throbber
United States Patent (19)
`Lu
`
`54) DUAL-OUTPUT DC-DC POWER SUPPLY
`75 Inventor: Qun Lu, Lexington, Mass.
`
`73 Assignee: International Power Devices, Inc.,
`Boston, Mass.
`
`*
`
`Notice:
`
`This patent issued on a continued pros-
`ecution application filed under 37 CFR
`1.53(d), and is subject to the twenty year
`patent term provisions of 35 U.S.C.
`154(a)(2).
`
`21 Appl. No.: 09/016,074
`22 Filed:
`Jan. 30, 1998
`Related U.S. Application Data
`
`62 Division of application No. 08/763,685, Dec. 11, 1996, Pat.
`No. 5,715,153.
`(51) Int. Cl. ............................................... Ho2M 0000
`52 U.S. CI
`363/65; 363/146
`-rr.
`s
`58 Field of Search ..................................... 323/266, 267,
`323/269,271, 272; 363/65, 146; 307/12,
`17, 33, 36, 37, 39
`
`US006067241A
`Patent Number:
`11
`(45) Date of Patent:
`
`6,067,241
`*May 23, 2000
`
`56)
`
`References Cited
`U.S. PATENT DOCUMENTS
`
`... 321/47
`3,723,850 3/1973 Daniels et al...
`323/282
`3,760,256 9/1973 Rast, Jr. et al.
`... 363/21
`4,628,426 12/1986 Steigerwald ...
`363/174
`4,680,688 7/1987 Inou et al. ..........
`SE SN s al - - - - - - - - - - - - - - - - - - - 3.
`2Y------
`acDonala et al. ...................
`3:
`S. SE itynski
`... 363/21
`554.828 7/1996 Rozman.
`5,663,874 9/1997 Mader et al. ............................. 363/21
`Primary E.
`iner Matthew Nguy
`fill
`EX fille
`atthew Nguwen
`Attorney, Agent, or Firm Fish & Richardson P.C.
`57
`ABSTRACT
`A multi-output power Supply having half-brick dimensions
`includes a forward converter circuit which receives a DC
`input Voltage and in response to a first control Signal
`generates a first DC output Voltage at a first level; and a buck
`regulator circuit which receives the first DC output voltage
`from the forward converter circuit. In response to a Second
`control Signal, the buck regulator generates a Second DC
`output voltage at a Second level.
`11 Claims, 10 Drawing Sheets
`
`
`
`
`
`W
`N
`48V
`
`
`
`100
`
`Forward
`Converter
`
`
`
`
`
`BUCK
`Regulator
`
`
`
`
`
`
`
`Control &
`Housekeeping
`Functions
`
`"
`
`V
`OUT 1
`5W
`
`W
`OUT 2
`8a 3.3V
`
`Netlist Ex 2005-p. 1
`Samsung v Netlist
`IPR2022-00996
`
`

`

`U.S. Patent
`
`May 23, 2000
`
`Sheet 1 of 10
`
`6,067.241
`
`
`
`'II'
`
`N III.1.
`
`ill it
`
`
`
`
`
`CO
`
`
`
`
`
`N.
`
`CO
`
`O
`
`--
`
`C)
`Z
`> 2
`CD
`CN
`
`v.
`
`-
`5
`2
`N
`>
`2
`O --
`Co
`Vr
`
`<C
`
`V
`
`O
`
`O
`L
`
`Netlist Ex 2005-p. 2
`Samsung v Netlist
`IPR2022-00996
`
`

`

`U.S. Patent
`
`May 23, 2000
`
`Sheet 2 of 10
`
`6,067.241
`
`|100A
`
`A9
`
`Z100A
`
`A9'9
`
`
`
`
`
`
`
`00||
`
`Netlist Ex 2005-p. 3
`Samsung v Netlist
`IPR2022-00996
`
`

`

`U.S. Patent
`
`May 23, 2000
`
`Sheet 3 of 10
`
`6,067.241
`
`|100A
`
`
`
`
`
`
`
`
`
`Netlist Ex 2005-p. 4
`Samsung v Netlist
`IPR2022-00996
`
`

`

`U.S. Patent
`
`May 23, 2000
`
`Sheet 4 of 10
`
`6,067.241
`
`Z100A
`
`| 9
`
`00Z
`
`ZLZ
`
`JeÐUÏT
`
`pU000S
`
`Z909
`
`0?I
`
`90
`
`
`
`
`
`Netlist Ex 2005-p. 5
`Samsung v Netlist
`IPR2022-00996
`
`

`

`U.S. Patent
`
`May 23, 2000
`
`Sheet 5 of 10
`
`6,067.241
`
`21T
`
`|2
`
`r– – –– – – – –)
`
`
`
`— — — —
`
`Netlist Ex 2005-p. 6
`Samsung v Netlist
`IPR2022-00996
`
`

`

`U.S. Patent
`
`May 23, 2000
`
`Sheet 6 of 10
`
`6,067.241
`
`
`
`820
`
`
`
`
`
`*= = = === === ) – –)_.T
`
`00 If I 38W00-A
`
`
`
`E00 VW08C 1801-A
`
`Netlist Ex 2005-p. 7
`Samsung v Netlist
`IPR2022-00996
`
`

`

`Netlist Ex 2005-p. 8
`Samsung v Netlist
`IPR2022-00996
`
`

`

`Netlist Ex 2005-p. 9
`Samsung v Netlist
`IPR2022-00996
`
`

`

`Netlist Ex 2005-p. 10
`Samsung v Netlist
`IPR2022-00996
`
`

`

`U.S. Patent
`
`May 23, 2000
`
`Sheet 10 of 10
`
`6,067.241
`
`
`
`FIG. 5B
`
`FIG.5C
`
`FIG.5D
`
`Netlist Ex 2005-p. 11
`Samsung v Netlist
`IPR2022-00996
`
`

`

`1
`DUAL-OUTPUT DC-DC POWER SUPPLY
`
`6,067.241
`
`2
`The present invention combines a pair of independently
`controlled Switching DC circuit topologies which can be
`disposed within a relatively compact housing having "half
`brick' dimensions. Independent control of the forward and
`buck converters ensures that the outputs of each converter
`are well-regulated. The topologies are interconnected in a
`way to allow available output power to be flexibly distrib
`uted to each of the pair of Voltage outputs.
`Preferred embodiments include the following features.
`The multi-output power Supply includes a Synchronization
`circuit which ensures that a Second control Signal from the
`Second control circuit is applied to the buck converter at
`Substantially the same time a first control signal from the
`first control circuit is applied to the forward converter. The
`multi-output power Supply also includes a Voltage regulator
`circuit disposed within the housing and connected to the
`forward converter and buck converter to maintain the dif
`ference between the first DC output voltage and the second
`DC output voltage below a predetermined threshold value.
`In another aspect of the invention, a multi-output power
`Supply which generates first and Second DC output voltages
`to respective loads includes a housing having half-brick
`dimensions and first and Second pairs of Voltage output
`terminals corresponding to the first and Second DC output
`Voltages, respectively. In a preferred embodiment, each of
`the Voltage terminals of the first and Second pair of Voltage
`output terminals are adjacent to each other.
`Because the terminal pins of each of the first and Second
`pairs of output terminal pins are adjacent to each other, lead
`lengths associated with the physical layout of the circuit
`asSociated with each pair are reduced.
`Other features and advantages of the invention will
`become apparent from the following description of the
`preferred embodiments and from the claims.
`BRIEF DESCRIPTION OF THE DRAWINGS
`FIG. 1A is a plan View of the half-brick package enclosing
`the dual-output power Supply.
`FIG. 1B is a side view of the half-brick package enclosing
`the dual-output power supply of FIG. 1A.
`FIG. 2 is a functional block diagram of the dual-output
`power Supply of the present invention.
`FIGS. 3A and 3B are a detailed block diagram of the
`dual-output power Supply of FIG. 2.
`FIGS. 4A and 4B are a schematic representation of the
`forward converter and buck converter Sections of the dual
`output power supply of FIG. 3.
`FIGS. 5A-5C are a detailed schematic representation of
`the control sections of the dual-output power supply of FIG.
`3.
`FIG.5D is a diagram which displays the correct Sequence
`of FIGS 5A-5C.
`
`1O
`
`15
`
`40
`
`45
`
`50
`
`This application is a Division of U.S. Ser. No. 08/763,
`685, now U.S. Pat. No. 5,715,153.
`BACKGROUND OF THE INVENTION
`The invention relates to Switching power Supplies, and
`more particularly to multi-output DC-DC Switching power
`Supplies.
`There are about fourteen basic topologies (basic block
`diagrams) commonly used to implement a Switching power
`Supply. Each topology has characteristics which make it a
`Suitable candidate for use in a particular application.
`One of the most fundamental Switching power Supply
`topologies is the “buck' converter or “step-down” Switching
`regulator. The buck converter includes a Switch, usually in
`the form of a transistor, whose “on” time is controlled so that
`a Series of rectangular voltage pulses of adjustable width can
`be appropriately filtered to provide a well-regulated average
`DC output.
`Other Switching power Supply topologies are better Suited
`for use as DC-DC converters. A DC-DC converter is a
`device which converts a DC voltage at one level to a DC
`Voltage at another level. The converter typically includes a
`25
`transformer, having primary and Secondary windings wound
`around a common magnetic core. By opening and closing
`the primary circuit for appropriate intervals, control over the
`energy transfer between the primary and Secondary wind
`ings is accomplished. The transformer provides an alternat
`ing Voltage whose amplitude can be adjusted by changing
`the number of turns of the primary and Secondary windings.
`Moreover, the transformer provides DC isolation between
`the input and the output of the converter.
`One of the most common DC-DC converter topologies
`is the forward converter. When the primary winding of the
`forward converter is energized by closing the primary
`circuit, energy is immediately transferred to the Secondary
`winding.
`Recently, in the field of Switching power Supplies, greater
`attention has been directed toward compactness, energy
`efficiency, and higher performance. AS integrated circuits
`pack more features in Smaller Volumes, it becomes increas
`ingly important that the size of the System's power Supply
`also decreases. Moreover, the complexity of many Systems
`have increased with different parts of the system's circuitry
`requiring different power Supply Voltages. Thus, power
`Supply designers are faced with the problem of providing
`Smaller power Supplies with multiple outputs and better
`performance.
`SUMMARY OF THE INVENTION
`The invention features a multi-output power Supply
`including independently-controlled forward and buck con
`verters disposed within a housing having half-brick dimen
`Sions.
`In one general aspect, the multi-output power Supply
`includes a forward converter which receives a DC input
`Voltage and generates a first DC output voltage, a first
`control circuit which controls the level of the first DC output
`voltage; a buck converter which receives the first DC output
`Voltage and generates the Second DC output voltage, a
`Second control circuit which controls the level of the second
`DC output voltage; and a housing having half-brick
`dimensions, with the forward converter, the buck converter,
`the first control circuit and the Second control circuit dis
`posed within the housing.
`
`35
`
`55
`
`60
`
`65
`
`DESCRIPTION OF THE PREFERRED
`EMBODIMENTS
`Referring to FIGS. 1A and 1B, a dual-output power
`Supply 10 is provided within a molded package 6 having
`dimensions consistent with a standard "half-brick' module.
`A half-brick module has a width, depth and height of 2.28,
`2.4 and 0.5 inches, respectively. As will be discussed in
`greater detail below, power Supply 10 includes an isolated
`DC-DC forward converter in combination with a regulated
`buck converter for generating a pair of Voltage outputs.
`Power Supply 10 is capable of generating as much as 60
`watts of output power to the pair of outputs.
`
`Netlist Ex 2005-p. 12
`Samsung v Netlist
`IPR2022-00996
`
`

`

`6,067.241
`
`15
`
`25
`
`35
`
`40
`
`3
`Package 6 includes four input terminal pins 7a-7d includ
`ing +V, -V. GND and remote ON/OFF pins. A relatively
`broad input voltage range between 34 and 75 volts can be
`applied to the +V, and -V, pins. Package 6 also includes
`Six output pins 8a–8f including +V, -V., +V2,
`-V, Trim 1 and Trim 2 pins. The terminal pins are
`grouped So that the +V and -V pins are adjacent to
`each other to ensure a short AC loop. Similarly, the +V.
`and -V pins are positioned to be adjacent to each other.
`With this particular "pin out' arrangement, the physical
`layout of the circuits associated with each pair of outputs
`(described in greater detail below) are confined to a smaller
`area and lead lengths associated with each of the circuits are
`reduced. Minimizing the lead lengths reduces inductance
`asSociated with the physical layout of these lead lengths,
`thus, filtering at the pair of outputS is more efficient. Trim 1
`and trim2 pins allow the user to adjust the level of the output
`DC voltages from 90% to 110% of their factory settings.
`Referring to FIG. 2, power supply 10 receives the DC
`input voltage (e.g., 48 V) at input terminal pin 7d (+V) and
`generates the DC output voltages of 5 V and 3.3 V, at output
`terminal pins 8d and 8a, respectively. Connected between
`input terminal pin 7d and output terminal pin 8d is a forward
`converter 100 which receives the DC input voltage and
`generates the first DC output voltage of 5 V to a first load
`(not shown). The first DC output voltage (V) from
`forward converter 100 is also received by a buck converter
`200 where it is stepped down to the second DC output
`voltage (3.3 V) provided to a second load (not shown)
`through output terminal pin 8a. Power supply 10 also
`includes control and housekeeping circuitry 18 for generat
`ing the necessary power to a number of auxiliary circuits
`needed to ensure proper functioning of power Supply 10.
`Referring to FIG. 3, the basic functional blocks diagram
`of dual-output power Supply 10 are shown and will be
`described in greater detail below. Schematic representations
`of the circuitry used for each functional block of FIG. 3 are
`shown with like reference numerals in FIGS. 4 and 5 as
`dashed-line boxes.
`Forward converter 100 includes an LC input filter 102 for
`Smoothing the DC input voltage applied to input terminal
`pin 7a. The filtered voltage is received by a switched
`primary winding 104 of a transformer 106 with a secondary
`winding 108 of the transformer providing a series of AC
`pulses whose amplitudes are fixed by the ratio of the number
`of turns of the primary and Secondary windings. An example
`of a transformer well-suited for use in the forward converter
`is described in co-pending application, Ser. No. 08/693,878,
`assigned to the assignee of the invention, and hereby incor
`porated by reference. The Series of Square-wave pulses are
`converted back to a rectified DC voltage using rectifier 110
`and smoothed with an output filter 112.
`Referring to FIG. 4, more particularly, a MOSFET tran
`sistor Switch 114 is connected in series with the primary
`winding 104 of transformer 106. When Switch 114 is closed,
`energy in primary winding 104 is transferred through a
`secondary winding 108 via rectifier 110 and output filter 112
`to a load (not shown). Output filter 112 includes an inductive
`winding 116 of a transformer and a bank of capacitors 118.
`AS will be discussed below, output filter 112 generates a
`V DC voltage (5V) which is equal to the average of the
`duty-cycle-modulated raw DC input voltage. When Switch
`114 is opened, the forward energy transfer is stopped by a
`free-wheeling diode 116 which is connected in parallel with
`output filter 112 and allows the energy stored in inductive
`winding 116 of the filter to be released into capacitors 118.
`Connected in parallel with output filter 114 of forward
`converter 100 is a buck converter 200 having a MOSFET
`
`45
`
`50
`
`55
`
`60
`
`65
`
`4
`transistor Switch 202 which receives the V DC voltage
`from forward converter 100. Switch 202 is controlled to
`generate an adjustable duty cycle output Voltage, V DC
`voltage (3.3 V), to an output filter 204 formed of an
`inductive winding 206 of a transformer 208 and a bank of
`capacitors 210.
`Referring again to FIG. 3, dual-output supply 10 includes
`a control circuit 120 which controls the duty cycle of the
`pulse train applied to the gate of Switching transistor 114,
`thereby controlling the level of the V DC voltage. When
`control circuit 120 is used in a constant frequency operation,
`the “chopping period is kept constant and the “on” time is
`varied. Because the width of the pulse is being varied, this
`type of control is known as pulse width modulation (PWM)
`control. Alternatively, control circuit can be used in a
`variable frequency operation where the chopping frequency
`is varied with the “on” or “off time being held constant.
`This type of control is called frequency modulation.
`Buck converter 200 includes its own independent control
`circuit 212 which operates in the Same way as control circuit
`120 to control the duty cycle of the pulse train applied to the
`gate of Switching transistor 202, thereby controlling the
`level of the V DC voltage.
`A Synchronization circuit 29 receives a timing Signal from
`control circuit 120 which indicates when forward converter
`100 is being Switched. In response to the timing Signal,
`Synchronization circuit 29 generates a Sync Signal to control
`circuit 212 to ensure that the pulse trains for forward
`converter 100 and buck converter 200 are Switched simul
`taneously. Switching the converters at the same time, mini
`mizes the overall noise of the power Supply by limiting any
`Switching noise to the transition periods.
`Because buck converter 200 is in a cascade arrangement
`with forward converter 100, two separate power trains are
`not required, thereby minimizing the Space required for the
`two converters. Thus, both converters can be accommodated
`within the relatively small half-brick package 6 (FIGS. 1A
`and 1B). Moreover, the cascade arrangement of the buck and
`forward converters allows for greater flexibility in the dis
`tribution of the 60 watts of available power form the
`dual-output power Supply. For example, in one application,
`the 5 V DC voltage (V) generates 6A of current and the
`3.3 V DC voltage (V) generates 9A of current. However,
`in another application, the 60 watts of available power could
`be distributed so that the 5 V DC voltage generates about 8A
`of current and the 3.3 V DC voltage (V) generates 6A of
`Current.
`Control and housekeeping circuitry 18 (FIG. 2) includes
`an IC Voltage Supply 20 for powering the components (e.g.,
`MOSFET switch transistors) of the power train, as well as
`the control circuits and other auxiliary circuitry. A Start
`circuit 22 is used at initial Start-up of power Supply 10 to
`generate power to IC Voltage Supply 20, thereafter all power
`requirements are generated by IC Voltage Supply 20. A Soft
`Start circuit 23 is used in conjunction with Start circuit 22 to
`provide a gradual increase of the power provided to IC
`Voltage Supply 20 at initial Startup.
`Because Synchronization circuit 29 maintains precise con
`trol of the Switching of the pulse trains for forward converter
`100 and buck converter 200, the difference in voltage
`between the 5 V DC voltage (V) and the 3.3 V DC
`voltage (V) is relatively constant (i.e., about 1.7 V).
`However, at initial Startup of the power Supply, the differ
`ence between V and V can be greater than 1.7 due to
`the time required for V to reach its steady State. In Some
`applications, a difference greater than 4.0 V can, damage the
`
`Netlist Ex 2005-p. 13
`Samsung v Netlist
`IPR2022-00996
`
`

`

`S
`circuit driven by the power Supply. Thus, a linear regulator
`34 is connected between the output terminal 8d and the input
`to buck converter 200 to maintain the difference between the
`outputs below 2.0 V. Linear regulator 34 generally includes
`a simple resistor divider network which generates dissipated
`heat loSS during operation, but only for the short period
`needed for V.
`to reach its steady state value of 3.3 V.
`Linear regulator 34 includes a variable resistor (not shown)
`to allow adjustment of the desired regulation Voltage.
`Control and housekeeping circuitry 18 also includes an
`under voltage lockout (UVL) circuit 24 which senses the
`voltage level of the DC input voltage. If the voltage level is
`below a preselected threshold level, UVL circuit 24 gener
`ates a signal to IC Supply Voltage 20 to shutdown operation
`of the dual-output power supply 10. Similarly, an over
`voltage lockout (OVL) circuit 26 senses the voltage level of
`the V DC voltage. If the Voltage level is greater than a
`predetermined maximum threshold, OVL circuit 26 deter
`mines that a fault exists in forward converter 100 or its
`control circuitry and generates a Signal to IC Supply Voltage
`20 to shutdown operation of the dual-output power Supply
`10. Trim/compensation circuits 28, 31 are connected to
`forward converter 100 and buck converter 200 to allow for
`adjustment of the amplitude levels of the V and V DC
`voltages via terminal pins 8f and 8c (FIG. 1A), respectively.
`25
`A current Sensing circuit 30 is provided for Sensing the
`current flowing through primary winding 104 on an ongoing
`basis. When the current exceeds a predetermined threshold
`value current Sensing circuit 30 generates a control Signal to
`control circuit 120 (via a second current limiting circuit 32)
`to SuppreSS the generation of one of the Square-wave pulses
`by transformer 106. If the value of the current is greater than
`the threshold for an extended period of time (e.g., a short
`circuit condition), Second current limiting circuit 32 gener
`ates a Signal to Suppress the generation of a Series of the
`Square-wave pulses for a predetermined time period. At the
`end of the predetermined time period, the current is remea
`Sured and, if below the threshold, the Square-wave pulses
`from transformer 106 are reinitiated.
`Other embodiments are within the claims. For example,
`the dual-output power Supply 10 described above generates
`output voltages of 5V and 3.3 V. The invention, however, is
`applicable to dual-output power Supplies of other Voltage
`combinations such as 3.3 V/2.5 V or 2.5 V/ 2.1 V supplies.
`What is claimed is:
`1. A multi-output power Supply for generating first and
`Second DC output Voltages to respective loads, Said power
`Supply comprising:
`a first converter which receives a DC input Voltage and
`generates the first DC output voltage;
`a first control circuit which controls the level of the first
`DC output Voltage;
`a second converter which receives the first DC output
`Voltage from the first converter circuit and generates
`the Second DC output voltage;
`a second control circuit which controls the level of the
`Second DC output voltage.
`2. The multi-output power Supply of claim 1 further
`comprising a housing within which the first converter, the
`
`35
`
`45
`
`50
`
`55
`
`6,067.241
`
`15
`
`40
`
`6
`Second converter, the first control circuit and the Second
`control circuit are disposed.
`3. The multi-output power supply of claim 1 further
`comprising a Synchronization circuit which applies the Sec
`ond control Signal to the Second converter at Substantially
`the same time the first control Signal is applied to the first
`COnVerter.
`4. The multi-output power Supply of claim 1 further
`comprising circuitry connected to the first converter and
`Second converter to maintain the difference between the first
`DC output voltage and the second DC output voltage below
`a predetermined threshold value.
`5. The multi-output power supply of claim 4 wherein the
`circuitry includes a voltage regulator.
`6. The multi-output power supply of claim 1 wherein the
`first converter is a forward converter and the Second con
`verter is a buck converter.
`7. A multi-output power Supply for generating first and
`Second DC output voltages to respective ones of the loads at
`a predetermined total output current level, Said power Supply
`comprising:
`a first converter which receives a DC input Voltage and
`generates the first DC output voltage, the first
`converter, in operation, providing a first variable output
`current level in a range between Zero and the prede
`termined total current level of the multi-output power
`Supply,
`a first control circuit which controls the level of the first
`DC output voltage and the first variable output current
`level;
`a second converter which receives the first DC output
`Voltage from the first converter circuit and generates
`the second DC output voltage, the second converter, in
`operation, providing a Second variable output current
`level in a range between Zero and the difference
`between the total current level of the multi-output
`power Supply and the first variable current level; and
`a second control circuit which controls the level of the
`Second DC output voltage and the Second variable
`output current level.
`8. The multi-output power Supply of claim 7 further
`comprising a housing within which the first converter, the
`Second converter, the first control circuit and the Second
`control circuit are disposed.
`9. The multi-output power Supply of claim 7 further
`comprising a Synchronization circuit disposed within the
`housing to ensure that the Second control Signal is applied to
`the Second converter at Substantially the same time the first
`control Signal is applied to the first converter.
`10. The multi-output power Supply of claim 7 further
`comprising a Voltage regulator circuit disposed within the
`housing and connected to the first converter and Second
`converter to maintain the difference between the first DC
`output voltage and the Second DC output Voltage below a
`predetermined threshold value.
`11. The multi-output power supply of claim 7 wherein the
`first converter is a forward converter and the Second con
`verter is a buck converter.
`
`Netlist Ex 2005-p. 14
`Samsung v Netlist
`IPR2022-00996
`
`

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket