremsnral Induc~wcc Rulc
`96
`
`3
`
`TRANSMISSION LINES AND WAVEGUIDES
`
`104
`
`105
`L
`
`1 1 1
`
`113
`
`TF M d r s
`
`1 17
`
`3.1 Genmd Solutit~ns r~)r TEhI. TI',. and TM Wa\-es
`TE Wo\,es
`TEM W a ~ c k
`109
`107
`I Ill
`Th1 Waves
`Attenuation Due ul DieIectric Loss
`l t 2
`3 -2 Pard lcl Plate Waveguide
`TEh1 Modes
`112
`TM M d e s
`r
`3.3 Reclangular Wavepnide
`120
`TE,,,, Mt&i ~f a-Part-d Iy
`TE Modcs
`?'%I Mudeh
`1 3 3
`+
`125
`131
`PoinroJln~erest-: WrnegadideFEunge~'
`Loaded Waveguide
`3.4 Circuliir Waveguide
`I T Modes
`13r
`3.5 Coaxial Line
`141
`TEM Modcs
`I 4 I
`ITighcr-Order hlodes
`!r~llfyr.e~s[: Corr.xicd C(~nrtcc~~lrs 14fi
`
`1 3U
`132
`TM M O ~ S 137
`
`142
`
`r
`
`Prririi of
`
`5
`
`

`

`Contents
`
`147
`
`Puinf rf Int~resr:
`
`3.6 Surface Waves m a Grounded Dielectric Slab
`Thl Mndes
`TE Modes
`15I1
`147
`152
`Ror)r-k-i'irtdilip A / K ~ r ; t / t f l ~ s
`153
`3.7 Siriplinc
`Formula5 for h)pagatiua Corrsml. Clldrncteristic Tmpe&nce. and
`An Appmxi~mte Eleclrostarir. Salufinn
`I54
`Attcnu~ttion
`0
`3.8 Microsrrip
`I(itl
`Fumwlas fur Effective D i c l ~ ~ r i c C o m ~ n ~ . Charactcrislic lmpzilancr. and
`An Appmximate Elecrrostatir Solulion
`1
`Arrenuritjon
`3.9 The Transvcrsc Resonance Technique
`167
`TMModesI'or~t.l'mjlelPlatcWavg~~ide 168
`Partially Landed Rectangular LVnveguidz
`1 h9
`3.111 WAI e Velocities and Dispersion
`171)
`170
`Group V~locity
`3.1 1 Surnmq- of Transmission LLres and Waveguides
`173
`P n i ~ ~ i r ~ ~ ~ ~ ~ ! ~ ~ ~ ~ ~ r ; P u n ? ~ ~ ~ @ & @
`Oth~.rT~lpz.+~fLirle~andC.~uide.s 174
`w
`uf T
`i
`
`176
`L
`
`Thl, Modes of a
`
`157
`
`164
`
`MICROWAVE NETWORK ANALYSIS
`
`182
`
`190
`
`I97
`
`A Shifi in Reference
`Pairir of
`+
`ZIW
`
`ltnpedance and Equivalent Voltagch and Currenrs
`I 83
`Equivalei~t Volragcs and Cmrnts
`181
`The C?unrept
`Even and Odd Prupcrtles of ZIii) and rid)
`1187
`(11- Imprclmce
`Impcdawe and Adn~mmcr Matrices
`191
`Kecliprucal hTetkf,c~rks
`Losslcss Networks
`19.1
`196
`The Scattering Mtttri.~
`i H
`Rcriprocal N c ~ ~ l n r k r and Lussless Nctwnrks
`Gencr~1izt.d Scat~eri ~rg Paramctcra
`Pimeri
`201
`Irt re r.e.1~: The Verlo r Ncq~rjurk Ann l p i -
`205
`The Transn~iquion (ABCD) Matrix
`206
`Relatioil to Lmprdaacg M , ~ i x 2119
`N E I W U ~ ~ S 210
`2 13
`Slgnrtl Flow Graphs
`Dccnmpasition of Signal T;lr)u. Graphs
`217
`A ~ l a l y ~ r Calibration
`Micrf>nlaiv C i ~ * r ~ f { $ 222
`Discontinuiries and hIodal Analysis
`221
`hlt~dal 22nalyqi~ ur 3n ICPIarir: Step in Rectanguls Waveguide
`Micro.uriJ) L ) i ~ ~ r ~ n t i d ~ i p
`~ ? { I ~ ~ I P ~ E I
`CCnrnJt~scrriu~ 229
`Excitation r r f Waveguides-Electric
`and Magnetic Cumnts
`Curren~ Sheets -l-llat Escire Only One Waleguidt h.Iode
`230
`Excitatinn from an Arbitra~y Flcc~l-ic nr Magnetic Cumnt Source
`
`E q u l v g l c ~ ~ Circuits (or 'L'wu-Port
`
`Application lo TRI, Network
`2 1-1
`r
`Pr~inr r.!/' Inreresr: Cnnaputer-Aided Derig?? for
`
`325
`
`Puirll
`
`230
`
`232
`
`Made
`
`6
`
`

