`
`Cited Publications
`
`1.
`
`Bijaoui, E.L., et al., Mechanical properties of the lung and upper airways in
`
`patients with sleep-disordered breathing. Am J Respir Crit Care Med, 2002.
`
`165(8): p. 1055-61.
`
`2.
`
`Brown, K.A., R. Platt, and J.H. Bates, Automated analysis of paradoxical
`
`ribcage motion during sleep in infants. Pediatr Pulmonol, 2002. 33(1): p. 38-
`
`46.
`
`3.
`
`Bates, J.H.T., Lung mechanics. An inverse modeling approach. 2009,
`
`Cambridge, UK: Cambridge University Press.
`
`4.
`
`Bates, J.H.T., et al., Altered airway mechanics in the context of obesity and
`
`asthma. J Appl Physiol (1985), 2021. 130(1): p. 36-47.
`
`5.
`
`Bates, J.H.T., et al., Pathophysiology to Phenotype in the Asthma of Obesity.
`
`Ann Am Thorac Soc, 2017. 14(Supplement_5): p. S395-S398.
`
`6.
`
`Bhatawadekar, S.A., et al., Air Trapping versus Atelectasis in Obesity:
`
`Relationship to Late-Onset Nonallergic Asthma and Aging. Ann Am Thorac
`
`Soc, 2022. 19(1): p. 135-139.
`
`7.
`
`Bhatawadekar, S.A., et al., Central airway collapse is related to obesity
`
`independent of asthma phenotype. Respirology, 2021. 26(4): p. 334-341.
`
`8.
`
`Dixon, A.E., et al., Physiological signature of late-onset nonallergic asthma
`
`of obesity. ERJ Open Res, 2020. 6(3).
`
`
`
`1
`
`New York University Exhibit 2008
`ResMed Inc. v. New York University
`IPR2022-00994
`Page 1 of 3
`
`
`
`
`
`9.
`
`Polese, G., et al., Flow-triggering reduces inspiratory effort during weaning
`
`from mechanical ventilation. Intensive Care Med, 1995. 21(8): p. 682-6.
`
`10. Ranieri, V.M., et al., Effects of proportional assist ventilation on inspiratory
`
`muscle effort in patients with chronic obstructive pulmonary disease and
`
`acute respiratory failure. Anesthesiology, 1997. 86(1): p. 79-91.
`
`11. Pillow, J.J. and J.N. Travadi, Bubble CPAP: is the noise important? An in
`
`vitro study. Pediatr Res, 2005. 57(6): p. 826-30.
`
`12. McClure, K., et al., Classification and Detection of Breathing Patterns with
`
`Wearable Sensors and Deep Learning. Sensors (Basel), 2020. 20(22).
`
`13. Schuessler, T.F. and J.H. Bates, A computer-controlled research ventilator
`
`for small animals: design and evaluation. IEEE Trans Biomed Eng, 1995.
`
`42(9): p. 860-6.
`
`14. Nemoto, T., et al., Automatic control of pressure support mechanical
`
`ventilation using fuzzy logic. Am J Respir Crit Care Med, 1999. 160(2): p.
`
`550-6.
`
`15. Bates, J.H.T., et al., Atelectrauma Versus Volutrauma: A Tale of Two Time-
`
`Constants. Crit Care Explor, 2020. 2(12): p. e0299.
`
`16. Gaver, D.P., 3rd, et al., The POOR Get POORer: A Hypothesis for the
`
`Pathogenesis of Ventilator-induced Lung Injury. Am J Respir Crit Care Med,
`
`2020. 202(8): p. 1081-1087.
`
`
`
`2
`
`New York University Exhibit 2008
`ResMed Inc. v. New York University
`IPR2022-00994
`Page 2 of 3
`
`
`
`
`
`17. Hamlington, K.L., et al., Predicting ventilator-induced lung injury using a
`
`lung injury cost function. J Appl Physiol (1985), 2016. 121(1): p. 106-14.
`
`18. Hamlington, K.L., et al., Linking lung function to structural damage of
`
`alveolar epithelium in ventilator-induced lung injury. Respir Physiol
`
`Neurobiol, 2018. 255: p. 22-29.
`
`19. Ramcharran, H., et al., Protective ventilation in a pig model of acute lung
`
`injury: timing is as important as pressure. J Appl Physiol (1985), 2022.
`
`133(5): p. 1093-1105.
`
`20. Smith, B.J., et al., Linking Ventilator Injury-Induced Leak across the Blood-
`
`Gas Barrier to Derangements in Murine Lung Function. Front Physiol,
`
`2017. 8: p. 466.
`
`21. Nieman, G., et al., Unshrinking the baby lung to calm the VILI vortex. Crit
`
`Care, 2022. 26(1): p. 242.
`
`
`
`
`
`
`
`3
`
`New York University Exhibit 2008
`ResMed Inc. v. New York University
`IPR2022-00994
`Page 3 of 3
`
`