`

`Contents
`
`4.8 Excitation o i Waveguides-hperr ure Coupling
`237
`Crlupling Through an Aperture ill rr Traosveme Waveguide Wall
`
`C ' u u ~ l i r ~ g 'I'hrnugh ail :\lirrti~rc in thc Broad Wall uf a U:lvesuids
`
`140
`23.3
`
`5
`
`IMPEDANCE MATCHING AND TUNING
`
`251
`
`254
` 257
`
`Pt)i!ti tf
`
`Sencc Sruhs
`
`262
`
`Analytir. Solutiufl
`271
`273
`
`2711
`
`I
`
`I
`
`~
`
`~
`
`~
`177.
`
`~
`
`~
`
`c
`
`~
`
`~
`
`o M ~
`
`285
`
`Matchi t~g with Lumpcd Elcments ( Networks)
`752
`hnalj~ic S d u r i o ~ 253
`Smith Chm Solutions
`o r M
` f
`i
`i
`s
`P r
`i
`
`I
`.
`:
`Single-Stub Tuning
`258
`2rL)
`Shunt Stubs
`Dcluhle-Stub Tunirlg
`266
`S~niEh Chart S~ilutiun ?hh
`Thc Qumcr-%'aye Transfmner
`'I'hc 'Theory of Snlull Reflections
`~
`~
`Srnglc-Sccti0n Traforrrier
`17fi
`Biiionlial Mulf isect ion Witching Transl'onncrs
`278
`Cheb) shcv Multi.sct.ri~~n Matching Transfom~ers 181
`De3ign of Cbebyshev Transformzrs
`283
`Chebysher Polyrrt~rnids
`288
`Tapered Line5
`Lxpont3nti;rl 1-aper
`290
`Trrprr
`29[
`The Bode-Frtno ri-i tcri on
`
`Triangular Taper
`
`28 I
`
`I
`
`KIapfe1t~e.h
`
`2115
`
`6
`
`MtCROWAVE RESONATORS
`
`300
`
`6 . Series and ParalIel Rrsunwt Circuits
`1300
`Series Rescmmr Circuit
`a
`IJl~lutyled Q
`306
`I.uarlcci ~ i ~ d
`6.2 Transmissicm Line Resonators
`Shnrr-Circuitcd
`'2 1,in~'
`30h
`3 1 1
`Opcii-Circu ited X,'2 Line
`6.3 Rcrlmgular Waveguide Cavities
`3 1
`Resonanr Freqliencies
`6.4 Circdar Waveguide Cavities
`Resamrs~ Freqrrencic~
`3 1 E
`323
`6.5 Dittlcccric Resonators
`re son an^ Frequencies of TGjr+ Made
`6.6 Fobry-Rrul Kcso~~atnrs 328
`338
`Stabiliiy ol Opcn Resunators
`
`30U
`I'nrnllel Rrhonwl I'ircuit
`
`303
`
`306
`
`Shorl-I:ircuited A!'Q 1 . h
`
`? 1.0
`
`a
`
`3 13
`Q r ~ t ' he TEII,, Motic
`
`3 15
`
`318
`w
`
`(2 ~ j f the 'E,,,Y Mude
`
`320
`
`374
`
`7
`
`

`

`Contents
`
`332
`
`6.7
`
`Excitation of Resonaiurs
`332
`Crihcal Couplmg
`Resonator
`4
`c
`6.8 Cavity Perturbarions
`Material Perturbation.,
`
`A Gap-Vuuylcd Micr~strip
`337
`.An Aprrlure-Louplcd Cavity
`340
`340
`
`hshp?brh&ms
`
`349
`
`7
`
`35 1
`Four-R)rt Networks t Directional
`J'j7
`i
`
`0
`I
`
` M
`
`-
`
`3fi(
`
`U W U ~ Power D ~ b ~ s i o u and .l--Ww
`
`368
`374
`U e ~ i g ~ ~ f M n I t ~ h o l e C o u p l ~ ~ ~
`379
`
`POWER DIV1DERS AND DIRECTIONAL
`COUPLERS
`351
`7.1 Hasic Propeltics of Dividers and Couplers
`Three-Pori Nerworkc IT-junctiodsl 351
`$5)
`Couplcrl; I
`I
`I
`7.2 Thr 1'-Junction Pc)i\cr Divider
`339
`I,r,sdzsh Div~dcr
`Kzsirtitr' Divider
`360
`363
`7.3 The U'ilkinsun Power Divider
`36.;
`Elen-Odd Mudc r\nulvsls
`U7ilkinac,n Dj~idrrs
`l h 7
`- 4 Wavcgu~dr: Direction~l Couplers
`Bcrhc I ir)le r o ~ ~ p l c r 3hV
`7.5 The Quadrature (90") Hybrid
`Evcn-Odd Mode Anrrlys&
`380
`7 6 Coupltd Line Dircctiunal Coupler3
`383
`Coupled Line T h a q
`384
`Design iti' Coupled Lrne
`Ursipn r j f ' hlultisacrion Coupled Line Couplers
`Couplers
`389
`7.7 Thc Lange C.'uulilrr
`3'38
`40 I
`7-8 The 180 Hybrid
`EI en -LWcl htude A nalj ,qjs gf &r Riny H y W
`Analysis oF UIP Tapred Cnupld Ltnc lT>trtid
`41 1
`Magic-T
`4 I I
`7.9 Other Couplcr5
`Pnirrl of Jrri~r~st: l'Jte Rejiei.trl~)zrlcr
`
`3~)4
`
`403
`4117
`
`E r e n - W : M ~ d k
`8 Waveguide
`
`J l J
`
`8
`
`MICROWAVE FtLTERS
`
`422
`
`423
`8 . I PrrinJ~c Struc1urr.s
`Andju.; o i Infmiie Psri~tdic Structure$
`424
`Tcrmtnared Penodic
`k- i Dbgranls and '&;lie Veltrcluzs
`478
`Smctttre?.
`427
`43 I
`8.2 Filter Design by rhu lmage Paranletcr Melhod
`Irnagc In~pudancec and ?-rnn\fc.~. Functronh fbr Two- Furl ks;ctwc~rb
`43 1
`nr -lltrived Fihea* 5ccti:tions
`Co~js~ant-k Filtr~ Scci~ons 43?
`Cumposrte Filters
`440
`
`436
`
`8
`
`

`

`Contents
`
`8.3 Filter &sign Ay the Inseltioh Lass Metlmd
`143
`Maximally Flat Low-Paas Filler
`Characteriza~inn by Piwer Loss Ratio
`444
`Equal-Rippie Low-Paw Filter Prototype
`347
`Protorygc
`350
`Linear Phase Low-Pass Filter Pruraypes
`45 1
`452
`8.4 Filler Trr-tnsforinations
`Impedazlcc and Frequency Scaling
`Transforrnauons
`357
`462
`8.5 Filler [nlplemcntation
`Richard's Transformalion
`462
`Irnpedancr: and ,4dm~~lancc
`Inverters
`8.6 Stepped-Impedance Low-Pas Filters
`470
`Approximate Equivalent Circuirg for Short Trwsmissian Line Sections
`474
`8.7 Coupled Line Filters
`Filter Pruper~ies of a G>upled Lint Section
`Bandpass Filters
`477
`8.8 Filters Llsing Cocrpled Resonarors
`486
`Bandstup and Bandpass Filters U3ing Quarler-Wave Rcsonat~rs
`4W
`Bandpass Filters Using Cupxitively Coupled Resnnators
`Direct-Coupled Waveguide Cavity Filters
`493
`
`170
`
`474
`
`r
`
`Design o f Conpled Line
`
`486
`
`1
`
`454
`
`Bandpms and Bmdstop
`
`Kuroda's Tdentiries
`
`464
`
`a
`
`r
`4hX
`
`9
`
`. THEORY AND DESIGN OF FERRIMAGNETIC
`COMPONENTS
`497
`
`5 1 1
`512
`
`r
`
`S I 8
`
`9.1 Basic Properties of Ferrirnagnetic Materials
`498
`498
`The Fcrmeahility Tensor
`Circularly Polarized fie&
`Effect of Loss
`506
`Demagnetization Factors
`508
`51 0
`Interrst: Pernrn~rent M0gnt.r~
`9.2 PIme Wave Propagation in a Ferrite Medium
`Prupagation in Direction of Bias (Faraday Rotation)
`Transverhe to Bins IBirefi-inge~~ce) 5 13
`Y .S Pr'ropugarion in a Fcmte-Loaded Rectangular Waveguide
`x,,, Modes of Waa~eglride ufith a Single Fe;lrrtile Slab
`518
`of Waveguide with T w o Symmetrical Ferrite Slabs
`52 1
`523
`9.4 Ferrite lsulators
`Rrscmmct: lsolaturs
`$23
`530
`9.5 Ferrite P11ase Shifters
`Nonrecipmcal Latuhmg Phase Shifter
`The Gyrator
`S h i f ~ r s 533
`9.6 Ferrite Circulators
`535
`Pmpenies d a Mismatched Circulator
`
`Poirrr of
`
`Propap;uiun
`
`T&,M&
`
`527
`
`Thc Field Displaccmznt Isdaror
`
`r
`
`Other Types of Ferrire Phdse
`
`530
`53.5
`
`537
`
`J ~ c t i o n Circulator
`
`537
`
`9
`
`

`

`t o - ACTIVE MICROWAVE CIRCUITS
`
`Cantents
`
`547
`
`Noise Power and Equivalen~
`548
`Mensurement of Noisc Temperature by tllc
`Noise Figure nf a
`575
`NoiscFig~re
`
`r
`
`10.1 Noise in Microwave Circuits
`538
`Dynamic Range and Sources nf Noisc
`Nnise T e m p c r i ~ c ~ r ~ 550
`Y-Gctnr AJc~hod
`35-3
`Cascaded Syrletn
`557
`10.2 Detectors and Mixers
`559
`Single-Ended Mixer
`DiMe Rtxuers and Delec~nn
`559
`5155 Bdmced
`Other Tl'pes uf Mixers
`+
`571
`M i x e ~
`Intcmr>dulatiun
`568
`Poi111 (?j'irr,ere.vr: nllr~ Sprrrridm A~wL?;,-pr 573
`574
`Products
`576
`10.3 PIN D i d e Control Circuits
`577
`Single-Pvlr Switcheh
`10.4 M i c r o w a ~ e Integrared Circuits
`583
`Hybrid Microwave I n t e p t e d Circuits
`581
`584
`htegrawd Cixuits
`0 . 5 Overview of Microwave Sour~*cs
`Solid-State Snurces
`5E9
`
`. PIN &de %asc Shifterg
`
`?do
`
`+ Monolithic Microwave
`
`988
`Tubes
`~ i c r o w ~ v ~
`
`593
`
`11
`
`DESIGN O f MICROWAVE AMPLIFIERS AND
`OSCILLATORS
`600
`1 1.1 Characterisrics of Microwave Transistors W 1
`Micro1va~-e Fieid Effzcr Trnnhisro-rs / FETs)
`bD1
`Transistors
`604
`11.2 Gain and Stability
`606
`TWO-PO~ Power Gains
`Stahili1)-
`606
`1 1.3 Single-Stage Transisror Amplif~er Design
`6 18
`61 8
`Design fur htaxilnum Gain !Ci.mju;atc Matclfirrsj
`Ckcles and Design for Specrfid Gain (Unilateral Device)
`628
`Arnplifjzr Design
`1 1.4 Brodbmd Transistor Aioplificr Design
`6-12
`632
`Distributed A~nplihefi
`Balanced Arnpliliers
`11.5 Osciilatar Design
`641
`Tmnsistor
`641
`One-Pi~ri Negative Rcs~hvace OscilIa~ors
`Diclechic Resona~or Oscillators
`648
`6.M
`Oscillri~on
`
`Mim~rruaw B i p l s r
`
`61 2
`
`Constminl Gain
`Low-Noise
`
`622
`
`h35
`
`12 - lNTRODlJCTlON TO MICROWAVE SYSTEMS
`
`655
`
`655
`12.1 System Aspecth of hnlenntls
`Dtfifilli~ of Imporram Antenna Parameren
`655
`h t m n a mrn Chamccerisucs
`65fi
`Antennas
`a
`Efficiency. Gain. and Tempewhm
`661
`
`Basic Type of
`6.56
`
`Anrerina
`
`10
`
`

`

`xv t
`
`Contents
`
`663
`
`12.2 hlicrowavc Communication Syslerns
`Types of Communication Systrrns
`The Friis Power Transmission
`t>67
`I'msmirters and Receivers
`+ M i ~ m ~ a v e
`663
`656
`Formula
`Noisc Chariiclerizarion of a M j ~ r ~ ~ n v c
`667
`Rccciver
`Frequenr y -Multiplexed Systems
`670
`12.3 R u d x Systems
`672
`-1'tlr Radar Equation
`673
`Pul.qc Radar
`RacfxCrussSectio~~ 678
`Ra&ar
`677
`12.4 Kadiv~nctn,
`679
`Theory md Applicalions of Radiometry
`679
`The Dicke Radir~rnewr
`h8 1
`Radir~melcr
`t2.S Micron-avepropagatinn
`68.5
`685
`Arrnospheric Effects
`688
`Efects
`12.5 Orher Applications and Topics
`689
`E n e r ~ ~ Transfer
`Micrtm;lvz Hzaing
`683
`Biological Effec~s ;sad Sdety
`69 I
`Wartare
`
`675
`
`Doppler
`
`'I'otal Puwer
`684
`
`GroundEffecrs
`
`AX7
`
`Plasma
`
`690
`694
`
`Eiectrunic
`
`APPENDICES
`
`697
`
`698
`Prefixes
`Vector Analysis
`698
`700
`Besxl Functionti
`Other Mathematical Results
`Physical Constants
`7114
`Canductivities for Some Malcrialb
`704
`Dielectric Constam and Lass Tangents fur Some Materials
`Properties o f Some Micmwave Ferrjte Marerids
`705
`Standard Rec.tangu1 ur Waveguidr D;ira
`706
`707
`Standard Coaxial Cable Data
`
`303
`
`705
`
`INDEX
`
`709
`
`11
`
`

`

`10.2 Detectors and Mixers
`
`noise figure of the transmission line-amplifier cascade. What would be the noise
`figure if the amplifier wert placed a1 the anlenna eliminating the umsmissiun
`line'! Assume all components are at an ambient temperature of T = 3M) K.
`
`Snlrstinl~
`The loss factor of h e coaxial line is L = 10~1'' = 1 +58. so from ( 10.16) the
`noisc figure of the line is
`
`F y n (IU.l1), W noise figure of the amplifier is
`c
`150
`F Q = l + - = l + - = 1.52 = 1 .$1 dB.
`To
`290
`Then (10.21) gives the noise figure of the cascade as
`
`since l/Gr = L = l+58 for h e coaxial line. Withour the transmission line. the
`noise figure would be that uf the amplifier itself. w 1.81 dB. So wc see that
`the effect of the lossy feedline reduces the noise iigure: c ~ f the system by nbuut-
`2 d B a subsranrial amount. Snrnetimes such a line cannot be avoided in the
`front end of a receiver. Its effect. however. will be deleterious. because not only
`does the line icser add noise bur. since its gain is less than unily. i t increases
`0
`b e effect of rhe noise of the next stage.
`
`DETECTORS AND MIXERS
`Detectors and mixers use a nonlinear device to achieve frequency com~tersion of an
`input signal [I]. Microwave diodes are most comsnonIy used as the nonlinear clement, but
`Wansistcrrs can also be used. Figure 10.10 illiistrates he three basic frtqucncy conversion
`functions of rerrtification. detection, and mixing. We will first discms the nonlinear
`voltage-current chaacreristics of a diode. and then use a s m a l l - s i p d analysis 10 describe
`the operation of vario~s circuib that perform these hoctions.
`
`Diode Rectifiers and Detectors
`A diode is basically a nonlinear resislor, with a DC V-1 cbmctwistic tba can be
`expressed a<
`
`where a = q/nkT, and q is the charge of an electron, k is B o l m a m ' s consml, T is
`temperature, n- is the idedty factor, and 1, is the saturation current [4l, I5l- TYPicAly,
`
`12
`
`

`

`560
`
`Chapter 10: Active Microwave Circuits
`
`FIGURE 10.10 Basic operations of recfification, detection, and mixing. (a) Diode r e c ~ e r .
`(b) D i d e detector. (c) Mixcr.
`
`is between I o - ~ and 1 0- A. and n = q/nk'T is approximately I 425 mV) for
`T = 290K. The idealty factor. ra. depends on the stmcLure of the diode itself. and can
`vary froin 1.2 for Schuttky barrier h i d e s to about 2.0 for painr-cont;ncl silicim diodes-
`Figure la 11 shows a typical diode V - I characteristic. NOW let the diode voltage be
`
`is a DC bias voltage and r . is a smali AC signal vnltage. Thcn (10.24) can be
`where
`expanded in a Taylor series about I..b as I~llows:
`
`13
`
`

`

`10.2 Detectors and Mixers
`
`56?
`
`f i r
`
`-
`
`1, 1 -
`t
`FIGURE 10.11 V-1 charac~eristics of a diode,
`
`v
`
`where lu = Iwo) is the DC bias currenl. The firsr derivative can be evaluated as
`
`which defines Ri, the juoctiun resistance of thc diode, and Gd = 1 /Rj, which is c d e d
`the dynamic conductmw of he diode. The second derivative- is
`
`Then (10.26) can be rewritten as the sum of the DC bias cment, ID,
`and an AC current, i:
`
`Thc three-tern1 approxiniation for the diode current in (10.29) is called the .r,trrrl(-signu/
`appro~~imariun, md will be adequa~e for most of uur purposes.
`The small-signal approxi~na~ion is based on the DC vultage-cmnr relationship of
`(10,24), and shows thar thc equivalent circuit of a diode will involve a nonlinear re-
`sistance, Ln practicc, however, the AC characteristics of a diode also involve r e d v e
`effects duc to the smcture and packaging of thc diode. A typical equivalent circuit for
`a diode is shown ia Figure 10.1 1. The lcads and contracts of the dinde package lead to
`a series inductance. L,. a d shunt capslcllmcc, C,. The series resistor. R,, accounts for
`
`IrlGIJKE 10.12
`
`q v j v d e n t AC circuit model for a d i d e .
`
`14
`
`

`

`562
`
`Chapter 10: Active Micmwave Circuits
`
`contact and current-spreading resistance. Cg aad Rj are h e junction cqacitace
`resistance. and are bias-dependent.
`
`I
`
`FX.AhfPT,E i0.4
`
`D i d e Package Eflects
`A diode in m axial-lead packase has the following equivalent c h i t parameters:
`- -
`Cp = 0.10 pF. L , = 2.0 HH, Cj 7 0.15 pF, R, = 1051. ~d T5 = 0.1
`CalculaIe and plot Lhe in~pdance 01 this diode from 4 to 14 GHz. for a bias
`current lo = O and In = 60pA. Ignore the change in Cj with bias, and assume
`a -- I /(25 mV].
`
`s~!idrif~ll
`From 110.27) the junction resistance for the two bias states is
`1
`75 mV
`=--
`for = 0, R j = -
`r~[I[l f I,) 0. I /r A
`- - -
`-
`for lD = HI ,ilA, H j =
` + 1
`(60 c 0. I ,
`I
`(
`7'klr h e inp~rt impedance can be calculated from tlsr equi vdent circuit of Fig-
`ure 10.12; the resuit is pintled versus frequency on a 50 61 Smith chxt in Fig-
`0
`ure 10.13.
`
`- 2.5 x lc9 fl,
`
`= 41752.
`
`15
`
`

`

`10.2 DeteEtow and Mixers
`
`563
`
`3 rectifier application, a diode is used lo convert a fraction of an RF input s i ~ a l
`tn DC power. Rectificarion is a very common function. and is used for power rnoni-
`to;, automatic gain control circuits, and signal strength indicators, If the diode voltage
`consists of a DC bias voltage and a small-sigal RF voltage,
`
`then (10.29) shnws that h e d i d e current will he
`
`ID is the bias current and r~iG2/4 is the DC rectified cun.en1. The output also contains
`AC signals of frequency ;L~o. and 2ufl [and higher-ibrder harmonics), which are usuaUy
`filtered uut wih a simple Iow-pass filter. A current sensitivity, ,dl. can be defined as a
`measure of the change in DC output current for ;x given inpur RF power. From ( ! U.29)
`
`the RF input power is J ; G ~ / ~ (using only the: first [em). while { 10.3 I ) shuws the change
`in DC current is $Ck/4. The current sensitivity is then
`
`An open-circuit voltage sensitivity, ,ij,:;, can be defined in lerms of the voltage drop across
`the junction rmlstmce when ?he diude is open-circuitd. Thus,
`
`Typical values for the voltage sensitivity uf a diode range fronl 400 to 7500 mVlmW.
`In a derector application the nonlinearity of a diwde is uscd to de~noduIale an m-
`pIitude moduIated RF carrier. For ~s case, the diode volbge can be expressed as
`u(t) = LU(I + rn cos dmtj cos dot.
`10.34
`is the modulation frequency, % is the RF carrier frequency (uu > > w,,,], and
`where w,
`,m. is defined as the modula~ion index (0 5 m 5 1). Using (10.'34) in (10.9) gives the
`diode current:
`$(t) = u D G ~ ( 1 + m cos w,t)
`
`,
`cos wilt + -Gd(l + m cas w, tj2 cos 'uoi
`?:;
`2
`
`- dm)t $. 3 cOS 2#ot
`m,?
`-
`$- m. C W S ( ~ ~
`-I+ i~,,)t -k ~ c u s ( ~ ~
`
`16
`
`

`

`564
`
`Chapter 10: Active Microwave Circuits
`
`The bequency spectrum of this c)ulpat is show11 in Figure 10.14- The nutput cuneni
`r m s ~vhich are linear in the diode voltage (terms fiwlriplying q G d ) have frequencies of
`4 0 and + d m . while the t r m s that are proportional to thc square of the diode voltage
`(tem~s mul~iplying I:;G>/ZI include h e frequencies and relative mpliludes listed in
`Table i O , I .
`The desired demodulated output of frequency dm is eaily sepzrated from the un-
`desired cornpo~lents with a Ii~w-pass filter. Observe hd he amplitude of this current
`is msdG&/2, which is proportional to ihc power of the inpul signal. Ths y ~ m r r - / u w
`behavior is the usual npcrating co~~dition for detectw diodes, but can be obtained onIy
`over a restricted rmzc of input powers. If the input power is too large, small-signal
`conditions will not apply. and the output will berrr~me saturi~ed and approach a linear.
`and then a constanl. i i:ersus P chxacteristic. Az very low signal levels fie input signal
`will be lost in the noise fluor of h e device, Figure 10,I5 shuws the typical zl,,
`versus
`P,,, characteristic. where rhe tlutpur voltapr: can be cunsidered as the voltage drop across
`a resistur in series with the diode. Squue-law operatian is p~ticularly important for
`appiications w h e ~ power levels are inferred from detector vultage, as in SWR indicaton
`and signal level indicators. Derectors may be DC biased to an operaring point that
`provides the besi sensitivity.
`
`TABLE 10.1 Frequencies arid Retati~e Amplitudes of the Square-Law Output of a
`Detected AM SignaI
`
`Frequency
`
`Relalive Amplitude
`
`17
`
`

`

`10.2 Detectors and Mixers
`
`FIGURE 10.15
`
`Square-law region fur 3 typical diode deteclur.
`
`log Ph
`Id&ml
`
`Single-Ended Mixer
`A mixer uses the nonlinearity of a diode to generate an output spectrum consisting
`of the sum and difference frequencies of two input signals. In a receiver application. a
`low -1evd RF signal md an RF Iwai uscillatw (LO) signal are mixed logether 10 prducc
`an intermediate frequency (IF). frF = ~ R F -JLoy and a much higher frequency, fw + fW.
`which is filicrcd o u ~ . See Figure 10.16i, The IF signal usuafly has a frequency betwee0
`1U and ! W MHz, and rill be amplified with a low-mist m~plifie~. This is called
`a heterodyne receiver. and is usefill because it has much better sensitivity and noise
`characteristics (using an IF ~n~plifier lninimizcs I /$ noise) than the direct detectinn
`scheme discussed in the previous scciion. A heterodyne syslern also has h e advantage
`of being ab!e to tune over a band by simply chanpng the LO freqirency. withour the
`need for a high-gain, widehand RF anlplilie~,
`As shown *m Figure 1#.16b, a mixer c m also be used in a m s n l i t t e r to offser he
`hquency of an RF signal by an amount equal to fF. This is a convenient technique.
`as it allows [he use o f identical local oscjlla~nrs in the transmitter and receiver; a single
`oscillator may senre this purpose in a radar or transceiver system.
`There are several vpes of mixer circuits. but Ihe shpIest is ihe single-e~dd mi-rer;
`single-cnded mixers often are used at; pad of nwrs sophisticated mixers. A typical
`single-ended mixer cireuir is shown i n Figure 1U. 17, where an RF signal,
`
`is combined with m LO signal.
`
`ura(t) = e~fl cas ; ~ o i , .
`
`10.37
`
`and fed into a diode. The combiner may be a simplc T-junction combiner. or a direcrional
`coupler. AQ RF matching circuit may precede the dicdc, and the diode may be biased
`r h ~ o ~ i p h c 3 v . k ~ ~ * a d ~ w DC to pass whik blocking RE;. Frorn I t0.29). h e d i d e c m e n I
`
`18
`
`

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket